Supporting information

A Two-steps Telescoped Continuous Flow Switchable Process Leading to Nitriles, Diaziridine or Hydrazine Derivatives

Audun Drageset, Nils Åge Frøystein, Karl Wilhelm Törnroos and Hans-René Bjørsvik* Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway. *E-mail: hans.bjorsvik@kj.uib.no; Tel: +47 55 58 34 52

Table of Content

Benzaldehyde (2a): GC-MS3
Benzonitrile (3a): GC-MS
3-nitrobenzonitrile (3b): ¹ H-NMR in CDCl ₃
3-nitrobenzonitrile (3b): ¹³ C-NMR in CDCl ₃
3-nitrobenzonitrile (3b): GC-MS7
3-Chlorobenzonitrile (3c): ¹ H-NMR in CDCl ₃
3-Chlorobenzonitrile (3c): ¹³ C-NMR in CDCl ₃
3-Chlorobenzonitrile (3c): GC-MS10
3-methylbenzonitrile (3d): ¹ H-NMR in CDCl ₃
3-methylbenzonitrile (3d): ¹³ C-NMR in CDCl ₃
3-methylbenzonitrile (3d): GC-MS13
2-nitrobenzonitrile (3f): ¹ H-NMR in CDCl ₃ 14
2-nitrobenzonitrile (3f): ¹³ C-NMR in CDCl ₃
2-nitrobenzonitrile (3f): GC-MS
4-methylbenzonitrile (3g): ¹ H-NMR in CDCl ₃
4-methylbenzonitrile (3g): ¹³ C-NMR in CDCl ₃
4-methylbenzonitrile (3g): GC-MS19
4-chlorobenzonitrile (3h): ¹ H-NMR in CDCl ₃
4-chlorobenzonitrile (3h): 13 C-NMR in CDCl ₃
4-chlorobenzonitrile (3h): GC-MS
4-methoxybenzylalcohol (2i) + 4-methoxybenzonitrile (3i) mixture: ¹ H-NMR in CDCl ₃ 23
4-methoxybenzylalcohol (2i) + 4-methoxybenzonitrile (3i) mixture: GC-MS24
Cinnamonitrile (3j): ¹ H-NMR in CDCl ₃
Cinnamonitrile (3j): ¹³ C-NMR in CDCl ₃
Cinnamonitrile (3j): GC-MS
3-methylbutanenitrile (3k): ¹ H-NMR in CDCl ₃
3-methylbutanenitrile (3k): ¹ H-NMR in CDCl ₃

1,2-di((E)-benzylidene)hydrazine (4): ¹ H-NMR in CDCl ₃
1,2-di((E)-benzylidene)hydrazine (4): ¹³ C-NMR in CDCl ₃
1,2-di((E)-benzylidene)hydrazine (4): X-ray crystallography31
Figure 1: X-ray structure of 1,2-di((E)-benzylidene)hydrazine (4)32
Figure 2: 1,2-di((E)-benzylidene)hydrazine (4) cocrystallized with 5,5-dimethylhydantoin32
Table 1. Crystal data and structure refinement for ADUcry2
Table 2. Bond lengths [Å] and angles [°] for ADUcry2
Table 3. Torsion angles [°] for ADUcry2. 35
Table 4. Hydrogen bonds for ADUcry2 [Å and °]
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): HRMS37
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): ¹ H-NMR in DMSO38
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): ¹³ C-NMR in DMSO39
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): DEPT13540
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): HSQC (600 MHz), DMSO41
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): HMBC (600 MHz), DMSO42
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): NOESY (600 MHz), DMSO43
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a) + $(2R,4S)-2,4,6$ -triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5b): ¹ H-NMR in CDCl ₃
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): FT-IR45
(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): X- Ray crystallography46
Table 1. Crystal data and structure refinement for (5a). 46
Table 2. Bond lengths [Å] and angles [°] for (5a)47
Table 3. Torsion angles [°] for (5a). 49

