Supporting Information

Sensitized [2+2] intramolecular photocycloaddition of unsaturated enones using UV LEDs in a continuous flow reactor: kinetic and preparative aspects

Author names:

Nassim El Achi,^a Fabien Gelat,^a Nicolas P. Cheval,^a Ahmed Mazzah,^a Youssef Bakkour,^b Maël Penhoat,^a Laëtitia Chausset-Boissarie,^a Christian Rolando^{*a}

Author affiliations:

^a USR 3290, MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique and FR 2638, Institut Eugène-Michel Chevreul, Université de Lille, Faculté des Sciences et Technologies, F-59000 Lille, France

^b Laboratory of Applied Chemistry, Lebanese University, PO Box 826, Tripoli, Lebanon

Corresponding author:

*Email: christian.rolando@univ-lille.fr

Table of contents

MATERIALS AND METHODS	2
KINETICS STUDIES	3
COPIES OF NMR SPECTRA	20

Materials and methods

Flow System

Mikroglas Dwell Device[®] microreactor (Invenios Europe, Langen, Germany) made of Foturan[®] glass of dimensions (1.15 m \times 2000 µm \times 500 µm). The 1.15 m long channel of this dwell device offers extended reaction time. Moreover, the reactor includes a channel for the flow of heat exchange fluid thus providing temperature control. The Foturan[®] glass is resistant to aggressive liquids (strong acids, bases) allowing the usage of a wide range of solvents in addition to its transparency up to 300 nm making it favorable for UV/Vis photochemical reactions (Figure S1).

Figure S1. Mikroglas Dwell Device®.

Syringe pump

The different flow rates of the reactions performed were regulated using a Harvard Apparatus (Holliston, MA, USA) PHD ULTRA CP syringe pump fitted with 8 mL stainless steel syringes.

LED Systems

A lab assembled UV LEDs composed of 18 identical LEDs from Roithner Lasertechnik (Vienna, Austria), 365 ± 15 nm), placed at equal distances to provide homogeneous illumination (LEDs A). The wavelength of the emitted irradiation is 365 nm. The average emitted photon flux of this UV LEDs assembly is around 90 mW.cm⁻² (Figure S2).

Figure S2. Mikroglas Dwell device irradiated by LEDs A.

2- UV LEDs (365 nm, irradiance up to 250 mW.cm⁻²) Omnicure[®] AC475 model from Lumen Dynamics (Excelitas Technologies, Waltham, MA, USA) (LEDs B). The power of these UV LEDs can be changed but only 100 % power (irradiance 230 mW.cm⁻²) was assessed (Figure S3). Note that the irradiance was measured at the surface of the reactor using a radiometer.

Figure S3. Mikroglas Dwell device irradiated by LEDs B.

Radiometer

The $X9_2$ meter in combination RCH-008-4 light detector (Gigahertz-Optiks, Türkenfeld, Germany) was used to measure the irradiance of the light that reaches to the surface of the used microfluidic device (Figure S4).

Figure S4. The X9₂ radiometer used for measuring light emitted.

Kinetics Studies

To determine the order of the cycloaddition reaction, the kinetic curves for the reaction of 3-(2-ketenyloxy)-2-cyclohexen-1-one with 4,4-dimethoxybenzophenone were plotted. These curves were then used to extrapolate the rate constants k_x . For a given 3-(2-ketenyloxy)-2-cyclohexen-1-one derivative, a series of five reactions with different UV irradiation times were performed under continuous conditions. The percentage of conversion was determined by ¹H NMR with an internal standard. The time of irradiation was regulated by adjusting the flow rate of the syringe pump and the flow system used is the Mikroglass Dwell Device (V_{int} = 1.15 mL).

Flow (μl.min ⁻¹)	Irradiation time (min)	% [2+2] Cycloadduct	% Pinacol
750	1.53	7.0	0.1
500	2.30	16.5	0.6
375	3.06	20.8	1.5
250	4.60	25.0	3.2
125	9.20	46.2	12.0
62.5	18.4	67.7	25.0

Table S1 Results of sensitized [2+2] cycloaddition in flow where $[1d]_0 = 37 \text{ mM}$ and $[DMBP 3b]_0 = 4.63 \text{ mM}$ (data for Table 3, entry 1)

Table S2 Results of sensitized [2+2] cycloaddition in flow where $[1d]_0 = 37.0$ mM and $[B]_0 = 9.25$ mM (data for Table 3, entry 2)

_					
	Flow (µl.min ⁻¹)	Irradiation time (min)	% [2+2] Cycloadduct	% Pinacol	
	1000	1.15	6.0	0.1	
	750	1.53	16.3	0.6	
	500	2.30	27.4	1.9	
	375	3.06	36.1	2.9	
	250	4.60	51.6	6.4	
	125	9.20	74.6	16.0	

