Reaction Chemistry & Engineering

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

A comprehensive study on the continuous flow synthesis of supported iron oxide nanoparticles on porous silicates and their catalytic applications

Alfonso Yepez,^a Pepijn Prinsen,^a Antonio Pineda^a, Alina M. Balu,^a Angel Garcia^a, Frank L.Y. Lam^b and Rafael Luque^{a,c*}

Electronic Supporting Information

^{a.} Departamento de Química Orgánica, Universidad de Córdoba, Edif. Marie Curie, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba (Spain). E-mail: q62alsor@uco.es

^{b.} Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear water bay, Kowloon, Hong Kong.

^c Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

ARTICLE

Figure S1. Continuous flow setup used for the deposition of iron oxide nanoparticles on porous silicates under varying conditions.

Figure S2. Nitrogen adsorption-desorption isotherms of the porous silicates AI-SBA-15 and Zr-SBA-15 and the catalyst materials (a) FeAISi100_0.5_15, (b) FeAISi200_2.0_10, (c) FeZrSi100_0.5_15 and (d) FeZrSi200_2.0_10.

Journal Name

Figure S3. EDX spectra of (a) FeAlSi150_0.1_40 and (b) FeZrSi150_0.1_40 catalysts.

ARTICLE

Journal Name

Figure S4. TEM images of FeAlSi catalysts (including their iron content based on EDX analysis) synthesized at (left) 100 °C, (centre) 150 °C and (right) 200 °C.

4 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Journal Name

Figure S5. TEM images of FeZrSi catalysts (including their iron content based on EDX analysis) synthesized at (left) 100 °C, (centre) 150 °C and (right) 200 °C.