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1. Development of an analytical model for electrochemical generation of ferrates by 
electrochemical flow reactor operating in batch recirculation with ferrate degradation

We express the general rate balance equation of the flow reactor as:

𝐼𝑁 ‒ 𝑂𝑈𝑇 + 𝐺𝐸𝑁 ‒ 𝐶𝑂𝑁𝑆 = 𝐴𝐶𝐶#(𝑆1)

where IN, OUT, GEN, CONS, and ACC are the flow into, flow out of, generation in, 

consumption in, and accumulation in, respectively, a control volume or surface.  The individual 

terms correspond to rates of some quantity of interest, for example the moles of Fe(VI), for a 

cross section of the flow reactor at some arbitrary distance  from the inlet and at some arbitrary 𝑥

time  with some arbitrarily small thickness . It is assumed that: 1) each cross section is 𝑡 Δ𝑥

perfectly mixed, 2) the reaction of Fe(III) to form Fe(VI) is a heterogeneous reaction occurring at 

the surface of the electrode, and 3) the degradation of Fe(VI) to form Fe(III) is homogeneous 

occurring uniformly throughout each cross section. As such, the terms of Equation (S1) are 

expressed as follows:

𝐼𝑁 = 𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)#(𝑆2)

𝑂𝑈𝑇 = 𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝑥 + Δ𝑥,𝑡)#(𝑆3)

𝐺𝐸𝑁 =  𝑘𝑚𝐵Δ𝑥𝑐𝐹𝑒(𝐼𝐼𝐼)(𝑥 +
Δ𝑥
2

,𝑡)#(𝑆4)

𝐶𝑂𝑁𝑆 =  𝑘𝑑𝐵𝑆Δ𝑥𝑐𝐹𝑒(𝑉𝐼)(𝑥 +
Δ𝑥
2

,𝑡)#(𝑆5)

𝐴𝐶𝐶 = 0#(𝑆6)

where  is the volumetric flow rate of the electrolyte in m3 s-1;  and   the 𝑄𝑉 𝑐𝐹𝑒(𝐼𝐼𝐼)(𝑥,𝑡) 𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)

molar concentration of Fe(III) and Fe(VI), respectively, at  and  in mole m-3;  and  is the 𝑥 𝑡 𝑘𝑑 𝑘𝑚

coefficients of Fe(VI) degradation (first order) [1] and mass transport in s-1 and m s-1, 

respectively; and  and  are the electrode width and inter-electrode distance, respectively, in m. 𝐵 𝑆

Combining Equations (S1)–(S6) gives:

𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡) ‒ 𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝑥 + Δ𝑥,𝑡) + 𝑘𝑚𝐵Δ𝑥𝑐𝐹𝑒(𝐼𝐼𝐼)(𝑥 +
Δ𝑥
2

,𝑡) ‒ 𝑘𝑑𝐵𝑆Δ𝑥𝑐𝐹𝑒(𝑉𝐼)(𝑥 +
Δ𝑥
2

,𝑡) = 0#(𝑆7)

Dividing Equation (S7) by  gives:Δ𝑥
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𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡) ‒ 𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝑥 + Δ𝑥,𝑡)

Δ𝑥
+ 𝑘𝑚𝐵𝑐𝐹𝑒(𝐼𝐼𝐼)(𝑥 +

Δ𝑥
2

,𝑡) ‒ 𝑘𝑑𝐵𝑆𝑐𝐹𝑒(𝑉𝐼)(𝑥 +
Δ𝑥
2

,𝑡) = 0#(𝑆8)

Taking the  to Equation (S8) and applying the definition of a derivative gives:
𝑙𝑖𝑚

Δ𝑥→0

‒ 𝑄𝑉

𝑑𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)

𝑑𝑥
+ 𝑘𝑚𝐵𝑐𝐹𝑒(𝐼𝐼𝐼)(𝑥,𝑡) ‒ 𝑘𝑑𝐵𝑆𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡) = 0#(𝑆9)

