Click reaction-aided enzymatic kinetic resolution of secondary alcohols

Mădălina Elena Moisă, László Poppe, Cristian Andrei Gal, László Csaba Bencze, Florin Dan Irimie, Csaba Paizs, Francisc Peter and Monica Ioana Toşa

Supplementary material

Table of Contents

1.	Chemical	synthesis and spectral characterization of compounds	2
1	1. Chemic	al synthesis of racemic (hetero)aryl-propynyloxy-acetates rac-3a-d [1]	2
1	2. Chei	mical synthesis of acylating agents 2A-D	9
	1.2.1.	Synthesis of 2-(prop-2-yn-1-yloxy)acetic acid	9
	1.2.2.	Synthesis of ethyl 2-(prop-2-yn-1-yloxy)acetate (2A)	10
	1.2.3. yloxy)ace	Synthesis of isopropyl, propargyl and 2,2,2-trifluoroethyl 2-(prop-2-yn-1- etates (2B-D)	12
1 (3. Chei 2-(diethyl-a	mical synthesis of 2-azido- <i>N,N</i> -diethylethan-1-amine and of 2,2,2-trifluoroethyl 2-((1 amino)ethyl)-1 <i>H</i> -1,2,3-triazol-4-yl)methoxy)acetate (2E)	L- 17
	1.3.1.	Synthesis of 2-chloro-N,N-diethylethan-1-amine hydrochloride	17
	1.3.2.	Synthesis of 2-azido-N,N-diethylethan-1-amine	19
	1.3.3. Syı yl)metho	nthesis of 2,2,2-trifluoroethyl 2-((1-(2-(diethyl-amino)ethyl)-1H-1,2,3-triazol-4- xy)acetate (2E)	20
1	4. Spec	ctral characterization of racemic heteroaromatic triazoles <i>rac</i> -4a-d	21
	1.4.1. (rac-4a)	(±)-1-Phenylethyl 2-((1-(2-(diethylamino)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)aced	tate
	1.4.2. yl)metho	(±)-1-(Benzofuran-2-yl)ethyl 2-((1-(2-(diethylamino)ethyl)-1H-1,2,3-triazol-4- xy)acetate (rac-4b)	22
	1.4.3. yl)metho	(±)-1-(Benzofuran-3-yl)ethyl 2-((1-(2-(diethylamino)ethyl)-1H-1,2,3-triazol-4- xy)acetate (rac-4c)	24
	1.4.4. yl)metho	(±)-1-(2-phenylthiazol-4-yl)ethyl 2-((1-(2-(diethylamino)ethyl)-1H-1,2,3-triazol-4- xy)acetate (rac-4d)	26
1	5. Cop	per(I) source screening for the click reaction	27
2. yn-	Solvent s 1-yloxy)ace	creening for the acylation reaction of racemic ethanols <i>rac</i> -1a-d with ethyl 2-(prop etate 2A)-2- 28
З. 2-у	Equilibriu n-1-yloxy)a	um effect for the acylation reaction of racemic ethanols <i>rac</i> -1a-d with ethyl 2-(pro acetate 2A in the optimal solvents	p- 29
4.	Optimiza	tion of lipase-mediated <i>O</i> -acylation of <i>rac</i> -1c	29

5.	HPL	C separation conditions for racemic compounds <i>rac</i> -1,3,4a-d	30			
6.	HPL	.C chromatograms	31			
6	.1.	Resolution of the racemic 1-phenyl-1-ethanol rac-1a	31			
6	.2.	Resolution of the racemic 1-(Benzofuran-2-yl)ethanol rac-1b	33			
6	.3.	Resolution of the racemic 1-(Benzofuran-3-yl)ethanol <i>rac</i> -1c	35			
6	.4.	Resolution of the racemic 1-(2-phenylthiazol-4-yl)ethanol rac-1d	38			
Ref	References					

1. Chemical synthesis and spectral characterization of compounds

1.1. Chemical synthesis of racemic (hetero)aryl-propynyloxy-acetates rac-3a-d [1]

In a dry round-bottom flask one of the racemic alcohols (*rac*-**1a-d**, 1.5 mmol) and 2-(prop-2-yn-1-yloxy)acetic acid (1.1 equiv., 1.65 mmol, 188 mg) were dissolved in dry CH_2CI_2 (20 mL) and the mixture was cooled to 0 °C. Next, DMAP (0.1 equiv., 18 mg) and DCC (1.1 equiv., 1.8 mmol, 370 mg) were added and the mixture was stirred for 10 minutes at 0 °C and then for 3 h at room temperature. After the completion of the reaction (monitored by TLC using CH_2CI_2 as eluent), the formed DCU was filtered off and extractions were performed, first with 10% HCl (3 × 15 mL), then with 2M Na₂CO₃ (20 mL) and finally with distilled water (20 mL). The collected organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The products (light yellow viscous liquids) were purified on silica gel column chromatography using CH_2CI_2 as eluent. Yields: 62-81%.

