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1. Introduction

The manuscript involved experimental investigation using a microfluidic reactor, as well as 
detailed statistical analysis of the data.  In order to provide sufficient detail so that this work could 
be repeated, the sections dealing with the description of the experimental work and statistical 
analysis were extensive.  It was therefore decided to place most of the detailed descriptions in the 
Supplementary Information. 

2. Experimental

2.1 Materials

In addition to the materials used for the experimental work, some authentic compounds were 
used to confirm key oxidation products, namely, 1,2,3,4-tetrahydro-1-naphthol (alcohol of tetralin) 
and α-tetralone (ketone of tetralin). These were used as described before. 1

2.2 Equipment details: Microfluidic reactor

The microfluidic experimental setup consisted of a microfluidic reactor (Dolomite 
Microfluidics, Charlestown, MA, USA), syringe pump (KDS-210, KD Scientific, USA), oxygen 
and nitrogen gas cylinders (Praxair Inc., Edmonton, Canada), pressure transducer (Swagelok, 
Canada), gas flow meter (Swagelok, Canada), pressure bomb (Swagelok, Canada) and 
backpressure regulator (Swagelok, Canada), Heidolph MR Hei-Standard hot plate (Model: 505-
20000-01-2, Heldolph Instruments, Germany), a surface mounted thermocouple (Model: CO 1, 
Cement-on Thermocouple, Omega Engineering, Inc., USA), a Flea3FL3-U3-13E4M camera 
(Point Grey Research Inc., Canada), a Fiber‒Lite lamp (Model: 3100, Dolan-Jenner Industries, 
Inc., USA) and PTFE tubing, 1/16″ OD x 0.8 mm ID (Dolomite Microfluidics, Charlestown, MA, 
USA).

2.3 Equipment details: Gas Chromatograph

An Agilent 7890A GC-FID equipped with DB-5 MS column 30 m × 0.25 mm × 0.25 µm 
column was used for quantitative analysis. The injector temperature of the GC was 250 °C and the 
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split ratio was 10 : 1. Helium was used as a carrier gas, which was flowed through the column at 
a constant flowrate of 2 mL/min during the experiments. Oven temperature was varied throughout 
the experiments. Initially, the oven temperature was 75 °C, which was kept constant for 0.5 
minutes and then temperature was raised from 75 °C to 325 °C at a rate of 20 °C/min, and finally, 
the temperature was kept constant at 325 °C for 5 minutes. HPLC grade chloroform was used for 
sample preparation and hexachlorobenzene was used as an internal standard. 

The oxidation products of tetralin were identified by using an Agilent 7820A GC coupled with 
an Agilent 5977E mass spectrometer. The products were separated on an HP-5 30 m × 0.25 mm × 
0.25 µm column which have identical separation characteristics of DB-5 MS column used in GC-
FID.  The temperature programs of both the GC-FID analyses and GC-MS analyses were the same. 
Oxidation products were classified as primary (alcohol and ketones of tetralin), secondary 
(products containing more than one ketone and/or alcohol functional groups) and addition products 
(products containing at least a dimer having different functional groups). GC-MS spectrum of 
commercially available alcohol and ketone of tetralin were used to identify the primary oxidation 
products whereas secondary and addition products were identified using GC-MS spectrum and 
NIST library. Details of product identification are available from a previous study. 1 

2.4 Calculations

Different hydrodynamic parameters and mass transfer coefficients were calculated from the 
images captured during experiments in microfluidic reactor as elaborated in our previous paper. 2 

(a)  (gas liquid interfacial area per unit liquid slug volume) was calculated from the dimension 𝑎
of the rectangular channel reactor (  × ) and image analysis of gas bubbles and liquid slugs.ℎ 𝑤

        Surface area of gas bubble:

                             (1)                         𝑆𝐺 = 2(𝑤𝐿𝐺,  𝑎𝑐𝑡𝑢𝑎𝑙 + ℎ𝐿𝐺, 𝑎𝑐𝑡𝑢𝑎𝑙) + 4𝜋((𝑤 + ℎ) 4)2

                                        (2)𝐿𝐺,  𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐿𝐺 ‒ (𝑤 + ℎ)/2

Volume of liquid slug: 

                                                (3)𝑉𝐿 = 𝑤ℎ𝐿𝑆 + 𝑤ℎ[(𝑤 + ℎ)/2] ‒ (4/3)𝜋[(𝑤 + ℎ) 4]3

Gas liquid interfacial area per unit liquid slug volume: 

                                                                                                                                     (4)𝑎 =  𝑆𝐺/𝑉𝐿

Here,  is the surface of the gas bubble,  and  are the lengths of the gas bubble and 𝑆𝐺  𝐿𝐺 𝐿𝑆

liquid slug respectively, and  and  are the width and depth of the reactor channel, 𝑤 ℎ
respectively. 
Approximated radius of the cap of liquid slug: 

                                                             (5)𝑟𝑐𝑎𝑝 = (𝑤 + ℎ)/4

Since geometry formed by the two liquid caps is not a complete sphere, the approximation 
was made.



3

(b) UL (superficial liquid slug velocity) and UG (gas bubble velocity) were calculated from the 
distance travelled by the slug and bubble in a particular time. Two phase superficial velocity (

) was calculated as follows:𝑈𝑇𝑃

                                               (6)𝑈𝑇𝑃 = 𝜀𝐺𝑈𝐺 + (1 ‒ 𝜀𝐺)𝑈𝐿

       Here, the volume fraction of gas bubble ( ) was calculated as:  𝜀𝐺

                                                             
𝜀𝐺 =

𝑉𝐺

𝑉𝐺 + 𝑉𝐿
(7)

        is the volume of liquid slug was calculated according to equation 3.𝑉𝐿

        is the volume of gas bubble, given as:𝑉𝐺

                                         (8)                                               𝑉𝐺 = 𝑤ℎ𝐿𝐺,  𝑎𝑐𝑡𝑢𝑎𝑙 + (4/3)𝜋((𝑤 + ℎ) 4)2

(c) Average residence time:
The two-phase superficial velocity ( ) was divided by the reactor length to calculate the 𝑈𝑇𝑃

average residence time. 