Table S3 Results of sensitized [2+2] cycloaddition in flow where $[1d]_0 = 37.0$ mM and $[DMBP 3b]_0 = 18.5$ mM (data for Table 3, entry 3)

Flow (μl.min ⁻¹)	Irradiation time (min)	% [2+2] Cycloadduct	% Pinacol
1500	0.77	14.6	0.6
1000	1.15	22.4	1.0
750	1.53	31.0	1.6
500	2.30	48.9	3.1
375	3.06	61.6	4.4
250	4.60	74.7	6.5

Flow (μl.min ⁻¹)	Irradiation time (min)	% [2+2] Cycloadduct	% Pinacol
2000	0.58	22.0	0.5
1500	0.77	31.4	0.9
1000	1.15	42.8	1.4
750	1.53	55.5	2.2
500	2.30	72.7	3.7
375	3.06	81.4	4.9

Table S4 Results of sensitized [2+2] cycloaddition in flow where $[1d]_0 = 37.0$ mM and $[DMPP 3b]_0 = 37.0$ mM (data for Table 3, entry 4)

Table S5 Results of sensitized [2+2] cycloaddition in flow where $[1d]_0 = 37.0$ mM and $[DMBP 3b]_0 = 74.0$ mM (data for Table 3, entry 5)

 Flow (µl.min ⁻¹)	Irradiation time (min)	% [2+2] Cycloadduct	% pinacol
 2500	0.46	32.4	0.0
2000	0.58	37.7	0.5
1500	0.77	49.5	1.0
1000	1.15	68.0	1.6
750	1.53	76.4	2.3
500	2.30	87.6	3.6

Table S6 Results of sensitized [2+2] cycloaddition in flow where $[1a]_0 = 37.0 \text{ mM}$ and $[DMPP 3b]_0 = 74.0 \text{ mM}$ (data for Table 3, entry 6)

Flow (μl.min ⁻¹)	Irradiation time (min)	% [2+2] Cycloadduct	% Pinacol
100	11.5	46.0	3.0
75	15.3	66.0	6.9
50	23.0	74.0	9.9
25	46.0	90.0	15.9
20	57.5	92.7	19.2
10	115.0	99.5	31.0

Flow (μl.min ⁻¹)	Irradiation time (min)	% [2+2] Cycloadduct	% Pinacol
460	2.5	29.0	3.6
230	5.0	50.0	5.5
115	10.0	65.0	8.5
46	25.0	85.0	19.2
23	50.0	96.5	31.0
15	76.7	99.5	37.0

Table S7 Results of sensitized [2+2] cycloaddition in flow where $[\mathbf{1b}]_0 = 37.0 \text{ mM}$ and $[\text{DMPP } \mathbf{3b}]_0 = 74.0 \text{ mM}$ (data for Table 3, entry 7)

Table S8 Results of sensitized [2+2] cycloaddition in flow where $[1c]_0 = 37.0 \text{ mM}$ and $[DMPP 3b]_0 = 74.0 \text{ mM}$ (data for Table 3, entry 8)

Flow (µl.min⁻¹)	Irradiation time (min)	% [2+2] Cycloadduct	% Pinacol
460	0.56	67.0	4.8
230	0.77	79.0	7.7
115	1.15	91.0	13.8
90	1.53	96.0	17.1
60	2.30	99.5	23.1

Table S9 Results of sensitized [2+2] cycloaddition in flow where $[1d]_0 = 37.0$ mM and $[DMPP 3b]_0 = 74.0$ mM (data for Table 3, entry 9)

Flow (μl.min ⁻¹)	Irradiation time (min)	% [2+2] Cycloadduct	% Pinacol
2500	0.5	44.0	1.0
1500	0.8	65.0	1.4
920	1.3	72.0	2.6
460	2.5	91.0	5.4
230	5.0	98.8	9.9

Flow rate (µl/min)	Irradiation time (min)	% Pinacol
20	57.5	5.0
15	76.7	6.5
10	115.0	7.5
7	164.3	10.5
5	230.0	15.5

Table S10 Results of the pinacolization reaction in flow for $[DMBP 3b]_0 = 37.0 \text{ mM}$ (data for Table 3, entry 10)

Table S11 Results of the pinacolization reaction in flow for $[DMBP 3b]_0 = 74.0 \text{ mM}$ (data for Table 3, entry 11)

Flow rate (µl/min)	Irradiation time (min)	% Pinacol
200	6.0	1.3
150	7.5	1.7
100	11.5	2.4
75	15.0	2.8
30	38.0	5.0
20	57.0	8.0
10	115.0	14.8