(±)-1-Phenylethyl 2-(prop-2-yn-1-yloxy)acetate (*rac*-3a): ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.29 (m, 5H), 5.99 (q, *J* = 6.6 Hz, 1H), 4.30 (overlapped dd, 2H), 4.21 (d, *J* = 6.9 Hz, 2H) 2.46 (overlapped dd, 1H), 1.58 (d, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 169.25, 141.04, 128.65, 128.21, 126.26, 78.60, 75.68, 73.20, 66.40, 58.34, 22.21 ppm. HRMS (ESI⁺) m/z: C₁₃H₁₄O₃ [M+Na⁺] calc. 241.0835, found 241.0843.

¹H NMR: *rac*-3a (400 MHz, CDCl₃)

¹³C NMR: rac-3a (101 MHz, CDCl₃)

HRMS (ESI⁺): rac-3a

(±)-1-(Benzofuran-2-yl)ethyl 2-(prop-2-yn-1-yloxy)acetate (*rac*-3b): ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.52 (m, 1H), 7.51 – 7.44 (m, 1H), 7.33 – 7.27 (m, 1H), 7.24 -7.21 (m, 1H), 6.72 (s, 1H), 6.20 (q, *J* = 6.7 Hz, 1H), 4.32 (dd, *J* = 2.4, 0.8 Hz, 2H), 4.24 (d, *J* = 4.9, 2H), 2.47 (overlapped dd, 1H), 1.72 (d, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 169.14, 155.23, 154.89, 127.76, 124,82, 123.01, 121.39, 111.46, 104.83, 78.50, 75.77, 66.22, 66.21, 58.35, 18.36 ppm. HRMS (ESI⁺) m/z: C₁₅H₁₄O₄ [M+Na⁺] calc. 281.0784, found 281.0794.

¹**H NMR:** *rac*-**3b** (600 MHz, CDCl₃)

¹³C NMR: rac-3b (151 MHz, CDCl₃)

HRMS (ESI⁺): rac-3b

280.60 280.65 280.70 280.75 280.80 280.85 280.90 280.95 281.00 281.05 281.10 281.15 281.20 281.25 281.30 281.35 281.40 281.45 281.50 281.55 m/z (Da)

(±)-1-(Benzofuran-3-yl)ethyl 2-(prop-2-yn-1-yloxy)acetate (*rac*-3c): ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, *J* = 7.7 Hz, 1H), 7.64 (s, 1H), 7.49 (d, *J* = 8.2 Hz, 1H), 7.33 -7.31 (m, 1H), 7.28 - 7.25 (m, 1H), 6.31 (q, *J* = 6.7 Hz, 1H), 4.30 (overlapped dd, 2H), 4.22 (d, *J* = 14.8 Hz, 2H), 2.45 (overlapped dd, 1H), 1.73 (d, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 169.36, 155.66, 142.39, 125.81, 124.81, 122.98, 120.84, 120.4, 111.84, 78.52, 75.76, 66.29, 65.80, 58.37, 20.41 ppm. HRMS (ESI⁺) m/z: C₁₅H₁₄O₄ [M+Na⁺] calc. 281.0784, found 281.0794.

HRMS (ESI⁺): rac-3c

280.60 280.65 280.70 280.75 280.80 280.85 280.90 280.95 281.00 281.05 281.10 281.15 281.20 281.25 281.30 281.35 281.40 281.45 281.50 281.55 281.60 281.65

(±)-1-(2-Phenylthiazol-4-yl)ethyl 2-(prop-2-yn-1-yloxy)acetate (*rac*-3d): ¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.92 (m, 2H), 7.43 - 7.42 (m, 3H), 7.22 (s, 1H), 6.19 (q, *J* = 6.6 Hz, 1H), 4.33 (overlapped dd, 2H), 4.26 (d, *J* = 2.4 Hz, 2H), 2.47 (overlapped dd, 1H), 1.72 (d, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 169.23, 168.74, 156.29, 133.23, 130.40, 129.03, 126.77, 115.59, 78.60, 75.73, 69.39, 66.37, 58.37, 20.24 ppm. HRMS (APCl⁺) m/z: C₁₆H₁₅NO₃S [M+H⁺] calc. 302.0850, found 302.0845.

¹H NMR: rac-3d (600 MHz, CDCl₃)

¹³C NMR: rac-3d (151 MHz, CDCl₃)

HRMS (APCI⁺): rac-3d

1.2. Chemical synthesis of acylating agents 2A-D

2-(Prop-2-yn-1-yloxy)acetic acid and the corresponding ethyl, isopropyl, propargyl and 2,2,2-trifluoroethyl esters **2A-D** were synthesized according to **Scheme S2** [2] and further tested in the enzymatic transesterification reactions.

Scheme S2. Synthetic route of activated esters **2A-D**. *Reagents and reaction conditions:* **I.** NaH, dry THF, Ar, rt, 12 h; **II.** MTBE, NaOH, TBAB, rt; **III.** R-OH, DCC, DMAP, dry CH₂Cl₂, rt, 3 h.