(d)  (liquid film thickness surrounding a gas bubble) by using the correlations provided by Yun 𝛿  
et al. 3 for a rectangular microchannel reactor as follows:

                                                     (9)

𝛿𝑚𝑎𝑥

𝐷ℎ
= 0.39 𝑊𝑒0.09

                                                      (10)

𝛿𝑚𝑖𝑛

𝐷ℎ
= 0.02 𝑊𝑒0.62

Here, Weber number,

                                                                                    
𝑊𝑒 =

𝐷ℎ𝑈2
𝑇𝜌𝑙

𝜎𝑙
(11)

Hydraulic diameter of the channel (m),

                                                     (12)𝐷ℎ = 2[𝑤ℎ/(𝑤 + ℎ)]

 and  are the maximum and minimum thicknesses of the liquid film (m), 𝛿𝑚𝑎𝑥 𝛿𝑚𝑖𝑛

respectively. 
UTP (m/s) is the two-phase superficial gas velocity,  is the density of liquid and  is the 𝜌𝑙 𝜎𝑙

surface tension of liquid (N/m). 
 and h are the width and depth of the reactor channel, respectively. 𝑤

(e)  (volumetric mass transfer coefficient, s-1) was calculated from  and a. Film theory was 𝑘𝐿𝑎 𝑘𝐿

applied to calculate  4 as follows:  𝑘𝐿
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                                                                 (13)
𝑘𝐿 =

𝐷𝐴

𝛿

Here,  is the diffusivity of oxygen in tetralin,  is the thickness of liquid film surrounding 𝐷𝐴 𝛿
the oxygen bubble.

         and  were based on the equation 9 and equation 10, respectively.𝑘𝐿(𝑚𝑎𝑥)𝑎 𝑘𝐿(𝑚𝑖𝑛)𝑎

Calculation of conversion and product selectivity from GC analysis: 

(f) Product selectivity was obtained from the relative peak area of the products as follows:

Product selectivity (%) =                             
 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

 𝑥 100 

(14)

Ketone-to-alcohol selectivity in primary oxidation products was calculated by dividing 
ketone selectivity and alcohol selectivity. 

(g) Tetralin conversion was calculated by using GC-FID response factor (detailed calculation of 
conversion and response factor is given in section 8 of this document). In the selectivity 
calculations, response factors for products were not used due to the diversity of oxidation 
products.

3. Regression Modelling Methods

3.1 Assumptions in regression analysis

3.1.1 Linearity –

Figure S1 shows the scatter plots for both the outputs varying with the explanatory variables. 
By looking at this data that was obtained from our previous work, 2 it was realized that not all 
variations were entirely linear in nature, which was expected. This did not hinder the development 
of linear regression models as different powers of the variables were also checked for comparing 
the fits in both the calibration (‘Data for model building/calibration’ section under “Regression 
modeling methods” in the manuscript) and validation data sets (‘Independent data set for 
prediction’ section under “Results and Discussion” in the manuscript) before arriving at the best 
fits for further analyses and confirmation. 
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                                  (e)

Figure S1.  Scatter plots for tetralin conversion rate and oxidation product selectivity versus: (a) 
length of gas bubble ( ); (b) length of liquid slug ( ), (c) tetralin flow rate ( ), (d) two-phase 𝐿𝐺 𝐿𝑆 𝑄

superficial velocity ( ), (e) gas-liquid interfacial area ( ). 𝑈𝑇𝑃 𝑎

3.2 Software employed

The information regarding the version of the software package as well as the operating system 
that it was run on is provided in the manuscript. 

3.3 Relevant formulae and statistical calculations

3.3.1 Pearson’s correlation coefficient ( ) –𝑟

For a dependent variable defined as a vector  = { } consisting of  𝑦 𝑦𝑖 𝐸, 𝑖 = 1, 2, .., 𝑛) 𝑛
observations (  is a one-dimensional vector space), the correlation with an explanatory variable 𝐸

 = { } also comprising  observations is given in equation 15 as:𝑋 𝑥𝑖 𝐸, 𝑖 = 1, 2, .., 𝑛) 𝑛

                                                       

𝑟𝑋 ‒ 𝑦 =

𝑛

∑
𝑖 = 1

(𝑥𝑖 ‒ 𝑥𝑚𝑒𝑎𝑛)(𝑦𝑖 ‒ 𝑦𝑚𝑒𝑎𝑛)

𝑛

∑
𝑖 = 1

(𝑥𝑖 ‒ 𝑥𝑚𝑒𝑎𝑛)2
𝑛

∑
𝑖 = 1

(𝑦𝑖 ‒ 𝑦𝑚𝑒𝑎𝑛)2

(15)

where  and  are the average of all  and  observations, respectively. 𝑥𝑚𝑒𝑎𝑛 𝑦𝑚𝑒𝑎𝑛 𝑋 𝑦
Since the definition describes the correlation as the average of the product of mean-subtracted 
random variables, ‘product-moment’ is appended to the name. The square of the bivariate 
correlation coefficient gives the proportion of shared variance between the two variables (also 
same as  for simple linear regression).𝑟2

3.3.2 Significance of a correlation –
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Determination of the significance of a correlation involves formulation of a null ( ) 𝐻0:  = 0

and an alternative hypothesis ( ), where  is the population correlation coefficient between 𝐻𝐴:   0 
the two variables. It is assumed that the sampling distribution of the test statistic (t-statistic is used 
here) of the Pearson’s correlation coefficient follows a t-distribution with 3 degrees of freedom (

 - 2) under the null hypothesis in our case. The t-statistic in this case takes the form:𝑛

                                                           (16)

𝑡 =
𝑟 ‒ 

(1 ‒ 𝑟2

𝑛 ‒ 2 )
However, since we do not have the population data, we can only estimate the population 

correlation in terms of the sample coefficients. The null hypothesis states that the population 
correlation coefficient is near to 0 while the alternative hypothesis is that it is significantly different 
from 0, implying a linear relationship between the variables in question. Finally, the p-value is the 
probability (simply, area under the t-distribution curve) of obtaining future values of the 
standardized form (t-statistic) of  at least as extreme as that observed value for the existing 𝑟

correlation in the direction of the , still assuming that the null hypothesis was true. In other 𝐻𝐴

words, if it is quite low, there is lesser possibility that the correlation coefficient is near to zero, 
i.e. null can be rejected.

