Supporting Information

Continuous flow kinetic resolution of non-equimolar mixture of diastereoisomeric alcohol using structured monolithic enzymatic microreactor

Daniel Jan Strub^{1,2,*}, Katarzyna Szymańska^{3,*}, Zofia Hrydziuszko¹, Jolanta Bryjak¹ Andrzej Bolesław Jarzębski^{3,4}

¹Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

² Liquid Technologies Ltd, Chełmońskiego 12, 51-630 Wrocław, Poland

³Department of Chemical Engineering, Silesian University of Technology, M. Strzody 7, 44-100 Gliwice, Poland

³Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland

*Both authors contributed equally to this work

Table of Contents

Fig. 1S. Image of the applied monolithic microreactor.

Fig. 2S. Exemplary chromatograms of the mixture of isomers of alcohol (S/R)-1 (green) and pure minor isomer of alcohol (S)-1 (black) and ester (R)-2.

Fig. 3S. Exemplary chromatogram of the mixture after the process showing full conversion of the major isomer of alcohol (R)-1 to the ester (R)-2.

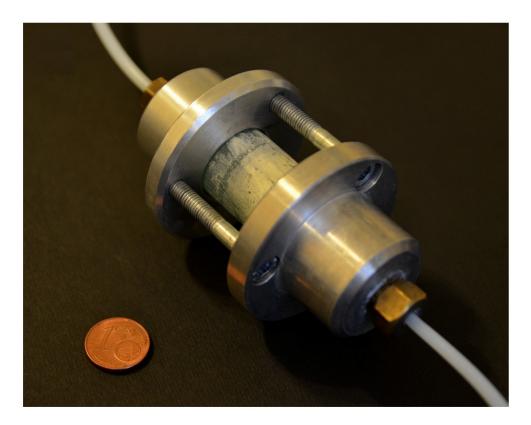


Fig. 1S. Image of the applied monolithic microreactor.

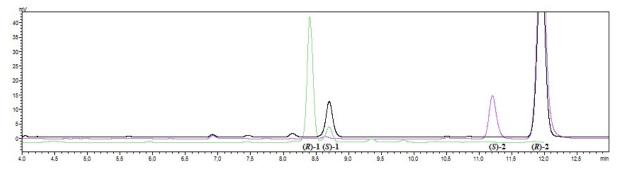


Fig. 2S. Exemplary chromatograms of the mixture of isomers of alcohol (S/R)-1 (green), ester (S/R)-2 (purple) and pure minor isomer of alcohol (S)-1 (black) and major isomer of ester (R)-2 (black).

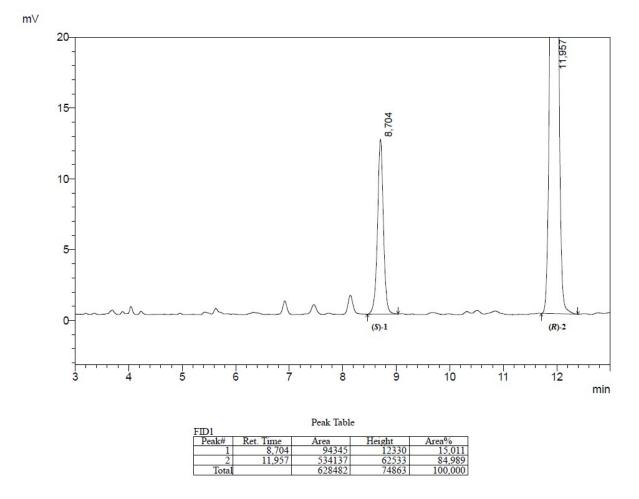


Fig. 3S. Exemplary chromatogram of the mixture after the process showing full conversion of the major isomer of alcohol (R)-1 to the ester (R)-2.