Benzaldehyde (2a): GC-MS

Benzonitrile (3a): GC-MS

3-nitrobenzonitrile (3b): ¹H-NMR in CDCl₃

67L'L-

875.8-

3-nitrobenzonitrile (3b): ¹³C-NMR in CDCl₃

3-nitrobenzonitrile (3b): GC-MS

3-Chlorobenzonitrile (3c): ¹H-NMR in CDCl₃

3-Chlorobenzonitrile (3c): ¹³C-NMR in CDCl₃

3-Chlorobenzonitrile (3c): GC-MS

3-methylbenzonitrile (3d): ¹H-NMR in CDCl₃

3-methylbenzonitrile (3d): ¹³C-NMR in CDCl₃

3-methylbenzonitrile (3d): GC-MS

2-nitrobenzonitrile (3f): ¹H-NMR in CDCl₃

2-nitrobenzonitrile (3f): ¹³C-NMR in CDCl₃

2-nitrobenzonitrile (3f): GC-MS

4-methylbenzonitrile (3g): ¹H-NMR in CDCl₃

4-methylbenzonitrile (3g): ¹³C-NMR in CDCl₃

4-methylbenzonitrile (3g): GC-MS

4-chlorobenzonitrile (3h): ¹H-NMR in CDCl₃

4-chlorobenzonitrile (3h): ¹³C-NMR in CDCl₃

4-chlorobenzonitrile (3h): GC-MS

4-methoxybenzylalcohol (2i) + 4-methoxybenzonitrile (3i) mixture: GC-MS

Cinnamonitrile (3j): ¹H-NMR in CDCl₃

Cinnamonitrile (3j): ¹³C-NMR in CDCl₃

Cinnamonitrile (3j): GC-MS

3-methylbutanenitrile (3k): ¹H-NMR in CDCl₃

3-methylbutanenitrile (3k): ¹³C-NMR in CDCl₃

1,2-di((E)-benzylidene)hydrazine (4): ¹H-NMR in CDCl₃

1,2-di((E)-benzylidene)hydrazine (4): ¹³C-NMR in CDCl₃

1,2-di((E)-benzylidene)hydrazine (4): X-ray crystallography

Figure 1: X-ray structure of 1,2-di((E)-benzylidene)hydrazine (4).

Figure 2: 1,2-di((E)-benzylidene)hydrazine (4) cocrystallized with 5,5-dimethylhydantoin.

Table 1. Crystal data and structure refinement for ADUcry2.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	aducry2_0m_a C19 H20 N4 O2 336.39 103(2) K 0.71073 Å Monoclinic P 21/c a = 9.7688(6) Å b = 7.3520(4) Å c = 24.5762(14) Å	$\alpha = 90^{\circ}.$ $\beta = 94.2330(10)^{\circ}.$ $\gamma = 90^{\circ}.$
Volume Z	1760.25(18) Å ³ 4	
Density (calculated)	1.269 Mg/m ³	
Absorption coefficient F(000)	0.085 mm ⁻¹ 712	
Crystal size Crystal colour/habit Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction	0.581 x 0.503 x 0.140 mm ³ Colourless/Flat prism 1.662 to 32.046°. -14<=h<=14, -10<=k<=10, -36 32293 6112 [R(int) = 0.0497] 100.0 % Numerical from face indexing (<=l<=36 (Gaussian quadrature)
Refinement method Data / restraints / parameters	Full-matrix least-squares on F^2 6112 / 0 / 228	
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole	1.123 R1 = 0.0538, wR2 = 0.1576 R1 = 0.0633, wR2 = 0.1654 n/a 0.590 and -0.247 e.Å ⁻³	

O(1)-C(2)	1.2278(11)
O(2)-C(4)	1.2240(11)
N(1)-C(2)	1.3429(12)
N(1)-C(5)	1.4612(12)
N(1)-H(1)	0.8800
N(3)-C(4)	1.3521(11)
N(3)-C(2)	1.3993(11)
N(3)-H(3)	0.8800
N(4)-C(8)	1.2820(14)
N(4)-N(5)	1.4110(14)
N(5)-C(15)	1.2816(14)
C(4)-C(5)	1.5203(12)
C(5)-C(6)	1.5262(14)
C(5)-C(7)	1.5285(14)
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-C(9)	1.4625(15)
C(8)-H(8)	0.9500

Table 2. Bond lengths [Å] and angles [°] for ADUcry2.