3.3.3 SLR and MLR models –

The simple linear regression (SLR) models in Table 7 (S1 – S5) and Table 9 (SS1 – SS5) of 
the manuscript can be viewed as given by equation 17:

                                                                      (17)𝑦 = 𝑏0 + 𝑏1𝑋 + 𝜀

where  is the intercept (constant) term and  is the regression coefficient estimate 𝑏0 𝑏1

(unstandardized) corresponding to the single explanatory variable ;  is the normally distributed 𝑋 𝜀

error with mean as 0 and variance . In case of a quadratic fit,  would be the 𝜎2 (𝜀~𝑁(0,𝜎2)) 𝑏1

coefficient estimate of the quadratic term and the linear term is excluded. Again, this is because of 
the limited number of observations available in the calibration set. When  and  are standardized, 𝑋 𝑦
the intercept term disappears and the standardized coefficient equals the simple correlation 
coefficient between  and . 𝑋 𝑦

The expression for multiple linear regression (MLR) with two variables, such models M1 – 
M4 (Table 7 in manuscript) and SM1 – SM4 (Table 9 in manuscript) is given in equation 18 as:

                                                                                                         (18)𝑦 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝜀

where  is the intercept,  and  are the unstandardized slope estimates for the two explanatory 𝑏0 𝑏1 𝑏2

variables  and  each consisting of  observations, respectively. Here again,  is normally 𝑋1 𝑋2 𝑛 𝜀

distributed as given by . The standardized coefficients in MLR do not equal the respective 𝑁(0,𝜎2)
simple correlation coefficients of the predictors with  as in SLR, but depend on both the simple 𝑦

correlations between  and  as well as on the correlation between  and .𝑦 𝑋 𝑋1 𝑋2
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The standard errors for  and  are given as:𝑏1 𝑏2

                                                                            (19)

𝑆𝐸𝑏1
=

𝑆𝑆𝐸

(𝑛 ‒ 𝑘 ‒ 1)( 𝑛

∑
𝑖 = 1

(𝑋1𝑖 ‒ 𝑋1𝑚𝑒𝑎𝑛)2)(1 ‒ 𝑟 2
𝑋1 ‒ 𝑋2)

                                                                            (20)

𝑆𝐸𝑏2
=

𝑆𝑆𝐸

(𝑛 ‒ 𝑘 ‒ 1)( 𝑛

∑
𝑖 = 1

(𝑋2𝑖 ‒ 𝑋2𝑚𝑒𝑎𝑛)2)(1 ‒ 𝑟 2
𝑋1 ‒ 𝑋2)

where  is the sum of squared errors of the regression model and is directly proportional to the 𝑆𝑆𝐸
standard deviation of the residuals;  is the number of explanatory variables.  is defined as:𝑘 𝑆𝑆𝐸

                                                                                                               (21)
𝑆𝑆𝐸 =

𝑛

∑
𝑖 = 1

(𝑦𝑖 ‒ 𝑦 ∗
𝑖 )2

and  is the Pearson correlation coefficient between  and .
𝑟𝑋1 ‒ 𝑋2 𝑋1 𝑋2

Like with the Pearson’s correlation, the regression coefficient estimates for the MLR and SLR 
are tested for significance with the help of a t-statistic defined as:

                                                                                                                               (22)
𝑡𝑏𝑖

=
𝑏𝑖

𝑆𝐸𝑏𝑖

where  is the t-statistic corresponding to the th coefficient estimate ( ). 
𝑡𝑏𝑖 𝑖 𝑏𝑖

3.3.4 F-Statistic –

This statistic is given by equation 23 as:

                                                                                                                                (23)
𝐹 =

𝑀𝑆𝑀
𝑀𝑆𝐸

where  and  are the mean squared regression model and mean squared error defined as:𝑀𝑆𝑀 𝑀𝑆𝐸

                                                                                                             (24)
𝑀𝑆𝑀 =

𝑛

∑
𝑖 = 1

(𝑦 ∗
𝑖 ‒ 𝑦𝑖𝑚𝑒𝑎𝑛)2

𝑘
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                                                                               (25)
𝑀𝑆𝐸 =

𝑛

∑
𝑖 = 1

(𝑦𝑖 ‒ 𝑦 ∗
𝑖 )2

𝑛 ‒ 𝑘 ‒ 1

where  is the predicted value of each observation in  through regression. 𝑦 ∗
𝑖 𝑦

It follows an F-distribution with  and  degrees of freedom (DF). The computed F-𝑘 𝑛 ‒ 𝑘 ‒ 1
statistic for a regression model is compared to the critical value obtained from the F-table for 5% 
level of significance corresponding to (1, 3) DF for SLR and (2, 2) DF for MLR in our study.

The second type of F-statistic used for testing the significance of the addition of a second 

variable to an existing SLR model in improving the  of the existing SLR model. Let  be the 𝑟2 𝑅 2
𝑀𝐿𝑅

coefficient of determination of the MLR model including the added second variable,  be the 𝑅 2
𝑆𝐿𝑅

coefficient of determination of the already existing SLR model,  and  be the number of 𝑘𝑀𝐿𝑅 𝑘𝑆𝐿𝑅

predictors in the MLR and SLR respectively. Then, the F-statistic distributed with ( ) 𝑘𝑀𝐿𝑅 ‒ 𝑘𝑆𝐿𝑅

and ( ) DF is given by:𝑛 ‒ 𝑘𝑀𝐿𝑅 ‒ 1

                                                                 (26)
𝐹𝑖𝑛𝑐 =

(𝑅 2
𝑀𝐿𝑅 ‒ 𝑅 2

𝑆𝐿𝑅)/(𝑘𝑀𝐿𝑅 ‒ 𝑘𝑆𝐿𝑅)

(1 ‒ 𝑅 2
𝑀𝐿𝑅)/(𝑛 ‒ 𝑘𝑀𝐿𝑅 ‒ 1)

3.4 RMSE and 𝑅
2

It is important to note that  for SLR is also equal to the squared Pearson’s correlation between 𝑟2

input and output variable but  in MLR is the proportion of variance explained in  due to both 𝑅2 𝑦
explanatory variables in our case. However, it can be calculated as the correlation between the 
predicted and experimental output values also. The RMSE and  are given as:𝑅2

                                                            (27)
𝑅𝑀𝑆𝐸 = (𝑀𝑆𝐸)

1
2 = ( 1

𝑛 ‒ 𝑘 ‒ 1

𝑛

∑
𝑖 = 1

|𝑦𝑖 ‒ 𝑦 ∗
𝑖 |2)1

2

                                                             (28)
𝑅2 = 1 ‒

 𝑛
𝑖 = 1(𝑦𝑖 ‒ 𝑦 ∗

𝑖 )2

 𝑛
𝑖 = 1(𝑦𝑖 ‒ 𝑦𝑖𝑚𝑒𝑎𝑛)2

3.5 Data used for regression 

The manuscript provides information about the calibration dataset used for constructing the 
regression models, i.e. the calibration set. 