By conservation of mass, it is therefore developed that: 1) the total iron concentration is 

conserved and 2) the total iron concentration remains homogeneously dispersed. Furthermore, it 

is assumed that: 3) the only iron species which appear in significant concentrations are Fe(III) 

and Fe(VI) such that:

𝑐𝐹𝑒(𝐼𝐼𝐼)(0) = 𝑐𝐹𝑒(𝐼𝐼𝐼)(𝑥,𝑡) + 𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)#(𝑆10)

where  is the initial concentration of Fe(III). Thus, substituting Equation (S10) in 𝑐𝐹𝑒(𝐼𝐼𝐼)(0)

Equation (S9), it becomes:

‒ 𝑄𝑉

𝑑𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)

𝑑𝑥
+ 𝑘𝑚𝐵[𝑐𝐹𝑒(𝐼𝐼𝐼)(0) ‒ 𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)] ‒ 𝑘𝑑𝐵𝑆𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡) = 0#(𝑆11)

Rearranging Equation (S11):

𝑑𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)

𝑘𝑚𝑐𝐹𝑒(𝐼𝐼𝐼)(0) ‒ (𝑘𝑚 + 𝑘𝑑𝑆)𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)
=

𝐵
𝑄𝑉

𝑑𝑥#(𝑆12)

We integrate Equation (S12) and apply the following boundary conditions:

�𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)|𝑥 = 0 = 𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)#(𝑆13)

�𝑐𝐹𝑒(𝑉𝐼)(𝑥,𝑡)|𝑥 = 𝐿 = 𝑐𝐹𝑒(𝑉𝐼)(𝑂𝑈𝑇,𝑡)#(𝑆14)

where L is the length of the electrode length in m. We then obtain the following solution:

𝑘𝑚𝑐𝐹𝑒(𝐼𝐼𝐼)(0) ‒ (𝑘𝑚 + 𝑘𝑑𝑆)𝑐𝐹𝑒(𝑉𝐼)(𝑂𝑈𝑇,𝑡)

𝑘𝑚𝑐𝐹𝑒(𝐼𝐼𝐼)(0) ‒ (𝑘𝑚 + 𝑘𝑑𝑆)𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)
= exp [ ‒

(𝑘𝑚 + 𝑘𝑑𝑆)𝐵𝐿

𝑄𝑉 ]#(𝑆15)

Substituting for the reactor volume  and residence time  in m3 and s, respectively, where𝑉𝑅 𝜏𝑅
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𝑉𝑅 = 𝐵𝑆𝐿#(𝑆16)

𝜏𝑅 =
𝑉𝑅

𝑄𝑉
#(𝑆17)

and rearranging to isolate , we obtain:𝑐𝐹𝑒(𝑉𝐼)(𝑂𝑈𝑇,𝑡)

𝑐𝐹𝑒(𝑉𝐼)(𝑂𝑈𝑇,𝑡) =

𝑘𝑚

𝑆
𝑘𝑚

𝑆
+ 𝑘𝑑

{1 ‒ exp [ ‒ (𝑘𝑚

𝑆
+ 𝑘𝑑)𝜏𝑅]}𝑐𝐹𝑒(𝐼𝐼𝐼)(0) + exp [ ‒ (𝑘𝑚

𝑆
+ 𝑘𝑑)𝜏𝑅]𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)#(𝑆18)

Using the general balance Equation (S1) we now perform a mole balance of Fe(VI) on the 

entirety of the reservoir at . It is assumed that: 1) the reservoir is perfectly mixed and 2) the 𝑡

degradation of Fe(VI) to form Fe(III) is homogeneous, occurring uniformly throughout each 

cross section. As such, the terms of Equation (S1) are expressed as follows:

𝐼𝑁 = 𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝑂𝑈𝑇,𝑡)#(𝑆19)