C(9)-C(14)	1.3983(15)
C(9)-C(10)	1.4017(15)
C(10)-C(11)	1.3896(16)
С(10)-Н(10)	0.9500
C(11)-C(12)	1.3914(18)
С(11)-Н(11)	0.9500
C(12)-C(13)	1.3879(18)
C(12)-H(12)	0.9500
C(13)-C(14)	1.3928(17)
C(13)-H(13)	0.9500
C(14)-H(14)	0.9500
C(15)-C(16)	1.4635(15)
C(15)-H(15)	0.9500
C(16)-C(17)	1.3985(15)
C(16)-C(21)	1.3999(15)
C(17)-C(18)	1.3911(17)
C(17)-H(17)	0.9500
C(18) - C(19)	1.3890(19)
C(18) - H(18)	0.9500
C(19) - C(20)	1.3915(18)
C(19)-H(19)	0.9500
C(20)-C(21)	1.3883(10)
C(20)-H(20)	0.9500
C(21)-H(21)	0.9500
C(2)-N(1)-C(5)	113 01(7)
C(2)-N(1)-E(3)	123.5
C(5)-N(1)-H(1)	123.5
C(4)-N(3)-C(2)	111.69(7)
C(4)-N(3)-H(3)	124.2
C(2)-N(3)-H(3)	124.2
C(8)-N(4)-N(5)	111.39(9)
C(15)-N(5)-N(4)	111.33(9)
O(1)-C(2)-N(1)	129.59(8)
O(1)-C(2)-N(3)	123.41(8)
N(1)-C(2)-N(3)	107.01(7)
O(2)-C(4)-N(3)	124.66(8)
O(2)-C(4)-C(5)	127.51(8)
N(3)-C(4)-C(5)	107.82(7)
N(1)-C(5)-C(4)	100.47(7)
N(1)-C(5)-C(6)	111.75(8)
C(4)-C(5)-C(6)	110.46(8)
N(1)-C(5)-C(7)	111.70(8) 110.21(8)
C(4)-C(5)-C(7)	110.31(8) 111.64(8)
C(0)-C(3)-C(7)	111.04(0)
C(5)-C(6)-H(6R)	109.5
H(6A) - C(6) - H(6B)	109.5
C(5)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(5)-C(7)-H(7A)	109.5
C(5)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(5)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
N(4)-C(8)-C(9)	121.89(9)
N(4)-C(8)-H(8)	119.1
C(9)-C(8)-H(8)	119.1
C(14)-C(9)-C(10)	119.53(10)
C(14)-C(9)-C(8)	118.93(9)
C(10)-C(9)-C(8)	121.54(10)
C(11)-C(10)-C(9)	119.84(10)
C(11)-C(10)-H(10)	120.1

C(9)-C(10)-H(10)	120.1
C(10)-C(11)-C(12)	120.36(11)
C(10)-C(11)-H(11)	119.8
С(12)-С(11)-Н(11)	119.8
C(13)-C(12)-C(11)	120.06(11)
C(13)-C(12)-H(12)	120.0
С(11)-С(12)-Н(12)	120.0
C(12)-C(13)-C(14)	120.05(11)
C(12)-C(13)-H(13)	120.0
C(14)-C(13)-H(13)	120.0
C(13)-C(14)-C(9)	120.15(11)
C(13)-C(14)-H(14)	119.9
C(9)-C(14)-H(14)	119.9
N(5)-C(15)-C(16)	121.94(9)
N(5)-C(15)-H(15)	119.0
C(16)-C(15)-H(15)	119.0
C(17)-C(16)-C(21)	119.57(10)
C(17)-C(16)-C(15)	118.85(9)
C(21)-C(16)-C(15)	121.58(10)
C(18)-C(17)-C(16)	120.11(11)
C(18)-C(17)-H(17)	119.9
C(16)-C(17)-H(17)	119.9
C(19)-C(18)-C(17)	120.09(11)
C(19)-C(18)-H(18)	120.0
C(17)-C(18)-H(18)	120.0
C(18)-C(19)-C(20)	119.99(11)
C(18)-C(19)-H(19)	120.0
C(20)-C(19)-H(19)	120.0
C(21)-C(20)-C(19)	120.35(11)
C(21)-C(20)-H(20)	119.8
C(19)-C(20)-H(20)	119.8
C(20)-C(21)-C(16)	119.89(10)
C(20)-C(21)-H(21)	120.1
C(16)-C(21)-H(21)	120.1

Symmetry transformations used to generate equivalent atoms:

Table 3. Torsion angles [°] for ADUcry2.