4. Results and Discussion

4.1 Bivariate correlations among input and output variables
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The manuscript provides sufficient details about the analysis and interpretations of the 
correlations between the different variables investigated in this study. 

4.2 Multicollinearity Diagnostics 

Two types of diagnostics are used to confirm the presence of multicollinearity in the data and 
the degree of impact on regression. These are the following:

1. Variance Inflation Factor (VIF) 5

                                                                             

𝑉𝐼𝐹 =
1

1 ‒ 𝑅 2
𝑥1𝑥𝑘

(29)                  

where  is the coefficient of determination when the variable  is regressed on , which 
𝑅 2

𝑥1𝑥𝑘 𝑥1 𝑥𝑘

represents the set of all other explanatory variables except . A higher value of VIF indicates 𝑥1

higher correlated variables. VIF would be 1 in a simple regression and higher in the case of 
multiple regression with collinear variables. 

As with Pearson’s correlation coefficient, there is a caution for false diagnosis of 
multicollinearity with VIF as well since there is no consensus on the threshold value. 6 Kutner et 
al. 7 suggest a minimum value of 10 while Vatcheva et al. 8 demonstrated that even a value of < 5 
could be problematic. More than the absolute value, a change in VIF magnitude towards the higher 
side could provide evidence towards multicollinearity, which is what is pursued in this study by 
comparing multiple regression models with the simple regression counterparts as detailed in 

further sections in the manuscript. In addition, VIF can also be compared with  to know 

1

1 ‒ 𝑅 2
𝑚𝑜𝑑𝑒𝑙

whether the correlation between the regressors is stronger than the overall regression model. 9 

2. Eigen values (EV) and Condition Index (CI)
The sum of the eigenvalues of the correlation matrix (obtained through eigenvalue 

decomposition) will equal the number of explanatory variables in the system but the distribution 
of the eigenvalues across the dimensions of the matrix would point towards the presence or absence 
of linear dependencies. 10 If the variables are linearly independent, all eigenvalues will equal unity 
and in the case of correlated variables, certain dimensions would show eigenvalues close to 0. The 
latter situation indicates that the regression parameter estimates when regressed using these input 
variables would be very sensitive to changes in the data. Condition index (CI) helps in amplifying 
the unequal distribution of the eigenvalues and is given in equation 30 as:

       (30)
𝐶𝐼 =

𝜆𝑚𝑎𝑥

𝜆𝑖
 

where  and  are the maximum and the th eigen value respectively.𝜆𝑚𝑎𝑥 𝜆𝑖 𝑖
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According to Midi et al. 11, if the  falls below 15, then multicollinearity is not a serious 𝐶𝐼
concern. Johnston 12 proclaimed of inconsequential collinearity till  < 20. Further, the detection 𝐶𝐼
process is also assisted by the variance decomposition proportions for each predictor, i.e. the 
proportion of variance for the regression coefficient estimates of each input variable that belongs 
to every dimension. Significantly correlated variables would have higher variance proportions 
concentrated on the same eigenvalue dimension. We have considered this aspect in our study also. 
Another diagnostic that has been reported in the literature but used on lesser number of occasions 
is the determinant of the correlation matrix, where a lower value indicates multicollinearity. It was 
not used in this study. 

4.3 Validation dataset

This corresponds to new experimental data collected by oxidizing tetralin at 150 ̊ C and 90 kPa 
(gauge) injected at flowrates different to the calibration set. This was solely intended towards this 
study and the purpose of this data was to find the best fits for the explanatory variables with the 
outputs through the SLR models by validating the output predicted values at the new flowrate 

conditions. RMSEP and  values were used as performance evaluation measures for deciding the 𝑟2
𝑃

best fits. 

4.4 SLR models with  as outcome and residual plots𝑆
When the output of the SLR was selectivity, the prediction errors for the best fit regression 

models with ,  and  were larger than that for  by 107%, 229% and 243%, respectively. 𝐿𝐺 𝑈𝑇𝑃 𝑄 𝑎
Plus, the averaged RMSEP for all the fits combined was the smallest for  (1.35) with the errors 𝑎

for , ,  and  being 55%, 168%, 214% and 431% higher than . Similar to the model with 𝑈𝑇𝑃 𝐿𝐺 𝑄 𝐿𝑆 𝑎

 as the outcome, the significance of   and  terms were maximum with almost equivalent p-𝐶𝑅 𝑎 𝐿𝐺

values of 0.002 and 0.003, respectively. In addition, the amount of variance in the outcome 
explained with respect to the calibration set by the best fits of the explanatory variables were in 

the order:  (0.98) >  (0.96) >  (0.79) >  (0.58). Interestingly,  for a linear fit with  as 𝑎 𝐿𝐺 𝑈 2
𝑇𝑃 𝑄 𝑟2

𝐶 𝐿𝑆

the explanatory variable was 0.93 but it was not considered for analysis because of the poor 
performance in predicting the validation set selectivity data. Lowest value of calibration error 
averaged for all the fits (including exponential) was obtained for  (RMSEC average = 1.63) while 𝑎

the corresponding values for , ,  and  were higher than that for  by 12%, 15%, 83% and 𝐿𝐺 𝐿𝑆 𝑈𝑇𝑃 𝑄 𝑎
188%, respectively. 

Figure S2 shows the residual vs. predicted value plots for the SLR models with selectivity and 
conversion rate as the output. It mainly helps in verification of the assumption of equal variance 
for validity of the regression model. Equal variance of the residuals essentially means that the 
observed experimental data points are spread out above and below the regression curve that 
represents the predicted values in a symmetric fashion and within the standard deviation of the 
residuals (which is also used as the estimate of the standard error for the population). Further 
interpretation of the plots are summarized in the ‘Residual Plots’ section of the manuscript. 
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                                      (a)                                                                              (b)

                                 (c)                                                                               (d)

Figure S2. Residual vs. predicted value plots in standardized forms for SLR of: (a)  on ; (b)  𝑆 𝑎 𝑆

on ; (c)  on  and (d)  on .𝑈 2
𝑇𝑃 𝐶𝑅 𝑄 𝐶𝑅 𝐿𝑆

4.5 Comparison of MLR with SLR models
 

In this section, the regression coefficient estimates of the predictors, their standard errors and 
the significance of each term for the developed SLR models are compared with four MLR models 
involving gas-liquid interfacial area combined with the other 4 input variables one at a time, for 
both the outputs. 

4.5.1 Effect of explanatory variables on tetralin conversion rate

Here, the analysis of the MLR models M3 and M4 (Table 7 in manuscript) involving  &  𝑎2 𝑄

and  &  in comparison with the respective SLR models are provided (Table S1). 𝑎2 𝐿𝑆

Table S1. Parameter estimates, significances and output variances of SLR models with  as the 𝐶𝑅
output and individual explanatory variables as the input. Compare the results with Table 7 in the 

manuscript that shows the parameter estimates for the MLR models.

Mod
el 1

Var. 
involved 

2

bn 
3 SE 4 Pr > 

|tcrit| 5
Std. 

coeff. 
*

𝑅2
𝐶 F 6 VIF EV 

7 CI Variance 
Proportions
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𝑏0 T1

𝑏0 5.2E-8 1.7E-8 .056 1.56 1.00 .22 .22

S1
 (T1)𝑎2 5.9E-18 4.1E-19 .001 .993 .986

210.7 
(.001)

1 .438 1.89 .78 .78

𝑏0 -8.6E-8 7.9E-8 .356 1.82 1.00 .09 .09

S2
 (T1)𝑈 3

𝑇𝑃 .0343 .0081 .024 .925 .856
17.87 
(.024)

1 .176 3.22 .91 .91

𝑏0 -4.0E-9 5.0E-8 .941 1.70 1.00 .15 .15

S3
 (T1)𝐿𝐺 2.6E-6 4.7E-7 .012 .954 .910

30.25 
(.012)

1 .296 2.40 .85 .85

𝑏0 3.8E-7 1.4E-7 .079 1.80 1.00 .10 .10

S4
 (T1)𝑄 -2.8E-8 1.7E-8 .203 -.683 .467

2.63 
(.203)

1 .199 3.01 .90 .90

𝑏0 6.8E-7 1.8E-7 .034 1.94 1.00 .03 .03

S5
 (T1)𝐿𝑆 -1.3E-4 4.7E-5 .066 -.853 .727

8.00 
(.066)

1 .058 5.77 .97 .97

1 Prefix ‘S’ corresponds to simple linear regression models. 
2  represents the constant or intercept term in the regression equation. T1 indicates the respective input variables used to specify 𝑏0

the variance proportions associated with that variable. 
3 Regression coefficient or slope estimates. 
4 Standard errors associated with the respective coefficient estimate. 
5 p-value indicating the probability that the t-statistic for the term is greater than the critical value which depends on the degrees of 
freedom (DF) of the model. For SLR, DF = 3 & tcrit = 3.182. 
6 F-statistic, distributed as  with 1 & 3 DF for SLR (Fcritical = 10.12). Statistic for the test of overall  of the model. Value in 𝐹 𝑅2

bracket is the p-value for the significance of the overall model.
7 Eigenvalue for the respective dimension.
* Standardized coefficient for SLR is the same as the zero-order Pearson’s correlation coefficient between the variable and the 
output.

4.5.1.1 Effect of gas-liquid interfacial area and length of gas bubble

Sufficient details are provided in the manuscript for this section. 

4.5.1.2 Effect of gas-liquid interfacial area and two-phase velocity

Here again, the reader is referred to the manuscript for the analysis of this section.

4.5.1.3 Effect of gas-liquid interfacial area and injection flowrate of tetralin

All the tables referred to in this section and the next, belong to the main manuscript so that it 
is not repeated at every point of referral. From Table 8, it can be recognized that  and  share 𝑎2 𝑄
the least correlation (-0.704) with each other compared to all other combinations of explanatory 
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variables with . This is supported by the VIF values from model M3, which was the lowest 𝑎2

among the MLR models M1-M4 (Table 7). Though the VIF value of 2 was larger than that for the 
SLR models S1 and S4, the effect of collinearity on the MLR model was not as much a problem 
in this case as was with the previous 2 combinations. This was because model S4 itself could 
explain only 46.7% of the variance in  since the Pearson’s correlation between  and  was 𝐶𝑅 𝑄 𝐶𝑅
on the lower side (-0.683). 

So, it was quite lucid that  was more adept at influencing the output variation than  and that 𝑎2 𝑄
the combined model involving both these predictors would not inflate the standard errors of the 
respective regression coefficients by a huge amount. This premise was evident from the results in 
Table 7 as the standard error for the regression coefficient estimate of  increased only by 69% 𝑎2

(compare with 377% and 231% in the previous cases). The slope estimate was still significant in 
the MLR model with a p-value of 0.013. The presence of some extent of collinearity, between the 
predictors caused a sign reversal in the regression coefficient estimate of  but surprisingly, the 𝑄
standard error of the coefficient estimate decreased by 73%. The change in the sign of the slope 
estimate for  rendered it insignificant (p-value = .818), though the overall model was still 𝑄
significant with F (2, 2) = 72.65 and p-value = 0.014. 

There was a marginal increase of 0.011 and 0.203 units in the standardized coefficient of  in 𝑄

M3 as compared to  in M2 and  in M1, respectively. It is more a consequence of a lesser 𝑈 3
𝑇𝑃 𝐿𝐺

correlation between  and  than the individual contribution of  itself because the standardized 𝑎2 𝑄 𝑄

coefficient of  was still much higher (1.014). A CI value of 5.49 indicated that collinearity was 𝑎2

not a serious concern as the increase from the individual models (S1 and S3) was not as large as 
in the previous cases. Variance proportions of 71% and 90% provided further evidence of the 
diminished presence of collinearity in this case as compared to the previous combinations of 
predictors. 