𝑂𝑈𝑇 = 𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)#(𝑆20)

𝐺𝐸𝑁 =  0#(𝑆21)

𝐶𝑂𝑁𝑆 =  𝑘𝑑𝑉𝑇𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)#(𝑆22)

𝐴𝐶𝐶 = 𝑉𝑇

𝑑𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)

𝑑𝑡
#(𝑆23)

where  is the reservoir volume in m3. Combining Equations (S19)–(S23) leads to the following 𝑉𝑇

equation for the reservoir:

𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝑂𝑈𝑇,𝑡) ‒ 𝑄𝑉𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡) ‒ 𝑘𝑑𝑉𝑇𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡) = 𝑉𝑇

𝑑𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)

𝑑𝑡
#(𝑆24)

Substituting the reservoir residence time  in s given by𝜏𝑇

𝜏𝑇 =
𝑉𝑇

𝑄𝑉
#(𝑆25)

and substituting  as expressed by Equation (S18) into Equation (S24) leads to:𝑐𝐹𝑒(𝑉𝐼)(𝑂𝑈𝑇,𝑡)
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𝑘𝑚

𝑆
𝑘𝑚

𝑆
+ 𝑘𝑑

{1 ‒ exp [ ‒ (𝑘𝑚

𝑆
+ 𝑘𝑑)𝜏𝑅]}𝑐𝐹𝑒(𝐼𝐼𝐼)(0) ‒ {1 + 𝑘𝑑𝜏𝑇 ‒ exp [ ‒ (𝑘𝑚

𝑆
+ 𝑘𝑑)𝜏𝑅]}𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡) = 𝜏𝑇

𝑑𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)

𝑑𝑡
#(𝑆26)

Rearranging Equation (S26):

𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)

𝑘𝑚

𝑆
𝑘𝑚

𝑆
+ 𝑘𝑑

{1 ‒ exp [ ‒ (𝑘𝑚

𝑆
+ 𝑘𝑑)𝜏𝑅]}𝑐𝐹𝑒(𝐼𝐼𝐼)(0) ‒ {1 + 𝑘𝑑𝜏𝑇 ‒ exp [ ‒ (𝑘𝑚

𝑆
+ 𝑘𝑑)𝜏𝑅]}𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)

=
𝑑𝑡
𝜏𝑇

#(𝑆27)

We solve Equation (S27) and apply the following initial condition:

�𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)|𝑡 = 0 = 0#(𝑆28)

To obtain the concentration of  Fe(VI) in the reservoir as a function of time: 

𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)

𝑐𝐹𝑒(𝐼𝐼𝐼)(0)
= 𝑎[1 ‒ exp ( ‒ 𝑏𝑡)]#(𝑆29)

where

𝑎 =

𝑘𝑚

𝑆
𝑘𝑚

𝑆
+ 𝑘𝑑

1 ‒ exp [ ‒ (𝑘𝑚

𝑆
+ 𝑘𝑑)𝜏𝑅]

1 + 𝑘𝑑𝜏𝑇 ‒ exp [ ‒ (𝑘𝑚

𝑆
+ 𝑘𝑑)𝜏𝑅]

#(𝑆30)

and

𝑏 =

1 + 𝑘𝑑𝜏𝑇 ‒ exp [ ‒ (𝑘𝑚

𝑆
+ 𝑘𝑑)𝜏𝑅]

𝜏𝑇
#(𝑆31)
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2. Linearization of analytical model and fitting of linearized experimental data

2.1. Linearization of analytical model

The following is postulated to develop a simplified approximation of the analytical model 

expressed by Equations (S29)–(S31) such that it can be linearized:

𝑘𝑑 ≪
𝑘𝑚

𝑆
#(𝑆32)

𝑘𝑑𝜏𝑇 ≪ 1#(𝑆33)