C(8)-N(4)-N(5)-C(15)	179.92(9)
C(5)-N(1)-C(2)-O(1)	-179.47(10)
C(5)-N(1)-C(2)-N(3)	0.33(12)
C(4)-N(3)-C(2)-O(1)	179.24(10)
C(4)-N(3)-C(2)-N(1)	-0.57(12)
C(2)-N(3)-C(4)-O(2)	-179.10(11)
C(2)-N(3)-C(4)-C(5)	0.57(12)
C(2)-N(1)-C(5)-C(4)	0.00(11)
C(2)-N(1)-C(5)-C(6)	117.16(9)
C(2)-N(1)-C(5)-C(7)	-116.97(9)
O(2)-C(4)-C(5)-N(1)	179.31(12)
N(3)-C(4)-C(5)-N(1)	-0.34(10)
O(2)-C(4)-C(5)-C(6)	61.20(14)
N(3)-C(4)-C(5)-C(6)	-118.45(9)
O(2)-C(4)-C(5)-C(7)	-62.70(14)
N(3)-C(4)-C(5)-C(7)	117.65(9)
N(5)-N(4)-C(8)-C(9)	-179.14(9)
N(4)-C(8)-C(9)-C(14)	161.62(10)
N(4)-C(8)-C(9)-C(10)	-17.61(16)
C(14)-C(9)-C(10)-C(11)	-0.80(16)
C(8)-C(9)-C(10)-C(11)	178.43(10)
C(9)-C(10)-C(11)-C(12)	-0.05(17)
C(10)-C(11)-C(12)-C(13)	0.44(18)
C(11)-C(12)-C(13)-C(14)	0.02(18)
C(12)-C(13)-C(14)-C(9)	-0.88(18)

C(10)-C(9)-C(14)-C(13)	1.26(16)
C(8)-C(9)-C(14)-C(13)	-177.99(10)
N(4)-N(5)-C(15)-C(16)	179.12(9)
N(5)-C(15)-C(16)-C(17)	-161.74(10)
N(5)-C(15)-C(16)-C(21)	17.65(16)
C(21)-C(16)-C(17)-C(18)	-1.17(16)
C(15)-C(16)-C(17)-C(18)	178.24(10)
C(16)-C(17)-C(18)-C(19)	0.87(18)
C(17)-C(18)-C(19)-C(20)	-0.18(18)
C(18)-C(19)-C(20)-C(21)	-0.20(18)
C(19)-C(20)-C(21)-C(16)	-0.10(17)
C(17)-C(16)-C(21)-C(20)	0.78(16)
C(15)-C(16)-C(21)-C(20)	-178.60(10)

Symmetry transformations used to generate equivalent atoms:

Table 4. Hydrogen bonds for ADUcry2 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1 N(3)-H(3)O(2)#2	0.88 0.88	1.95 1.90	2.7981(10) 2.7719(11)	160.1 172.1
C(6)-H(6A)O(2)#3	0.98	2.63	3.5119(13)	149.7

Symmetry transformations used to generate equivalent atoms: #1 -x,y-1/2,-z+1/2 #2 -x+1,y+1/2,-z+1/2 #3 -x+1,y-1/2,-z+1/2

(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): ¹H-NMR in DMSO

(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): ¹³C-NMR in DMSO

(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): HSQC (600 MHz), DMSO.

(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): HMBC (600 MHz), DMSO.

2D H-1/X correlation via heteronuclear zero and double quantum coherence phase sensitive using Echo/Antiecho gradient selection with three-fold low-pass J-filter to suppress one-bond correlations no decoupling during acquisition. Optimized for $nJ_{CH} = 10$ Hz coupling.^[1]

¹ D.O. Cicero, G. Barbato and R. Bazzo, *J. Magn. Reson.* **2001**, *148*, 209-213.

(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a) + (2R,4S)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5b): ¹H-NMR in CDCl₃

(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): FT-IR

(2R,4R)-2,4,6-triphenyl-1,3,5-triazabicyclo[3.1.0]hexane (5a): X- Ray crystallography

Table 1. Crystal data and structure refinement for (5a).