In order to obtain the initial assumptions for the numerical fits for the DMBP **3b**, the concentration factor was simplified by assuming that DMBP **3b** is constant and equal to the initial DMBP **3b** concentration $[DMBP]_0$ in equations S1 and S2 (that correspond to equations 12 and 13 in the main text):

$$\frac{d \operatorname{Pinacol}}{dt} = 2 \times k_{\operatorname{Pinacol}}^{\operatorname{Exper.}} \times DMBP$$

$$\frac{d \operatorname{Product}}{dt} = k_{[2+2]}^{\operatorname{Exper.}} \times DMBP \times Substrate = k_{[2+2]}^{\operatorname{Exper.}} \times [DMBP]_0 \times Substrate$$
(S2)

A straightforward integration gives:

 $Ln(DMBP) = Ln([DMBP]_0) - k_{Pinacol}^{Exper.} \times t$ (S3)

$$Ln(Substrate) = Ln([Substrate]_0) - k_{[2+2]}^{Exper.} \times [DMBP]_0 \times t$$
(S4)

Entry	Substrate ^b	DMBP 3b mmol.L ⁻¹	k ^{Exper.} [2 + 2] (mol ⁻¹ .L.s ⁻¹)	R ^{2c}	k ^{Exper.} _{Pinacol} × 10 ³ (s ⁻¹)	<i>R</i> ² <i>c</i>
1	1d	4.6	17.2	0.995	16.0	0.977
2	1d	9.3	18.1	0.992	17.5	0.902
3	1d	18.5	17.0	0.991	15.0	0.986
4	1d	37.0	15.4	0.997	16.5	0.988
5	1d	74.0	12.6	0.996	17.5	0.967
6	1a	74.0	0.80	0.993	4.5	0.996
7	2b	74.0	1.4	0.994	9.5	0.996
8	1c	74.0	4.75	0.98	17.5	0.999
9	1d	74.0	14.0	0.997	24.0	0.995
10	-	37.0	-	-	0.8	0.972
11	-	74.0	-	-	1.5	0.996

Table S12 Initial assumptions for the numerical fits using simplified equations S3 and S4. The entries correspond to those of Table $3.^{a}$

^{*a*} Mikroglas Dwell Device[®] microreactor made of Foturan[®] glass with a rectangular shape of dimensions 115 mm × 2 mm × 0.5 mm was used as photo-microreactor illuminated by UV LEDs B (λ = 365 ± 15 nm, 230 mW.cm⁻²). ^{*b*} Substrate concentration 37 mM. ^{*c*} R^2 : correlation coefficient of the plotted graph

Fig. S5 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 1 (**1d**: 37 mM, DMBP **3a** 4.6 mM) obtained using data of Table S1.

Fig. S6 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 2 (**1d**: 37 mM, DMBP **3a** 9.2 mM) obtained using data of Table S2.

Fig. S7 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 3 (**1d**: 37 mM, DMBP **3a** 18.5 mM) obtained using data of Table S3.

Fig. S8 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 4 (**1d**: 37 mM, DMBP **3a** 37.0 mM) obtained using data of Table S4.

Fig. S9 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 5 (**1d**: 37 mM, DMBP **3a** 74.0 mM) obtained using data of Table S5.

Fig. S10 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 6 (**1a**: 37 mM, DMBP **3a** 74.0 mM) obtained using data of Table S6.

Fig. S11 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 7 (**1b**: 37 mM, DMBP **3a** 74 mM) obtained using data of Table S7.

Fig. S12 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 8 (**1c**: 37 mM, DMBP **3a** 74 mM) obtained using data of Table S8.

Fig. S13 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 9 (**1d**: 37 mM, DMBP **3a** 74.0 mM) obtained using data of Table S9.

Fig. S14 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 10 (no substrate, DMBP **3a** 37.0 mM) obtained using data of Table S10.

Fig. S15 Numerical integrations according to equations S1 and S2 (that correspond to equations 12 and 13 in the main text) for photocyclization in Table 3, entry 1 (no substrate, DMBP **3a** 74.0 mM) obtained using data of Table S11

Copies of NMR spectra

3-(but-3-en-1-yloxy)-5,5-dimethylcyclohex-2-en-1-one 1d

3-(but-3-en-1-yloxy)cyclohex-2-en-1-one 1c

3-(allyloxy)cyclohex-2-en-1-one 1a

4-4'-(2-bromoethoxy)benzophenone

4, 4'-(2-(1methylimidazolium)ethoxy)benzophenone dibromide

7,7-dimethylhexahydro-2H-benzo[1,4]cyclobuta[1,2-b]furan-5(6H)-one 2d

Hexahydro-2H-benzo[1,4]cyclobuta[1,2-b]furan-5(6H)-one 2c