1.2.1. Synthesis of 2-(prop-2-yn-1-yloxy)acetic acid

Into the solution of propargyl alcohol (1.2 equiv., 34 mmol, 2 mL) in MTBE (10 mL), NaOH (1.2 equiv., 34 mmol, 1.39 g) dissolved in distilled water (10 mL) was added. Chloracetic acid sodium salt (1 equiv., 28.9 mmol, 3.37 g) and tetrabutylammonium bromide (10 mol%, 0.93 g) as phase transfer catalyst were added and the mixture was stirred at room temperature for 48 hours. After the completion of the reaction, the two phases were separated, the aqueous phase was washed twice with MTBE (2 × 10 mL) and then the pH was adjusted to 2 using concentrated H₂SO₄. Next, extractions with ethyl acetate (3 × 10 mL) were performed, the combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The untransformed propargyl alcohol was removed through vacuum distillation affording the product as a brown oil. Yield: 71%. **2-(Prop-2-yn-1-yloxy)acetic acid:** ¹H NMR (600 MHz, CDCl₃) δ 9.56 (bs, 1H), 4.31 (d, *J* = 2.4 Hz, 2H), 4.26 (s, 2H), 2.51 (t, *J* = 2.4 Hz, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 175.39, 78.15, 76.16, 65.73, 58.48 ppm.

¹H NMR: 2-(Prop-2-yn-1-yloxy)acetic acid (600 MHz, CDCl₃)

1.2.2. Synthesis of ethyl 2-(prop-2-yn-1-yloxy)acetate (2A)

NaH (60% in mineral oil, 1.1 equiv., 22 mmol, 0.88 g) was added to the solution of propargyl alcohol (1 equiv., 20 mmol, 1.2 mL) in anhydrous THF (15 mL) under Ar atmosphere and the mixture was left stirring at room temperature for 1 hour. Ethyl bromoacetate (1.2 equiv., 24 mmol, 2.75 mL) was added afterwards and the reaction was stirred for another 12 hours. The solvent was removed using a rotary evaporator, the remaining yellow oil was dissolved in diethyl ether (10 mL) and extracted with distilled water (3 × 10 mL). The organic phase was dried over anhydrous Na_2SO_4 , filtered and concentrated in *vacuo*. Finally, using silica gel column chromatography and first petroleum ether, then petroleum ether:diethyl ether 96:4 (v/v) as eluent, the product was obtained as a colourless viscous liquid. Yield: 45%.

Ethyl 2-(prop-2-yn-1-yloxy)acetate (2A): ¹H NMR (400 MHz, CDCl₃) δ 4.30 (d, J = 2.4 Hz, 2H), 4.22 (q, J = 7.1 Hz, 2H), 4.18 (s, 2H), 2.47 (t, J = 2.4 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.00, 78.57, 75.70, 66.31, 61.17, 58.35, 14.27 ppm. HRMS (APCl⁺) m/z: C₇H₁₀O₃ [M+H⁺] calc. 143.0703, found 143.0706.

¹³C NMR: 2A (101 MHz, CDCl₃)

HRMS (APCI⁺): 2A

1.2.3. Synthesis of isopropyl, propargyl and 2,2,2-trifluoroethyl 2-(prop-2-yn-1-yloxy)acetates (2B-D)

In a dry round-bottom flask one of the three alcohols (2 equiv., 8 mmol) – 2-propanol, propargyl alcohol or 2,2,2-trifluoroethanol and 2-(prop-2-yn-1-yloxy)acetic acid (1 equiv., 4 mmol, 456 mg) were added in dry CH_2Cl_2 (10 mL). After cooling the mixture to 0 °C, DMAP (0.1 equiv., 0.4 mmol, 49 mg) and DCC (1.1 equiv, 4.4 mmol, 908 mg) were added. The reaction mixture was stirred for 10 minutes at 0 °C and then for 3 hours at room temperature. When the reaction was completed (monitored by TLC using *n*-hexane:ethyl acetate 7:3 (v/v) as eluent and potassium permanganate solution as developing agent), the precipitated DCU was filtered off and the organic solution was extracted with 10% HCl (2 × 10 mL), then with 2M Na₂CO₃ (2 × 10 mL) and finally with distilled water (2 × 10 mL). The collected organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The products (light yellow viscous liquids) were purified using silica gel column chromatography and a mixture of *n*-hexane: ethyl acetate 7:3 (v/v) as eluent. Yields: 53-60%.

Isopropyl 2-(prop-2-yn-1-yloxy)acetate (2B): ¹H NMR (600 MHz, CDCl₃) δ 5.09 (m, 1H), 4.30 (d, J = 2.4 Hz, 2H), 4.14 (s, 2H), 2.46 (t, J = 2.4 Hz, 1H), 1.25 (d, J = 6.3 Hz, 6H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 169.48, 78.67, 75.60, 68.82, 66.49, 58.32, 21.89 ppm. HRMS (APCl⁺) m/z: C₈H₁₂O₃ [M+H⁺] calc. 157.0859, found 157.0862.