Examination of Table 8 for CR also reveals that the overall  of model S1 is not significantly 𝑅2

improved by adding  (F (1, 2) = 0.00). On the other hand, the incremental effect of adding  to 𝑄 𝑎2

model S4 (involving  as the explanatory variable) was magnified with an F-statistic value of 𝑄

74.14, which was much higher than Fcritical = 18.51. Moreover, the partial correlation between  𝑎2

&  while controlling for  was 0.987, which implied that  did not have a serious impact on 𝐶𝑅 𝑄 𝑄

the relationship between  and , unlike the previous two situations. The correlation between 𝑎2 𝐶𝑅
 and  decreased by 73% (zero order correlation = 0.683; partial correlation = 0.182), while 𝑄 𝐶𝑅

controlling for . The effect of  on the relationship between  &  and  &  was much 𝑎2 𝑎2 𝑈 3
𝑇𝑃 𝐶𝑅 𝐿𝐺 𝐶𝑅

greater as it lowered the correlations by 94% and 137%, respectively.

4.5.1.4 Effect of gas-liquid interfacial area and length of liquid slug

The first observation from Table 7 with  and  as the predictors in model M4 was that the 𝑎2 𝐿𝑆

model produced the highest  (0.997) with an overall significance of 0.003, which was the highest 𝑅2
𝐶

among other MLR models for  explored in this study. It must also be noted that the pairwise 𝐶𝑅

correlation coefficient between  and  (-0.905) was stronger than between  &  but weaker 𝑎2 𝐿𝑆 𝑎2 𝑄

than the combinations of  and  with . VIF showed a value of 6.00 for the variables involved 𝐿𝐺 𝑈 3
𝑇𝑃 𝑎2
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and reflected this observation. Moreover, a major proportion of the variances in the regression 
coefficient estimates for  (87%) and  (100%) was centered on the third eigenvalue dimension, 𝑎2 𝐿𝑆

thus indicating sufficient linear dependency between the regressors. The % variance proportion 
for the regression coefficient of  in the third dimension was still lesser than in the case of M1 𝑎2

and M2. 
Comparing M4 and S5, the sign of the slope estimate for  turned positive from being negative 𝐿𝑆

in S5, possibly due to the effect of collinearity. Interestingly, the standard error for this coefficient 
decreased by 72% from S5, but still the lower bound value at the 95% confidence interval was 
negative (-1.6E-5). Although the  term was insignificant, its p-value was lower than that of , 𝐿𝑆 𝐿𝐺

 and  in models M1, M2 and M3, respectively. On the other hand, the standard error for the 𝑈 3
𝑇𝑃 𝑄

coefficient estimate of  hiked by a paltry 24%, while the regression coefficient estimate 𝑎2

increased by 23%, thus rendering the term still highly significant (p-value = 0.005). The relative 
of importance of  in influencing the outcome was further evident with the larger standardized 𝑎2

coefficient (1.220) in comparison with that of  (0.251). It was intriguing to note that the 𝐿𝑆

standardized coefficient of  was greater than ,  and  in M3, M2 and M1 models by 0.221, 𝐿𝑆 𝑄 𝑈 3
𝑇𝑃 𝐿𝐺

0.232 and 0.424 units, respectively. 
In addition, augmenting  to model S1 resulted in maximum value of F-statistic (7.33 –Table 𝐿𝑆

8) compared to the other three MLR models, though it was still insignificant (Fcritical (1, 2) = 18.51). 
The addition of  to  caused the F-statistic to swell up to 180.00, portending that the incremental 𝑎2 𝐿𝑆

effect of  over  in improving the model  was the maximum out of all MLR models. Notably, 𝑎2 𝐿𝑆 𝑅2

the partial correlation of  with , controlling for  increased to 0.903 from the absolute zero 𝐿𝑆 𝐶𝑅 𝑎2

order correlation of 0.853. Also, there was a petty increase of 0.002 units from the zero-order 
correlation between  and  to the partial correlation between them, while controlling for .𝑎2 𝐶𝑅 𝐿𝑆

4.5.2 Effect of input variables on oxidation product selectivity

Here, the analysis of the MLR models SM3 and SM4 (Table 9 in manuscript) involving  & 𝑎

 and  &  in comparison with the respective SLR models are provided (Table S2). 𝑄 𝑎 𝐿𝑆

Table S2. Parameter estimates, significances and output variances of SLR models with  as the 𝑆
output and individual explanatory variables as the input. Compare the results with Table 9 in the 

manuscript that shows the parameter estimates for the corresponding MLR models.

Variance 
ProportionsMod

el 1

Var. 
involved 

2
bn 

3 SE 4
Pr > 
|tcrit| 

5

Std. 
coeff. 

*
𝑅2

𝐶 F 6 VIF EV 
7 CI

𝑏0 T1

SS1 𝑏0 .238 .614 .725 1.70 1.0 .15 .15
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 (T1)𝑎 4.5E-5 4.0E-6 .002 .988 .977
125.4 
(.002)

1 .302 2.4 .85 .85

𝑏0 .199 .790 .817 1.70 1.0 .15 .15

SS2
 (T1)𝐿𝐺 64.71 7.44 .003 .981 .856

70.71 
(.003)

1 .296 2.4 .85 .85

𝑏0 -3.953 2.96 .275 1.90 1.0 .05 .05

SS3
 (T1)𝑈 2

𝑇𝑃 23740.8 7020.5 .043 .890 .792
11.44 
(.043)

1 .103 4.3 .95 .95

𝑏0 10.10 3.13 .048 1.80 1.0 .10 .10

SS4
 (T1)𝑄 -.744 .369 .137 -.759 .576

4.07 
(.137)

1 .199 3.0 .90 .90

𝑏0 18.50 2.20 .004 1.94 1.0 .03 .03

SS5
 (T1)𝐿𝑆 -3658.2 562.3 .007 -.966 .934

42.33 
(.007)

1 .058 5.8 .97 .97

1 ‘SS’ corresponds to simple linear regression models with  as the output.𝑆
2  represents the constant or intercept term in the regression equation. T1 indicates the respective input variable used to specify 𝑏0

the variance proportions associated with that variable. 
3 Regression coefficient or slope estimates. 
4 Standard errors associated with the respective coefficient estimate. 
5 p-value indicating the probability that the t-statistic for the term is greater than the critical value of t-stat, that depends on the 
degrees of freedom (DF) of the model. For SLR, DF = 3 & tcrit = 3.182. 
6 F-statistic, distributed as  with 1 and 3 DF for SLR (Fcritical = 10.12). Statistic for the test of overall  of the model. Value in 𝐹 𝑅2

bracket is the p-value for the significance of the overall model. 
7 Eigenvalue for the respective dimension
* Standardized coefficient for SLR is the same as the zero-order Pearson’s correlation coefficient between the variable and the 
output.

4.5.2.1 Effect of gas-liquid interfacial area and length of gas bubble

Sufficient details are provided in the manuscript for this section. 

4.5.2.2 Effect of gas-liquid interfacial area and two-phase velocity

Here again, the reader is referred to the manuscript for the analysis of this section.

4.5.2.3 Effect of gas-liquid interfacial area and injection flowrate of tetralin

Similar to the previous discussion, all references to tables in this section and the next belong 
to the main manuscript. Like in model M3 where the correlation between  and  was minimum 𝑎2 𝑄
among all other combinations, the simple correlation between  and  was the least (-0.839) as 𝑎 𝑄
compared to other correlations with  (Table 8). This was also reflected in the low value for VIF 𝑎
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(3.37) and CI (8.32). Although the absolute value of CI was lower than the thumb rule cut off (11), 
it was ~3.5 times and ~2.5 times higher than in SS1 and SS4 models (Table 9 and Table S2). The 
variance proportions for the regression coefficients of  (87%) and  (90%) were more for the 3rd 𝑎 𝑄
dimension of the eigenvalues but were lesser than that for SM1 and SM2, indicating moderate 
collinearity. The regression coefficient estimate of  did not experience any dramatic change in 𝑎
SM3 as compared to SS1, as a consequence of which the coefficient was significant in the MLR 
model (p-value = 0.008). 

As with model M3, the slope estimate for  became positive from being negative (in SS4) with 𝑄
a decrease in standard error by 72%. The coefficient was still insignificant (compare with SS4), 
but the overall model SM3 was significant with a F (2, 2) = 145.9 and p-value of 0.007. Moreover, 
the due to the low variance explained by  in the output (  = 0.576 for SS4), the addition of  to 𝑄 𝑟2 𝑎

 had a significant contribution in improving the  (F (1, 2) = 119.14 – Table 8). On the other 𝑄 𝑟2

hand,  did not produce a significant increase to the overall  of SS1 when added to  as apparent 𝑄 𝑅2 𝑎
from a much lower F-statistic value of 4.57 (Fcrit = 18.51). Additionally, the partial correlation of 

 and , while controlling for  increased to 0.992 from the zero-order correlation of 0.988. 𝑎 𝑆 𝑄
Although the presence of  did not impact the relationship between  and  in a negative way 𝑎 𝑄 𝑆
(value of 0.842), the partial correlation between  and  was still lesser than that between  and 𝑄 𝑆 𝑎

.𝑆

4.5.2.4 Effect of gas-liquid interfacial area and length of liquid slug

There was evidence for a strong linear dependency between  and  from the Pearson’s simple 𝑎 𝐿𝑆

correlation coefficient value of -0.945 (Table 8). This value was very similar to that between  and 𝑎

 but the direction of the correlation was opposite. It was interesting to note that though the VIF 𝑈 2
𝑇𝑃

(9.35 –Table 9) in model SM4 was almost equal to that of model SM2, the value of CI for SM4 
was higher than that of SM2, which only indicated that collinearity could impact regression 
negatively. 93% and 100% of the variance proportions of  and  were focused on the third 𝑎 𝐿𝑆

eigenvalue dimension, like in previous instances. 
The presence of collinearity between the predictors did not affect the sign of regression 

coefficient estimate of  but increased its standard error by 67% in SM4 as compared to SS5. It 𝐿𝑆

can be seen from Table 9 that both regression coefficients (for  and ) were insignificant in 𝑎 𝐿𝑆

model SM4 but the overall model was still significant (p-value = 0.013,  = 0.987). Thus, it made 𝑅2

sense to interpret the slope estimates relative to each other because the overall regression was 
significant in all MLR models with  or  as the output variable. It can be inferred that  affected 𝑆 𝐶𝑅 𝐿𝑆

the relationship between  and  more than other predictors because of the decreased standardized 𝑎 𝑆
coefficient of  in SM4 (0.700) as compared with other MLR models. But this was much higher 𝑎

than that for  (-0.305), which signaled that  was more sensitive to changes in  than in . 𝐿𝑆 𝑆 𝑎 𝐿𝑆

The partial correlations also tell a congruent story, giving a value of 0.894 for the relationship 
between  and , while controlling for  and decreased from the zero-order value by 10%. On the 𝑎 𝑆 𝐿𝑆

contrary,  affected the link between  and  on a greater scale as the reduction from zero-order 𝑎 𝐿𝑆 𝑆

to partial correlation was 32% (-0.966 to -0.655). The improvement in  of both models SS1 𝑟2

(0.977) and SS5 (0.934) to SM4 (0.987) caused by addition of  to  (F-stat = 1.54) and  to  𝐿𝑆 𝑎 𝑎 𝐿𝑆
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(F-stat = 8.15), respectively were both insignificant (Fcrit = 18.51). But on a relative measure,  𝑎

contributed more significantly to improve the model  due to the higher value for F-statistic 𝑟2

(Table 8).

5. Physicochemical Properties of Tetralin and Oxygen 

Physicochemical properties of tetralin and oxygen used for the calculation shown in the study 
are listed in Table S3. Most of the properties are interpolated from the values obtained from the 
reported literatures.

Table S3. Physicochemical properties of tetralin and oxygen at different experimental conditions

Tetralin Oxygen

T
(0C)

Density 
(kg/m3) 

1 

Surface 
tension a 

(N/m) 

4

Dynamic 
viscosity  

(Pa.s) 
1

Kinematic 
viscosity 

(m2/s) 
1

Dynamic 
viscosity  

(Pa.s) 

3

Density b
(kg/m3)

Kinematic 
viscosity 

(m2/s) 
3

DA 
 (m2/s) 2

25 966 0.0351 1.17E-03 1.21E-06 2.15E-05 2.36E+00 9.08E-06 2.73E-09

120 887 0.0257 6.36E-04 7.17E-07 2.59E-05 1.79E+00 1.44E-05 2.14E-08

130 879 0.0248 5.84E-04 6.65E-07 2.64E-05 1.75E+00 1.51E-05 2.52E-08

140 871 0.0238 5.33E-04 6.13E-07 2.68E-05 1.71E+00 1.57E-05 2.93E-08

150 862 0.0228 4.83E-04 5.61E-07 2.73E-05 1.67E+00 1.64E-05 3.39E-08

160 854 0.0218 4.34E-04 5.08E-07 2.78E-05 1.63E+00 1.71E-05 3.90E-08

a with respect to air.
b density of oxygen was calculated at experimental pressure using ideal gas law.

6. Product identification

GC-FID chromatograms of tetralin oxidized at 150 ˚C in a microfluidic reactor are shown in 
Figure S3 to illustrate the ketone-to-alcohol selectivity in primary oxidation product.
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(a)

(b)
Figure S3. GC-FID chromatogram of tetralin oxidized at 150 °C in a microfluidic reactor at gas-
liquid interfacial area: (a) 3×105 m2/m3 (Series A: Table 2 in manuscript) and (b) 5×103 m2/m3 
(Series E: Table 2 in manuscript).

7. Flame Ionization Detector (FID) Response Factors

The flame ionization detector (FID) has different responses to various organic compounds. 
So, it is required to calculate response factors for accurate quantification of oxidative conversion 
by GC-FID.  The Dietz-method 13 was used to calculate the response factors:
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𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑅𝐹)𝐷𝑖𝑒𝑡𝑧 =

(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑) × (𝑀𝑎𝑠𝑠 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)
(𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑) × (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

(31)

Heptane was used as the standard and its response factor was 1.00. The calculated relative 
response factors are tabulated in Table S4. The calculated relative response factors are very close 
the response factors reported in literature. 13–15 The FID response factors previously reported in 
literature are also listed in Table S4 for comparison.

Table S4. FID response factors of various compounds.

Compound Name
Retention 

Time 
(min)

Response Factor 
(RF)

Reported RF 
value

Heptane 1.72 1.00  0.00± 1.00 13

CHCl3 1.52 0.09  0.01±

Hexachlorobenzene 8.67 0.32  0.01± 0.31 14

Tetralin 4.90 1.08  0.01± 1.02 15

1, 2, 3, 4 – tetrahydro-1-naphthol 6.35 0.82  0.02±

Alpha-tetralone 6.51 0.84  0.01± 0.80 15

8. Conversion Calculations

Conversion was calculated based on the tetralin disappearance and did not reflect the extent 
of oxidation. The percentage conversion was calculated as follows: 1 

                                                                      
𝑊𝑖 =

𝐴𝑖 ∗ 𝑊𝐻𝐶𝐵

𝐴𝐻𝐶𝐵 ∗ 𝑅𝑅𝐹𝑖,𝐻𝐶𝐵
(32)

                
where, 

                                                                        
𝑅𝑅𝐹𝑖, 𝐻𝐶𝐵 =

𝑅𝐹𝑖

𝑅𝐹𝐻𝐶𝐵
(33)

This is the relative response factor of model compounds with respect to hexachlorobenzene 
(internal standard).
In equations 32 and 33,

 = Response factor of hexachlorobenzene with respect to heptane𝑅𝐹𝐻𝐶𝐵

 = Response factor of model compound with respect to heptane𝑅𝐹𝑖

 = Weight % of model compounds𝑊𝑖

 = Weight % of hexachlorobenzene𝑊𝐻𝐶𝐵

 = Peak area of model compounds𝐴𝑖
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 = Peak area of hexachlorobenzene 𝐴𝐻𝐶𝐵

For the conversion less than 1 (% wt/wt), the tetralin conversion was calculated based on the 
formation of products. A conversion factor was calculated using the data obtained from oxidation 
of tetralin with air conducted in a semi-batch reactor (Table S5). 15 Conversion factor was 
multiplied by sum of relative peak areas of product area to get the conversion. Conversion factor 
was selected based on the sum of product area.

Table S5. Conversion data for oxidation of tetralin with air at 150 0C conducted in a semi-batch 
reactor. 15

Time 
(h)

Conversion 
(% wt/wt)

Sum of oxidized 
products

Conversion 
factor

0.5 0.8 214.8 0.0035
1 1.1 643.3 0.0017
2 2.1 1128.1 0.0019
4 4.5 2922.5 0.0015
6 6.9 4628.7 0.0015

9. Diffusion Coefficient Calculation

Different correlations are available in literature to calculate the diffusivities in liquid. The 
correlation provided by Díaz et al. 16 can be used to calculate diffusivity of gases in liquid over 
wide temperature range. This correlation is used to calculate the diffusion coefficient of oxygen 
in tetralin ( ) at 150 °C. The correlation goes as follows:𝐷𝐴

                                                                                   
(𝐷𝐴)𝑇 = 4.996 × 103(𝐷𝐴𝐵)

𝑇 = 250𝐶
𝑒

‒
2539

𝑇

(34)                                                                                                        

where,

                                                                                           
(𝐷𝐴)

𝑇 = 250𝐶
= 6.02 × 10 ‒ 5

𝑉0.36
𝐵

𝜇0.61
𝐵 𝑉0.64

𝐴

(35)

 is the diffusion coefficient of oxygen in tetralin at given temperature in cm2/s.(𝐷𝐴)𝑇

 is the diffusion coefficient of oxygen in tetralin at 25 °C in cm2/s.(𝐷𝐴)𝑇 = 25 °𝐶

 is the absolute temperature (K) = 423 K.𝑇

 is the viscosity of tetralin = 2 cp.µ𝐵
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 is the molar volume of oxygen at the normal boiling point temperature (cm3/gmol) = 27.9 𝑉𝐴

cm3/gmol. 
 is the molar volume of tetralin at the normal boiling point temperature (cm3/gmol) = 135.7 𝑉𝐵

cm3/gmol.
The values obtained at the different relevant temperatures were:

  = 2.7 x 10-09 m2/s(𝐷𝐴)𝑇 = 25 °𝐶

 = 3.4 x 10-08 m2/s(𝐷𝐴)𝑇 = 150 °𝐶
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