Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2019

Structured ZSM-5 Coated SiC Foam Catalysts for Process Intensification in Catalytic Cracking of *n*-Hexane

Electronic Supplementary Information (ESI)

Fig. S1. SEM micrographs of SiC foam supports with different cell densities of (a) 10 ppi, (b) 20 ppi and (c) 45 ppi. The open porosity of SiC foams was estimated by the displacement methods *via* measuring the fluid (water at room temperature) volume displaced by the sample.

Fig. S2. (a) Optical graph and (b) SEM image of ZSM-5 pellets.

Catalyst	Temperature of	of desorption peaks [°C]	Weak acidity	Strong acidity	Si/Al ª
-	First peak	Second peak	[mmol g ⁻¹]	[mmol g +]	[-]
ZSM-5/SiC foam (10 ppi)	165.2	308.9	6.6	15.0	24.6
ZSM-5/SiC foam (20 ppi)	159.7	307.0	9.5	19.3	23.8
ZSM-5/SiC foam (45 ppi)	165.0	324.2	10.0	13.8	28.7
ZSM-5 pellets	215.6	412.7	164.8	251.4	25.0

Table S1. Acidic properties of catalysts by the NH₃-TPD analysis.

^a based on EDX point elemental analysis (Table S3).

Table S2. Summary of the element distribution of catalysts by EDX point elemental analysis.

Elements ^a	75M E pollota	ZSM-5/	SiC foam	catalysts
	zsivi-s pellets	10 ppi	20 ppi	45 ppi
0	65.9	65.8	65.7	61.1
Si	32.8	33.0	32.9	37.6
Al	1.3	1.3	1.4	1.3

^a atomic percentage of elements at %.

Cell density [ppi]	<i>Е</i> а [-]	ε ^b [-]	Weight د [g]	Weight d [g]	Loading ^e [g]	Loading ^f [g]	Coverage g [g cm ⁻²]	Mean thickness ^h [µm]	ZSM-5 to SiC ratio ⁱ [-]
10	0.72	0.68	19.7	20.8	1.1	1.0	1.2×10 ⁻³	6–7	0.62
20	0.61	0.56	18.0	19.2	1.2	1.0	1.4×10 ⁻³	7–8	0.84
45	0.58	0.53	20.8	22.0	1.2	1.1	0.8×10 ⁻³	4–5	0.49

Table S3. Porosity and zeolite coating properties for ZSM-5/SiC foam catalysts.

^a open porosity before zeolite coating; ^b open porosity after zeolite coating; ^c sample weight before coating; ^d sample weight after coating; ^e based on the weight gain before and after coating; ^f based on the V_{micro} values; ^g based on the zeolite loading and specific surface area; ^h based on the SEM analysis; ¹ based on the XRD analysis.

Comparisons of specific surface area values obtained by X-ray computed tomographic (CT) scan¹ and Xu'model²:

According to Xu's model (Eq. S1), the specific surface area of cellular foams can be calculated using the information of pore diameter (d_p) and open porosity (ε).²

$$S_{v} = \frac{6.702(1 - 1.003\sqrt{1 - \varepsilon})}{d_{p}\sqrt{1 - \varepsilon}}$$
(S1)

Previously, we have reported the specific surface area values of two cellular SiC foams based on CT scan ($S_{v, CT}$). The specific surface area values obtained by calculations and CT scans are listed in Table 1. By using Eq. S1, the corresponding calculated values ($S_{v, calc.}$) of the two SiC foams were determined as well. The comparison of S_v values by the two methods is presented in Table S4, showing that the $S_{v, CT}$ and $S_{v, calc.}$ values are comparable, thus validating Xu's model for estimating

the specific surface area values for SiC foams studied in this work.

1				
SiC foam	Ε	$d_{ ho}$	S _{v, calc.}	S _{v, CT}
	[-]	[mm]	[m ⁻¹]	[m ⁻¹]
13 ppi	0.762	2.61	4007	3448
30 ppi	0.787	1.48	7716	8826

Table S4. Specific surface area values of SiC foam samples.