Identification code	AD413	
Empirical formula	C21 H19 N3	
Formula weight	313.39	
Temperature	293(2) K	
Wavelength	0.72179 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	$a = 4.54030(10) \text{ Å}$ $\alpha = 90^{\circ}.$	
	$b = 20.7027(9) \text{ Å} \qquad \beta = 90^{\circ}.$	
	$c = 17.5506(7) \text{ Å}$ $\gamma = 90^{\circ}.$	
Volume	1649.69(10)Å ³	
Ζ	4	
Density (calculated)	1.262 Mg/m^3	
Absorption coefficient	0.077 mm^{-1}	
F(000)	664	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	1.545 to 25.442°.	
Index ranges	-5<=h<=5, -24<=k<=24, -20<=l<=20	
Reflections collected	6862	
Independent reflections	6862 [R(int) = ?]	
Completeness to theta = 25.442°	93.7 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6862 / 195 / 217	
Goodness-of-fit on F ²	1.129	
Final R indices [I>2sigma(I)]	R1 = 0.1328, $wR2 = 0.2786$	
R indices (all data)	R1 = 0.1868, wR2 = 0.3056	
Absolute structure parameter	0.5	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.645 and -0.291 e.Å ⁻³	

N(1)-C(3)	1.487(16)
N(1) - N(2)	1.493(14)
N(1)-C(1)	1.514(16)
N(2)-C(1)	1.438(16)
N(2)-C(2)	1 504(16)
N(2) - C(2)	1 446(16)
N(3) - C(2)	1.450(10)
N(3) - C(3)	1.437(10)
N(3)-H(3N)	1.083(11)
C(1)-C(4)	1.498(17)
C(1)-H(1)	0.9800
C(2)-C(10)	1.523(18)
C(2)-H(2)	0.9800
C(3)-C(16)	1.536(19)
C(3)-H(3)	0.9800
C(4)-C(9)	1.399(18)
C(4)-C(5)	1.408(18)
C(5)-C(6)	1.381(18)
C(5)-H(5)	0.9300
C(6) - C(7)	1.41(2)
C(G)-H(G)	0.9300
C(7)-C(8)	1.39(2)
C(7)-H(7)	0.9300
C(8)-C(9)	1.34(2)
C(8) - H(8)	0.9300
C(0) H(0)	0.9300
$C(3)-\Pi(3)$ C(10) C(11)	1.395(17)
C(10) - C(11)	1.303(17) 1.296(19)
C(10)-C(13)	1.300(10)
C(11)-C(12)	1.392(19)
C(11)-H(11)	0.9300
C(12)-C(13)	1.391(19)
C(12)-H(12)	0.9300
C(13)-C(14)	1.362(16)
C(13)-H(13)	0.9300
C(14)-C(15)	1.395(18)
C(14)-H(14)	0.9300
C(15)-H(15)	0.9300
C(16)-C(17)	1.35(2)
C(16)-C(21)	1.408(19)
C(17)-C(18)	1.37(2)
C(17)-H(17)	0.9300
C(18)-C(19)	1.36(2)
C(18)-H(18)	0.9300
C(19) - C(20)	1.36(2)
C(19)-H(19)	0.9300
C(20)-C(21)	1444(19)
C(20) - H(20)	0.9300
C(21)-H(21)	0.9300
0(21)-11(21)	0.7500
C(2) N(1) N(2)	106.9(10)
C(3) - N(1) - N(2) C(2) - N(1) - C(1)	100.9(10)
C(3)-N(1)-C(1)	111.7(10)
N(2)-N(1)-C(1)	5/.1(/)
C(1)-N(2)-N(1)	62.2(7)
C(1)-N(2)-C(2)	111.1(10)
N(1)-N(2)-C(2)	102.9(9)
C(2)-N(3)-C(3)	102.4(10)
C(2)-N(3)-H(3N)	111.4(10)
C(3)-N(3)-H(3N)	117.8(11)
N(2)-C(1)-C(4)	118.4(11)
N(2)-C(1)-N(1)	60.7(8)
C(4)-C(1)-N(1)	120.6(11)
N(2)-C(1)-H(1)	115.4
C(4)-C(1)-H(1)	115.4
N(1)-C(1)-H(1)	115.4

Table 2. Bond lengths [Å] and angles [°] for (5a).