¹³C NMR: 2B (151 MHz, CDCl₃)

HRMS (APCI⁺): 2B

Prop-2-yn-1-yl 2-(prop-2-yn-1-yloxy)acetate (2C): ¹H NMR (600 MHz, CDCl₃) δ 4.75 (d, J = 2.5 Hz, 1H), 4.30 (d, J = 2.4 Hz, 1H), 4.24 (s, 1H), 2.50 (t, J = 2.5 Hz, 1H), 2.48 (t, J = 2.4 Hz, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 169.19, 78.37, 77.08, 75.92, 75.59, 65.96, 58.41, 52.44 ppm. HRMS (APCl⁺) m/z: C₈H₈O₃ [M+H⁺] calc. 153.0546, found 153.0550.

¹³C NMR: 2C (151 MHz, CDCl₃)

152.2 152.3 152.4 152.5 152.6 152.7 152.8 152.9 153.0 153.1 153.2 153.3 153.4 153.5 153.6 153.7 153.8 153.9 154.0 154.1 154.2 m/z (Da)

2,2,2-Trifluoroethyl 2-(prop-2-yn-1-yloxy)acetate (2D): ¹H NMR (400 MHz, CDCl₃) δ 4.54 (q, *J* = 8.3 Hz, 2H), 4.32 (d, *J* = 2.4 Hz, 2H), 4.32 (s, 2H), 2.50 (t, *J* = 2.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 168.58, 126.93, 124.17, 121.42, 118.66, 78.12, 76.16, 65.57, 61.11, 60.74, 60.37, 60.00, 58.50 ppm. HRMS (APCl⁺) m/z: C₇H₇F₃O₃ [M+H⁺] calc. 197.0420, found 197.0427.

1.3. Chemical synthesis of 2-azido-*N*,*N*-diethylethan-1-amine and of 2,2,2-trifluoroethyl 2-((1-(2-(diethyl-amino)ethyl)-1*H*-1,2,3-triazol-4-yl)methoxy)acetate (2E)

A tertiary amine functionalized with an azide group, 2-azido-*N*,*N*-diethylethan-1-amine, was selected for the click reaction-based separation protocol of EKR products due to its property of being extractable in an aqueous acidic solution. The click-reaction of 2-azido-*N*,*N*-diethylethan-1-amine with **2D** generated an acylating agent bearing an amino-triazole group **2E**. The synthesis were performed according to **Scheme S3**. [3]

Scheme S3. Synthesis of 2-azido-*N*,*N*-diethylethan-1-amine *Reagents and reaction conditions:* **I.** SOCl₂, CHCl₃, 0 °C - reflux, 4 h; **II.** NaN₃, H₂O, 80 °C; **III.** Cul, CH₂Cl₂.

1.3.1. Synthesis of 2-chloro-N,N-diethylethan-1-amine hydrochloride

Into the ice-cold solution of 2-(diethylamino)ethan-1-ol (10 mmol, 1.3 mL) in $CHCl_3$ (20 mL) $SOCl_2$ (1.5 equiv., 15 mmol, 1.088 mL) in dry $CHCl_3$ (5 mL) was added dropwise under magnetic stirring. The reaction mixture was next refluxed for 4 hours. The solvent was evaporated under reduced pressure, the remaining residue was redissolved in ethanol (10 mL) and the product was obtained through precipitation by pouring diethyl ether (50

mL) into the ethanolic solution. The precipitate was then filtered and washed with diethyl ether, resulting a white solid. Yield: 88%.

2-Chloro-*N*,*N*-diethylethan-1-amine hydrochloride: ¹H NMR (600 MHz, D₂O) δ 3.92 (t, *J* = 5.7 Hz, 2H), 3.56 (t, *J* = 5.7 Hz, 2H), 3.37 – 3.22 (m, 4H), 1.30 (t, *J* = 7.3 Hz, 6H) ppm; ¹³C NMR (151 MHz, D₂O) δ 52.80, 47.59, 37.63, 7.87 ppm.

¹H NMR: 2-Chloro-*N*,*N*-diethylethan-1-amine hydrochloride (600 MHz, D₂O)

¹³C NMR: 2-Chloro-N,N-diethylethan-1-amine hydrochloride (151 MHz, D₂O)

1.3.2. Synthesis of 2-azido-N,N-diethylethan-1-amine

2-Chloro-*N*,*N*-diethylethan-1-amine hydrochloride (8 mmol, 1.36 g) was dissolved in deionized water (20 mL) and NaN₃ (3 equiv., 24 mmol, 1.56 g) was added. The mixture was stirred at 80 °C for 24 hours. After cooling the reaction mixture, the pH of the aqueous solution was adjusted to 10 using 10% KOH and extractions with diethyl ether were performed (3 × 20 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*, affording the desired azide as a light yellow viscous liquid. Yield: 83%.

2-azido-*N*,*N*-diethylethan-1-amine: ¹H NMR (600 MHz, CDCl₃) δ 3.27 (t, *J* = 6.3 Hz, 2H), 2.63 (t, *J* = 6.3 Hz, 2H), 2.55 (q, *J* = 7.2 Hz, 4H), 1.01 (t, *J* = 7.2 Hz, 6H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 52.07, 49.27, 47.35, 11.64 ppm.

1.3.3. Synthesis of 2,2,2-trifluoroethyl 2-((1-(2-(diethyl-amino)ethyl)-1H-1,2,3-triazol-4yl)methoxy)acetate (2E)

Into the solution of 2-azido-*N*,*N*-diethylethan-1-amine (0.51 mmol, 72.5 mg) and 2,2,2-trifluoroethyl 2-(prop-2yn-1-yloxy)acetate (**2D**) (1 equiv., 0.51 mmol, 100 mg) in *n*-hexane (5 mL), Cul (0.1 equiv., 0.05 mmol, 9.7 mg) was added and the reaction mixture was stirred at room temperature for 12 h. When the reaction was completed (monitored by TLC using CH_2CI_2 : MeOH 9:1 (v/v) as mobile phase), the catalyst was removed by filtration. Next, extraction was performed with aqueous acetic acid solution (0.1 M, pH 2, 3 × 5 mL). The product, ester **2E**, was obtained from the aqueous phase (after adjusting the pH to 10 with 2 M Na_2CO_3) by extraction with CH_2CI_2 (2 × 10 mL) followed by drying (over Na_2SO_4), filtration and removal of the solvent under reduced pressure.

2,2,2-trifluoroethyl 2-((1-(2-(diethyl-amino)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)acetate (2E): ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 4.76 (s, 2H), 4.52 (q, J = 8.4 Hz, 2H), 4.41 (t, J = 6.3 Hz, 2H), 4.26 (s, 2H), 2.88 (t, J = 6.2 Hz, 2H), 2.55 (q, J = 7.1 Hz, 4H), 0.96 (t, J = 7.1 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 168.90, 145.51, 124.16, 66.52, 64.65, 60.66, 60.30, 59.93, 52.93, 48.96, 47.38, 11.83.

¹**H NMR: 2E:** (400 MHz, CDCl₃)

¹³C NMR: 2,2,2-trifluoroethyl 2-((1-(2-(diethyl-amino)ethyl)-1*H*-1,2,3-triazol-4-yl)methoxy)acetate (101 MHz, CDCl₃)

1.4. Spectral characterization of racemic heteroaromatic triazoles *rac*-4a-d

1.4.1. (±)-1-Phenylethyl 2-((1-(2-(diethylamino)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)acetate (rac-4a)

¹**H NMR:** *rac*-4a (400 MHz, CDCl₃): δ 7.76 (s, 1H), 7.36 – 7.26 (m, 5H), 5.96 (q, J = 6.6 Hz, 1H), 4.73 (s, 2H), 4.51 (t, J = 6.0 Hz, 2H), 4.15 (d, J = 7.7 Hz, 2H), 3.00 (t, J = 6.0 Hz, 2H), 2.64 (q, J = 7.1 Hz, 4H), 1.55 (d, J = 6.6 Hz, 3H), 1.03 (t, J = 7.1 Hz, 6H)

¹³**C NMR:** *rac*-4a (101 MHz, CDCl₃): δ 169.58, 144.12, 141.14, 128.64, 128.17, 126.24, 124.13, 73.14, 67.49, 64.61, 52.59, 48.20, 47.42, 22.24, 11.26

HRMS (ESI⁺): *rac*-4a: m/z: C₁₉H₂₈N₄O₃ [M+H⁺] calc. 361.2234, found 361.2238.

1.4.2. (±)-1-(Benzofuran-2-yl)ethyl 2-((1-(2-(diethylamino)ethyl)-1H-1,2,3-triazol-4yl)methoxy)acetate (rac-4b)

¹**H NMR:** *rac*-4b (600 MHz, CDCl₃): δ 7.75 (s, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.22 – 7.18 (m, 1H), 6.69 (s, 1H), 6.16 (q, J = 6.7 Hz, 1H), 4.75 (s, 2H), 4.44 (t, J = 5.9 Hz, 2H), 4.17 (d, J = 5.4 Hz, 2H), 2.93 (overlapped t, 2H), 2.58 (overlapped q, 4H), 1.68 (d, J = 6.7 Hz, 3H), 0.99 (t, J = 7.1 Hz, 6H).

¹³**C NMR:** *rac*-4b (151 MHz, CDCl₃): δ 169.47, 155.35, 154.87, 127.78, 124.78, 122.99, 121.38, 111.44, 104.73, 67.26, 66.16, 64.63, 52.70, 48.52, 47.36, 18.41, 11.53.

1.4.3. (±)-1-(Benzofuran-3-yl)ethyl 2-((1-(2-(diethylamino)ethyl)-1H-1,2,3-triazol-4yl)methoxy)acetate (rac-4c)

¹**H NMR:** *rac*-4c (600 MHz, CDCl₃): δ 7.71 (s, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.61 (s, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.25 – 7.22 (m, 1H), 6.28 (q, J = 6.6 Hz, 1H), 4.73 (s, 2H), 4.42 (t, J = 6.2 Hz, 2H), 4.15 (d, J = 16.5 Hz, 2H), 2.92 (t, J = 6.2 Hz, 2H), 2.58 (q, J = 7.1 Hz, 4H) 1.70 (d, J = 6.6 Hz, 3H), 0.98 (t, J = 7.1 Hz, 6H).

¹³C NMR: *rac*-4c (151 MHz, CDCl₃): δ 169.62, 155.57, 142.27, 125.74, 124.70, 122.89, 120.84, 120.36, 111.73, 67.23, 65.65, 64.55, 52.74, 48.82, 47.26, 20.40, 11.76.

HRMS (ESI⁺): *rac*-4c: m/z: $C_{21}H_{28}N_4O_4$ [M+H⁺] calc. 401.2183, found 401.2190.

1.4.4. (±)-1-(2-phenylthiazol-4-yl)ethyl 2-((1-(2-(diethylamino)ethyl)-1H-1,2,3-triazol-4yl)methoxy)acetate (rac-4d)

¹H NMR: *rac*-4d (600 MHz, CDCl₃):) δ 7.92 - 7.90 (m, 2H), 7.79 (s, 1H), 7.43 - 7.38 (m, 3H), 7.21 (s, 1H), 6.15 (q, J = 6.6 Hz, 1H), 4.76 (s, 2H), 4.49 (t, J = 5.9 Hz, 2H), 4.20 (s, 2H), 2.99 (overlapped t, 2H), 2.63 (q, J = 6.9 Hz, 4H), 1.69 (d, J = 6.6 Hz, 3H), 1.01 (t, J = 6.9 Hz, 6H).

¹³C NMR: *rac*-4d (101 MHz, CDCl₃): δ 169.58, 169.49, 156.56, 133.51, 130.19, 128.97, 126.64, 115.50, 69.46, 67.36, 64.57, 52.68, 48.53, 47.33, 20.29, 11.54.

HRMS (ESI⁺): *rac*-4d: m/z: C₂₂H₂₉N₅O₃S [M+H⁺] calc. 444.2064, found 444.2069.

443.65 443.70 443.75 443.80 443.85 443.90 443.95 444.00 444.05 444.10 444.15 444.20 444.25 444.30 444.35 444.40 444.45 444.50 444.55 444.60 444.65 444.65 444.70 444. m/z (Da)

1.5. Copper(I) source screening for the click reaction

(1-(2-(diethylamino)ethyl)-1H-1,2,3-triazol-4-yl)methanol:

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (s, 1H), 4.71 (s, 2H), 4.40 (t, *J* = 6.5 Hz, 2H), 4.15 (bs, 1H), 2.90 (t, *J* = 6.5 Hz, 2H), 2.57 (q, *J* = 7.1 Hz, 4H), 0.96 (t, *J* = 7.1 Hz, 6H) ppm

^{13}C NMR (101 MHz, CDCl_3): δ 147.69, 123.07, 55.94, 52.70, 48.58, 47.25, 11.51 ppm

2. Solvent screening for the acylation reaction of racemic ethanols *rac*-1a-d with ethyl 2-(prop-2-yn-1-yloxy)acetate 2A

Table S1. Solvent screening for the enzymatic acylation reaction of *rac*-**1a-d** (10 mM) with ethyl 2-(prop-2-yn-1-yloxy)acetate **2A** (1 equiv.), at 30 °C (substrate:biocatalyst *ratio* 1:1, w/w)

Solvent	^{a,b} C _{rac-1a} (%)	ee _{3a} a,b (%)	c,d (%)	ee _{3b} ^{c,d} (%)	e,b <i>C_{rac-1c}</i> (%)	ee _{3c} ^{e,b} (%)	f,b C _{rac-1d} (%)	ee _{3d} ^{f,b} (%)
<i>n</i> -Hexane	17	>99	17	>99	10	>99	n.d.	<5
CH ₂ Cl ₂	n.d.	n.d.	n.d.	n.d.	11	>99	15	>99
ACN	n.d.	n.d.	n.d.	n.d.	18	>99	n.d.	n.d.
THF	n.d.	n.d.	n.d.	n.d.	15	>99	n.d.	n.d.
MTBE	n.d.	n.d.	n.d.	n.d.	18	>99	n.d.	<5
DIPE	n.d.	n.d.	n.d.	n.d.	21	>99	4	30
Cyclohexane	16	>99	n.d.	n.d.	30	>99	25	39
Toluene	n.d.	n.d.	n.d.	n.d.	26	>99	18	86