Estimation of zeolite coating quantity (loading) on SiC foams using the micropore volumes by N₂ physisorption:

Coating quantity = $\frac{V_{micro} (ZSM-5/SiC \text{ foam})}{V_{micro} (ZSM-5 \text{ bulk})} \times \text{Weight of } ZSM-5/SiC \text{ foam}$ (S2)

For example: for ZSM-5/SiC foam (45 ppi)

• coating quantity (or loading) = (0.0175/0.0081) × 22.0 = 1.1 g

Estimation of zeolite coverage on SiC foams:

Coating coverage = $\frac{\text{loading}}{(\text{volume of SiC foam } \times S_v)}$

For example: for ZSM-5/SiC foam (45 ppi)

• volume of SiC foam = $((2.5/2)^2 - (0.035/2)^2) \times 3.14 \times 5 = 24 \text{ cm}^2$ (cylindrical foam, 25 mm diameter with a 3.5 mm diameter hole in the centre)

(S3)

- surface area = (24/1000000) × 6.35×10³ = 0.152 m²
- coverage = $1.2/0.152 = 7.9 \text{ g m}^{-2} \approx 0.8 \times 10^{-3} \text{ g cm}^{-2}$

Modelling of catalyst deactivation:

The deactivation of catalysts under study was modelled by the first-order decay law of catalyst in its natural logarithmic form, as in Eq. S4.

$$\ln\left(\frac{C_t}{C_0}\right) = -k_{dec.}t$$
(S4)

where C_t and C_0 represent the *n*-hexane concentration at time *t* and 0 in the stream, $k_{dec.}$ is the deactivation rate constant (h⁻¹), and *t* is the reaction time in h.

Fig. S3. EDS linescan elemental profile for ZSM-5/SiC foam (20 ppi).

Table S5. Repeatability test for catalytic <i>n</i> -hexane cr	acking (over ZSM-5/SiC foarr	n catalyst, 45 ppi, at 600	°C and 4 h ⁻¹).
--	------------------------------	----------------------------	-----------------------------

Experiment		1	2
<i>n</i> -hexane	conversion	00 00	00.02
(%)		99.00	99.9Z
	Yield (%)		
C1–C4 alkar	es	27.10	25.44
Ethylene		25.71	25.23
Propylene		17.52	16.54
Butylenes		4.72	4.11
Aromatics		24.95	28.67

Table S6. Deactivation rate constants of the catalysts under study determined by the pseudo-first-order plots of $\ln([C_t]/[C_0])$ vs. reaction time.

Catalyst	<i>k_{dec}</i> [h ⁻¹]	R ² [-]
ZSM-5/SiC foam (10 ppi)	3.7±0.2×10 ⁻³	0.97395
ZSM-5/SiC foam (20 ppi)	4.9±0.2×10 ⁻³	0.96964
ZSM-5/SiC foam (45 ppi)	1.9±0.1×10 ⁻³	0.97451
ZSM-5 pellets (<15 h ToS)	7.4±0.5×10 ⁻³	0.97524
ZSM-5 pellets (>15 h ToS)	44.1±2.3×10 ⁻³	0.96998

Fig. S4. Total yield of light olefins (ethylene, propylene and butylenes) over ZSM-5/foam and ZSM-5 pellets catalysts at the WHSV of 16 h^{-1} .

Fig. S5. Nitrogen adsorption/desorption isotherms and NH₃-TPD curves of the spent ZSM-5/SiC foam catalysts (with different cell densities) and ZSM-5 pellets from n-hexane cracking.

Table S7. Pore texture	properties	of the spent ca	atalysts from n-	hexane cracking
------------------------	------------	-----------------	------------------	-----------------

Catalyst			S _{BET}	S _{micro}	S _{ext.}	V _{micro}
Catalyst			[m² g ⁻¹]	[m² g ⁻¹]	[m² g ⁻¹]	[cm ³ g ⁻¹]
ZSM-5/SiC	foam	(10	18.1	17.3	0.9	7.4×10 ⁻³
ppi)						
ZSM-5/SiC	foam	(20	18.4	17.3	1.0	7.5×10 ⁻³
ppi)						
ZSM-5/SiC	foam	(45	18.8	17.7	1.1	7.6×10 ⁻³
ppi)						
ZSM-5 pelle	ts		92.3	87.7	4.6	3.7×10 ⁻²

Catalyst		Temperature of o	desorption peaks [°C]	Weak acidity	Strong acidity	
Catalyst			First peak	Second peak	[mmol g ⁻¹]	[mmol g ⁻¹]
ZSM-5/SiC ppi)	foam	(10	166.7	312.0	7.0	14.0
ZSM-5/SiC ppi)	foam	(20	164.3	309.6	8.6	14.6
ZSM-5/SiC ppi)	foam	(45	171.1	325.6	11.0	13.4
ZSM-5 pelle	ts		199.0	363.7	45.8	53.7

Table S8. Acidic properties by NH₃-TPD analyses for the spent catalysts from *n*-hexane cracking.

References:

1. X. Ou, X. Zhang, T. Lowe, R. Blanc, M. N. Rad, Y. Wang, N. Batail, C. Pham, N. Shokri, A. A. Garforth, P. J. Withers and X. Fan, *Materials Characterization*, 2017, **123**, 20-28.

2. W. Xu, H. Zhang, Z. Yang and J. Zhang, *Chemical Engineering Journal*, 2008, **140**, 562-569.