_

N(3)-C(2)-N(2)	109.7(10)
N(3)-C(2)-C(10)	112.4(10)
N(2)-C(2)-C(10)	109.5(11)
N(3)-C(2)-H(2)	108.3
$N(2)-C(2)-\Pi(2)$ C(10)-C(2)-H(2)	108.3
N(3)-C(3)-N(1)	108.1(10)
N(3)-C(3)-C(16)	113.4(11)
N(1)-C(3)-C(16)	113.0(11)
N(3)-C(3)-H(3)	107.3
N(1)-C(3)-H(3)	107.3
C(16)-C(3)-H(3)	107.3
C(9)-C(4)-C(5)	117.9(13)
C(9)-C(4)-C(1)	119.8(12)
C(5)-C(4)-C(1)	122.3(12) 121 2(13)
C(6)-C(5)-H(5)	119.4
C(4)-C(5)-H(5)	119.4
C(5)-C(6)-C(7)	119.2(15)
C(5)-C(6)-H(6)	120.4
C(7)-C(6)-H(6)	120.4
C(8)-C(7)-C(6)	118.9(14)
C(8)-C(7)-H(7)	120.6
C(0)-C(7)-H(7)	120.0 121.7(15)
C(9)-C(8)-C(7)	119.1
C(7)-C(8)-H(8)	119.1
C(8)-C(9)-C(4)	121.1(15)
C(8)-C(9)-H(9)	119.5
C(4)-C(9)-H(9)	119.5
C(11)-C(10)-C(15)	119.1(12)
C(11)-C(10)-C(2) C(15)-C(10)-C(2)	120.6(12)
C(10)-C(11)-C(12)	120.3(11) 121 9(13)
C(10)-C(11)-H(11)	119.0
C(12)-C(11)-H(11)	119.0
C(13)-C(12)-C(11)	117.8(13)
C(13)-C(12)-H(12)	121.1
C(11)-C(12)-H(12)	121.1
C(14)-C(13)-C(12) C(14)-C(12)-U(12)	120.8(13)
C(14)-C(13)-H(13) C(12)-C(13)-H(13)	119.0
C(12)-C(14)-C(15)	121.2(13)
C(13)-C(14)-H(14)	119.4
C(15)-C(14)-H(14)	119.4
C(10)-C(15)-C(14)	119.1(12)
C(10)-C(15)-H(15)	120.5
C(14)-C(15)-H(15) C(17)-C(16)-C(21)	120.5
C(17)-C(16)-C(21)	121.1(13) 122.0(13)
C(21)-C(16)-C(3)	122.0(13) 116.8(13)
C(16)-C(17)-C(18)	120.1(15)
C(16)-C(17)-H(17)	119.9
С(18)-С(17)-Н(17)	119.9
C(19)-C(18)-C(17)	120.0(16)
C(19)-C(18)-H(18)	120.0
C(17)-C(18)-H(18) C(20)-C(19)-C(18)	120.0 123.6(15)
C(20)-C(19)-C(10)	123.0(13)
C(18)-C(19)-H(19)	118.2
C(19)-C(20)-C(21)	116.5(14)
С(19)-С(20)-Н(20)	121.8
С(21)-С(20)-Н(20)	121.8
C(16)-C(21)-C(20)	118.7(14)
C(16)-C(21)-H(21)	120.6

Symmetry transformations used to generate equivalent atoms:

Table 3. Torsion angles [°] for (5a).