This work evaluating  using the non-linear least squares method suggests that Equation (S32) 𝑘𝑑

is also a reasonable postulate.  Previous work with degradation of electrochemically-generated 

ferrates [1] suggests that Equation (S33) is also a reasonable postulate. As such, Equations (S30) 

and (S31) become:

𝑎≅1#(𝑆34)

𝑏≅
1 ‒ exp ( ‒

𝑘𝑚𝜏𝑅

𝑆 )
𝜏𝑇

#(𝑆35)

Therefore, Equation (S29) can be expressed in the following linearized form:

ln [𝑐𝐹𝑒(𝐼𝐼𝐼)(0) ‒ 𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)] = 𝑎'𝑡 + 𝑏'#(𝑆36)

where

𝑎' =‒ [1 ‒ exp ( ‒
𝑘𝑚𝜏𝑅

𝑆 )
𝜏𝑇 ]#(𝑆37)

𝑏' = ln [𝑐𝐹𝑒(𝐼𝐼𝐼)(0)]#(𝑆38)

It is noted that  satisfies both postulates described by Equations (S32) and (S33) and 𝑘𝑑 = 0

results in the approximations described by Equations (S34) and (S35). In other words, 

linearization of the analytical model is equivalent to the special case where  𝑘𝑑 = 0.
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2.2. Fitting of linearized experimental data

To demonstrate this analysis,  data for varying current densities, , using an ion 𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡) 𝑖

exchange membrane are shown on a plot (Figure S1).  It ln [𝑐𝐹𝑒(𝐼𝐼𝐼)(0) ‒ 𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)] 𝑣𝑠 𝑡𝑖𝑚𝑒 

is clear that data for different current densities show linear trends and can be fitted by linear 

regression (straight lines). For all fits the value of R2 exceed 0.95 (Table S1).
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Figure S1.  for varying current densities with an ion exchange ln [𝑐𝐹𝑒(𝐼𝐼𝐼)(0) ‒ 𝑐𝐹𝑒(𝑉𝐼)(𝐼𝑁,𝑡)]
membrane plotted as a function of time. Initial conditions: pH 7,  = 10 mM,  = 4.9 L 𝑐𝐹𝑒(𝐼𝐼𝐼)(0) 𝑄𝑉

min-1.
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Table S1. Summary of statistics from linear regression analysis of linearized experimental data
 / mA cm-2𝑖 R2

5.0 0.979
7.5 0.957
10.0 0.994
15.0 0.993

The values of  are obtained form the slopes of the linear regression analysis and are 𝑘𝑚

summarized in Table S2. In addition, we performed non-linear least squares method to directly 

fit Equation, i.e., without applying approximations (S32,S33) and linearization (S36) . It is clear 

that regressed values of  do not vary significantly within a 95% confidence interval for a 𝑘𝑚

given , irrespective of whether the linear regression analysis of linearized experimental data or 𝑖

non-linear least squares method was employed. With the use of non-linear fitting, best optimum 

fitting is generally obtained when  is 0. 𝑘𝑑

Table S2. Comparison of parameters obtained by 1) linear regression analyses of linearized 
experimental data (“Linear”) and 2) non-linear least squares method (“Non-linear”). Reported 
values include 95% confidence intervals

 / m s-1  106𝑘𝑚 ×
 / mA cm-2𝑖 Linear Non-linear

5.0 2.6  0.3± 3.6  0.9 ±
7.5 10.6  1.8± 9.7  1.0 ±

10.0 21.9  1.3± 19.8  1.4 ±
15.0 35.8  2.4± 32.4  2.5 ±



S9

References

[1] M. Cataldo-Hernández, M. Stewart, A. Bonakdarpour, M. Mohseni, and D. P. Wilkinson, 
“Degradation of ferrate species produced electrochemically for use in drinking water 
treatment applications,” Can. J. Chem. Eng., vol. 96, no. 5, pp. 1045–1052, May 2018.