^aafter 4 h; ^bLipase B from *Candida antarctica* (Novozym 435, CaLB_{N435}); ^cafter 120 h; ^dLipase from *Pseudomonas fluorescens* (L-AK); ^eafter 15 h; ^fafter 130 h; n.d. not detected

3. Equilibrium effect for the acylation reaction of racemic ethanols *rac*-1a-d with ethyl 2-(prop-2-yn-1-yloxy)acetate 2A in the optimal solvents

Entry	Substrate	Solvent	Reaction time (h)	c (%)
1		n Hovano	4	17
2	raa 1 a ^a	<i>II-</i> nexalle	20	20
3	10C-18	Cuclobovono	4	16
4		Cyclonexane	20	16
5	rac 1 b ^b	n Hovano	120	17
6	100-10	II-HEXAIIE	168	18
7	rac 1 e ^a	Cyclobovano	15	30
8	<i>100-10</i>	Cyclonexalle	50	31
9	rac 1d ^a		130	15
10	<i>10C-10</i>		190	16

Table S2. Equilibrium effect for the lipase-mediated acylation reaction of *rac*-**1a-d** (10 mM) with **2A** (1 equiv.) in the optimal solvents, at 30 °C (substrate:biocatalyst *ratio* 1:1 w/w)

^a Lipase B from *Candida antarctica* (Novozym 435, CaLB_{N435}); ^b Lipase from *Pseudomonas fluorescens* (L-AK)

4. Optimization of lipase-mediated O-acylation of rac-1c

Table S3. Temperature and substrate:biocatalyst *ratio* (w/w) screening for the acylation reaction of *rac*-1c with ethyl 2-(prop-2-yn-1-yloxy)acetate **2A** (1 equiv.) in cyclohexane, catalysed by Novozym 435 after 6 h reaction time

Conversion (%)					
Substrate:biocatalyst <i>ratio</i> (w/w)	Temperature (°C)				
	30	40	50		
1:1	11	8	12		
1:2	12	11	10		
1:3	9	8	9		

 Table S4. Acyl donor quantity screening for the Novozym 435-mediated reaction of *rac*-1c with ethyl 2-(prop-2-yn-1-yloxy)acetate 2A in cyclohexane at 30 °C (substrate:biocatalyst *ratio* 1:1, w/w)

Conversion (%)					
Fruit, of could anot	Reaction time (h)				
Equiv. of acyl donor	12	30	50	140	
1	26	28	31	31	
2	30	32	33	29	
3	31	35	35	36	

5. HPLC separation conditions for racemic compounds rac-1,3,4a-d

F		t _R (min)	Separation method		
Entry	Compound		Column ^ª	Mobile phase ^b	
	rac-1a	6.5/7.1			
1	rac- 3a	15.4/18.0	Phenomenex LUX-3	n-nexane:2-propanol 9:1	
	rac -4a	11.1/16.3		n-hexane:2-propanol 8:2	
	rac-1b	10.6/11.0		n hovener2 propend 0:1	
2	rac- 3b	21.8/24.5	Phenomenex LUX-3	n-nexane:2-propanol 9.1	
	rac -4b	35.3/38.4		n-hexane:2-propanol 9:1	
	rac-1c	10.2/11.3	Phenomenex LUX-3	n-hexane:2-propanol 9:1	
3	rac- 3c	9.8/11.2	Chiralpak IA	n-hexane:2-propanol 98:2	
	rac- 4c	17.1/18.5	Phenomenex LUX-3	n-hexane:2-propanol 8:2	
	rac-1d	11.9/12.6		n havanai2 propanal 0:1	
4	rac- 3d	21.4/25.6	Phenomenex LUX-3	n-nexane:2-propanol 9:1	
	rac- 4d	19.7/21.7		n-hexane:2-propanol 8:2	

Table S5. Retention times and chromatographic separation methods of racemic compounds rac-1,3,4a-d

^a 4.6×250 mm column; ^b 1 mL min⁻¹ flow rate, 25 °C.

6. HPLC chromatograms

The chromatograms are presented following the synthetic steps, together with those of the racemic compound used as reference.

6.1. Resolution of the racemic 1-phenyl-1-ethanol rac-1a

HPLC: CaLB_{N435}-mediated kinetic resolution of *rac*-**1a** (10 mM) with 2,2,2-trifluoroethyl 2-(prop-2-yn-1-yloxy)acetate **2D** (1 equiv.), in *n*-hexane at 30 °C (substrate:biocatalyst *ratio* 1:1, w/w) after 10 hours [on Phenomenex LUX-3 column, *n*-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (254 nm)].

HPLC: (S)-1a on Phenomenex LUX-3 column, n-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: rac-4a on Phenomenex LUX-3 column, n-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: Chromatographic enantiomeric separation of *rac*-1a on Phenomenex LUX-3 column, *n*-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: CaLB_{SWCNT}-mediated alcoholysis of (*R*)-**4a** (10 mM) with ethanol (5 equiv.), in ACN at 60 °C (substrate:biocatalyst *ratio* 1:1, w/w) after 20 hours. HPLC separation on Phenomenex LUX-3 column, *n*-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (254 nm).

6.2. Resolution of the racemic 1-(Benzofuran-2-yl)ethanol rac-1b

HPLC: rac-1,3b on Phenomenex LUX-3 column, n-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: L-AK-mediated kinetic resolution of *rac*-**1b** (10 mM) with 2,2,2-trifluoroethyl 2-(prop-2-yn-1-yloxy)acetate **2D** (1 equiv.), in *n*-hexane at 30 °C (substrate:biocatalyst *ratio* 1:1, w/w) after 90 hours [separation on Phenomenex LUX-3 column, *n*-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (254 nm)].

HPLC: (S)-1b on Phenomenex LUX-3 column, *n*-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: (*R*)-**4b** on Phenomenex LUX-3 column, *n*-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: rac-1b on Phenomenex LUX-3 column, n-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: CaLB_{SWCNT}-mediated alcoholysis of (*R*)-**4b** (10 mM) with ethanol (5 equiv.), in ACN at 60 °C (substrate:biocatalyst *ratio* 1:1, w/w) after 22 hours [separation on Phenomenex LUX-3 column, *n*-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (254 nm)].

6.3. Resolution of the racemic 1-(Benzofuran-3-yl)ethanol rac-1c

Since the base-line separation of the racemic ethanol *rac*-**1c** and racemic ester *rac*-**3c** was obtained on two different chiral columns, the reaction mixture was analyzed on both columns.

HPLC: rac-1c on Phenomenex LUX-3 column, n-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: CaLB_{N435}-mediated kinetic resolution of *rac*-**1c** (10 mM) with 2,2,2-trifluoroethyl 2-(prop-2-yn-1-yloxy)acetate **2D** (1 equiv.), in cyclohexane at 30 °C (substrate:biocatalyst *ratio* 1:1, w/w) after 7 hours [separation on Phenomenex LUX-3 column, *n*-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (254 nm)].

HPLC: CaLB_{N435}-mediated kinetic resolution of *rac*-**1c** (10 mM) with 2,2,2-trifluoroethyl 2-(prop-2-yn-1-yloxy)acetate **2D** (1 equiv.), in cyclohexane at 30 °C (substrate:biocatalyst *ratio* 1:1, w/w) after 7 hours [separation on Chiralpak IA column, *n*-hexane:2-propanol 98:2 (v/v), 1 mL/min, 25 °C (254 nm)].

HPLC: (S)-1c on Phenomenex LUX-3 column, n-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: *rac-*4c on Phenomenex LUX-3 column, *n*-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: rac-1c on Phenomenex LUX-3 column, n-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (254 nm).

HPLC: CaLB_{SWCNT}-mediated alcoholysis of (*R*)-**4c** (10 mM) with ethanol (5 equiv.), in ACN at 60 °C (substrate:biocatalyst *ratio* 1:1, w/w) after 24 hours [separation on Phenomenex LUX-3 column, *n*-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (254 nm)].

6.4. Resolution of the racemic 1-(2-phenylthiazol-4-yl)ethanol rac-1d

HPLC: rac-1d on Phenomenex LUX-3 column, n-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (310 nm).

HPLC: CaLB_{N435}-mediated kinetic resolution of *rac*-1d (10 mM) with 2,2,2-trifluoroethyl 2-(prop-2-yn-1-yloxy)acetate **2D** (1 equiv.), in CH₂Cl₂ at 30 °C (substrate:biocatalyst *ratio* 1:1, w/w) after 30 hours [separation on Phenomenex LUX-3 column, *n*-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (310 nm)].

HPLC: (S)-1d on Phenomenex LUX-3 column, n-hexane:2-propanol 9:1 (v/v), 1 mL/min, 25 °C (310 nm).

HPLC: rac-4d on Phenomenex LUX-3 column, n-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (310 nm).

HPLC: CaLB_{SWCNT}-mediated alcoholysis of (*R*)-**4d** (10 mM) with ethanol (5 equiv.), in ACN at 60 °C (substrate:biocatalyst *ratio* 1:1, w/w) after 20 hours [separation on Phenomenex LUX-3 column, *n*-hexane:2-propanol 8:2 (v/v), 1 mL/min, 25 °C (310 nm)].

References

- [1] B. Neises and W. Steglich, Angew. Chem. Int. Ed., 1978, 17, 522.
- [2] M. Starck, P. Kadjane, E. Bois, B. Darboure, A. Incamps, R. Ziessel and L. J. Charbonnière, *Chem. Eur. J.*, 2011, 17, 9164.
 [3] C. Xiao, Y. Cheng, Y. Zhang, J. Ding, C. He. X. Zhuang and Chen X. *J. Polym. Sci. Pol. Chem.*, 2014, 52, 671.