C(3)-N(1)-N(2)-C(1)	105.3(10)	
C(3)-N(1)-N(2)-C(2)	-2.0(12)	
C(1)-N(1)-N(2)-C(2)	-107.2(10)	
N(1) N(2) C(1) C(4)	-107.2(10) 111.1(12)	
N(1)-N(2)-C(1)-C(4)	111.1(13)	
C(2)-N(2)-C(1)-C(4)	-155.1(11)	
C(2)-N(2)-C(1)-N(1)	93.9(10)	
C(3)-N(1)-C(1)-N(2)	-96.7(11)	
C(3) - N(1) - C(1) - C(4)	155 8(11)	
N(2) N(1) C(1) C(4)	107.5(11)	
N(2)-N(1)-C(1)-C(4)	-107.3(14)	
C(3)-N(3)-C(2)-N(2)	-31.4(12)	
C(3)-N(3)-C(2)-C(10)	90.8(12)	
C(1)-N(2)-C(2)-N(3)	-43.9(13)	
N(1) - N(2) - C(2) - N(3)	21.0(12)	
C(1) - N(2) - C(2) - C(10)	-167.7(10)	
N(1) N(2) C(2) C(10)	-107.7(10)	
N(1)-N(2)-C(2)-C(10)	-102.9(11)	
C(2)-N(3)-C(3)-N(1)	29.4(13)	
C(2)-N(3)-C(3)-C(16)	155.6(11)	
N(2)-N(1)-C(3)-N(3)	-17.3(13)	
C(1)-N(1)-C(3)-N(3)	43.4(14)	
N(2) - N(1) - C(3) - C(16)	-143 6(10)	
C(1) N(1) C(3) C(16)	82.0(13)	
N(2) C(1) C(3) C(10)	-02.9(13)	
N(2)-C(1)-C(4)-C(9)	1/8.4(12)	
N(1)-C(1)-C(4)-C(9)	-110.7(15)	
N(2)-C(1)-C(4)-C(5)	-3(2)	
N(1)-C(1)-C(4)-C(5)	67.5(19)	
C(9)-C(4)-C(5)-C(6)	-3(2)	
C(1)- $C(4)$ - $C(5)$ - $C(6)$	178 9(14)	
C(4) - C(5) - C(6) - C(7)	3(2)	
C(4) - C(3) - C(0) - C(7)	3(2)	
C(3)-C(0)-C(7)-C(8)	-2(2)	
C(6)-C(7)-C(8)-C(9)	1(2)	
C(7)-C(8)-C(9)-C(4)	-1(2)	
C(5)-C(4)-C(9)-C(8)	2(2)	
C(1)-C(4)-C(9)-C(8)	-179.7(14)	
N(3)-C(2)-C(10)-C(11)	24.1(18)	
N(2) - C(2) - C(10) - C(11)	146 A(12)	
N(2) - C(2) - C(10) - C(11)	1+0.+(12) 157.1(12)	
N(3)-C(2)-C(10)-C(15)	-13/.1(12)	
N(2)-C(2)-C(10)-C(15)	-34.8(16)	
C(15)-C(10)-C(11)-C(12)	-1(2)	
C(2)-C(10)-C(11)-C(12)	178.1(13)	
C(10)-C(11)-C(12)-C(13)	1(2)	
C(11)-C(12)-C(13)-C(14)	-2(2)	
C(12)-C(13)-C(14)-C(15)	$\frac{-(-)}{3(2)}$	
C(12) - C(13) - C(14) - C(15)	$\frac{3(2)}{1.8(10)}$	
C(11)-C(10)-C(13)-C(14)	1.0(19)	
C(2)-C(10)-C(15)-C(14)	-1/7.0(13)	
C(13)-C(14)-C(15)-C(10)	-3(2)	
N(3)-C(3)-C(16)-C(17)	-137.6(13)	
N(1)-C(3)-C(16)-C(17)	-14.1(18)	
N(3)-C(3)-C(16)-C(21)	45.3(16)	
N(1)-C(3)-C(16)-C(21)	168 8(11)	
C(21) C(16) C(17) C(18)	0(2)	
C(21)- $C(10)$ - $C(17)$ - $C(18)$	0(2)	
C(3)-C(10)-C(17)-C(18)	-1/0.4(14)	
C(16)-C(17)-C(18)-C(19)	1(2)	
C(17)-C(18)-C(19)-C(20)	0(2)	
C(18)-C(19)-C(20)-C(21)	-1(2)	
C(17)-C(16)-C(21)-C(20)	-2(2)	
C(3) - C(1) - C(2) - C(2)	175.1(13)	
$C(19)_{C(20)}C(21)_{C(16)}$	2(2)	
C(17) = C(20) = C(21) = C(10)	2(2)	

Symmetry transformations used to generate equivalent atoms: