Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2019

A continuous flow protocol to generate, regenerate, load and recycle chlorotrityl functionalised resins

Electronic supporting information

Lawson K. Spare,^a Maria Menti, ^a David G. Harman,^{b,c} Janice R. Aldrich-Wright,^{a,d} and Christopher P. Gordon^{a*}

Contents

General information	2
Apparatus set up	2
Quantitation method of resin loading via UV titration	3
General synthesis procedures	3
Amino acid loading data	5
Peptide synthesis and characterization data	18
HPLC traces of final peptide sequences	22
Mass spectra of peptide sequences	24
NMR Spectra of peptide sequences	30
Recycled resin chromatographs	38
	General information

1. General information

Fmoc-protected amino acids were purchased from Auspep and used as received as was 2-chlorotrityl chloride polystyrene resin (0.98 mmol/g). Trityl-OH Chem Matrix Resin (0.47 mmol/g) was purchased from Biotage. All solvents were bulk, and distilled in glass prior to use. Materials were purchased from either Aldrich Chemical Co or ChemSupply. Peptide sequences were monitored using analytical RP-HPLC, performed using an Agilent instrument comprised of six modules; 1260 Bin Pump, 1260 HIP Degasser, 1260 ALS, 1260 TCC, 1260 DAD and 1260 FC-AS. Analytical RP-HPLC was performed using Phenomenex Onyx Monolithic reversed-phase C18 column (4.6 x 150 mm). Solvent A: 0.06% TFA in H₂O and solvent B: 0.06% TFA in CH₃CN:H₂O (9:1), flow rate of 1.0 mL/min, gradient 10-100 (%B), curve = 6, over 15.0 mins, and detection at 214 and 254 nm. Mass spectrometry data was obtained in the Western Sydney Mass Spectrometry Facility. Low resolution electrospray ionisation mass spectrometry (ESIMS) experiments were performed using a Waters TQ-MS triple quadrupole mass spectrometer fitted with an ESI source. Spectra were recorded in positive ion mode from analyte solutions injected (10 µL) into 0.1% formic acid in 50% aqueous methanol flowing at 0.1 mL min-1. A capillary voltage of 3.0 kV, cone voltage of 30 V, desolvation temperature of 300 °C and desolvation flow rate (nitrogen) of 500 L h-1 were employed. Spectra were collected over 1 min with an m/z range of 100–1500. High resolution accurate mass spectra were obtained using a Waters Xevo QToF MS mass spectrometer. The instrument was fitted with an ESI probe and mass-corrected sample spectra were recorded in positive ion mode, incorporating leucine encephalin (200 pg/µL in 50% aqueous acetonitrile + 0.1% formic acid) as a lockmass compound. Prior to obtaining spectra, the m/z range of 50-2000 was calibrated against sodium iodide solution. Samples were prepared in 0.1% aqueous formic acid at concentrations of approximately 10 ng/mL and infused via syringe pump at 3 µL/min.

2. Apparatus set up

ESI Figure 2.1: Apparatus set up of flow loading using a syringe pump

ESI Figure 2.2: Apparatus set up for total flow synthesis utilising a HPLC pump, Reodyne injector with 3 mL injection loop, thermostat controlled heating block with heating coil, back pressure regulator and UV detector.

ESI Figure 2.3: Images of resin prior to regeneration (left) and post-regeneration (right)

3. Quantitation method of resin loading *via* UV titration

Three samples of loaded dried resin (< 10.0 mg each) were each added to a vial, freshly prepared solution of 20% piperidine in DMF (3.00 mL) was added to the dried resin. The resulting suspensions were gently agitated at rt for 0.5 h after which 300 μ L of each resin suspension was transferred to a quartz UV cuvette and an additional 2.70 mL of 20% piperidine in DMF was added. A reference cell containing 3.00 mL of 20% piperidine was placed into a UV spectrophotometer and reference was set at 290 nm. The absorbance of the cuvettes containing the settled resin was then obtained (290 nm). The loading of the resin was then determined using the following equation (final loading = average of the three resin samples with associated error):

Loading (mmol/g) = $[(Abs_{sample}) / (mg of sample \times 1.75)] \times 10$

Theoretical loading was determined using the following equation:

 $A = B \times 1000 \ / \ [1000 + (B \times (M - X))]$

A = theoretical substitution (mmol/g)

B = substitution of resin (mmol/g)

M = molecular weight of Amino Acid (with all protecting groups)

X = 36 (loss of Cl on amino acid loading)

4. General synthesis procedures

General procedure (batch) for loading 2-chlorotrityl chloride resin: 2-Chlorotritylchloride resin (100-200 mesh polystyrene), 1% DVB (100 mg, loading = 0.98 mmol/g) (AusPep) swelled with DCM (10 mL). The amino acid solution (Fmoc-AA-OH 4 eq, DIPEA 8 eq, in DCM 5 mL) was added to the suspension at 40 °C and agitated for 2 hours. The resin was filtered from the solution and washed with DCM (3×10 mL) and Et₂O (3×10 mL). The resin was initially dried with a stream of N₂, and then subsequently under high vacuum for 18h. Three portions of the resin (<10 mg each) were taken for UV quantitation.

General procedure (unoptimized flow) for loading 2-chlorotrityl chloride resin: 2-Chlorotritylchloride resin (100-200 mesh polystyrene), 1% DVB (100 mg, loading = 0.98 mmol/g) (AusPep) was placed in a commercially available glass column (1 fixed end, 1 variable end, I.D. 10 mm L. 100 mm). The column was placed in-line with the apparatus according to ESI figure 2.1. To affect resin swelling, DCM (4 mL) was flowed through the resin (0.5 mL min⁻¹). The amino acid solution (Fmoc-AA-OH 4 eq, DIPEA 8 eq, in DCM 10 mL) was flowed through the resin (1 mL min⁻¹) at 40 °C. The resin was washed with DCM (10 mL) (5 mL

min⁻¹) and followed by Et_2O (5 mL min⁻¹). The resin was initially dried with a stream on N₂, and then subsequently under high vacuum for 18h. Three portions of the resin (<10 mg each) were taken for UV quantitation.

General procedure (optimized flow) for loading 2-chlorotrityl chloride resin: 2-Chlorotritylchloride resin (100-200 mesh polystyrene), 1% DVB (100 mg, loading = 0.98 mmol/g) (AusPep) was placed in a commercially available glass column (1 fixed end, 1 variable end, I.D. 10 mm L. 100 mm). The column was placed in-line with the apparatus according to ESI figure 2.1. To affect resin swelling, DCM (4 mL) was flowed through the resin (0.5 mL min⁻¹). Acetyl chloride (3 M in DCM, 10 mL) was flowed through the resin (1 mL min⁻¹) at room temperature. The resin was washed with DCM (20 mL) at a flow rate of 5 mL min⁻¹. The amino acid solution (Fmoc-AA-OH 4 eq, DIPEA 8 eq, in DCM 10 mL) was flowed through the resin (1 mL min⁻¹) at 40 °C. To ensure all unreacted –Cl sites on the resin were hydrolyzed, MeOH (10 mL) was flowed through the resin (5 mL min⁻¹). The resin was washed with DCM (10 mL) (5 mL min⁻¹) and followed by Et₂O (5 mL min⁻¹). The resin was initially dried with a stream on N₂, and then subsequently under high vacuum for 18h. Three portions of the resin (<10 mg each) were taken for UV quantitation.

General procedure (optimized flow) for loading trityl-OH resin: Trityl-OH resin (100-200 mesh Chem Matrix), (100 mg, loading = 0.47 mmol/g) (Biotage) was placed in a commercially available glass column (1 fixed end, 1 variable end, I.D. 10 mm L. 100 mm). The column was placed in-line with the apparatus according to ESI figure 2.1. To affect resin swelling, DCM (4 mL) was flowed through the resin (0.5 mL min⁻¹). Acetyl chloride (6 M in DCM, 10 mL) was flowed through the resin (1 mL min⁻¹) at room temperature. The resin was washed with DCM (20 mL) at a flow rate of 5 mL min⁻¹. The amino acid solution (Fmoc-AA-OH 4 eq, DIPEA 8 eq, in DCM 10 mL) was flowed through the resin (1 mL min⁻¹) at 40 °C. To ensure all unreacted –Cl sites on the resin were hydrolyzed, MeOH (10 mL) was flowed through the resin (5 mL min⁻¹). The resin was washed with DCM (10 mL) (5 mL min⁻¹) and followed by Et₂O (5 mL min⁻¹). The resin was initially dried with a stream on N₂, and then subsequently under high vacuum for 18h. Three portions of the resin (<10 mg each) were taken for UV quantitation.

General procedure for total flow synthesis.

Initially, 100 mg of resin was placed within column and subsequently swelled in 3 mL of DCM. After standing at room temperature for 10 mins the excess solvent was drained and the adjustable column endpiece frit was fixed within \approx 5 mm of the swollen resin surface. The column was then attached in-line according to ESI figure 2.2 before being placed within the heat-block cradle which was heated to 40 °C. The resin was then flushed with a continuous stream of DCM (10 mL) and the UV lamp was zeroed at 225 nm. Following equilibration, the Rheodyne injection loop was charged with a 2 mL DCM solution containing 0.83 mL of AcCl (6 M). Once loaded the flow of the continuous DCM solution was reduced 1.0 mL and the AcCl was

injected. Upon the complete elution of AcCl, which was monitored via UV at 225 nm, the continuous DCM stream flow rate was increased to 10 ml/min until UV returned < 0.01 AU. Following equilibration, the DCM flow was reduced to 2 mL/min and the Rheodyne injection loop was charged with a 2 mL 1:1 DMF:DCM solution containing the C-terminal residue (4 equiv.) and DIPEA (8 equiv.). The loading solution was then injected and the DCM flow was maintained at 2 mL/min until the UV equilibrated. Upon complete elution of the loading solution (monitored *via* UV, 254 nm), which occurred in 5 mins, the resin was then capped (3 × 2mL, MeOH, injection, 5 mL/min, 40 °C). Following capping, the continuous solvent was switched to DMF, the flow rate was increased to 10 mL/min, temperature was increased to 60 °C, and the UV was re-zeroed at 290 nm. Fmoc-deprotection of the C-terminal residue was then effected with a 50% DMF piperidine solution which was flowed through the resin at 10 mL/min and 60

°C. Upon complete deprotection (monitored via UV, 290 nm) the solvent steam was switch to DMF and the flow rate was reduced to 5 mL/min. The injection loop was then loaded with coupling solution containing amino acid (AA) solution[†] (0.3 mmol), HATU (0.3 mmol), DMF (1 mL) and DIPEA (0.6 mmol) which was subsequently injected into the DMF solvent stream. After the elution of the coupling solution (UV <0.3 AU) the Fmoc protecting group was removed utilising 50% DMF piperidine at 10 mL/min and upon complete deprotection the solvent stream was switched to DMF and the flow rate reduced to 5 mL/min. The above steps of AA solution injection (step 1), Fmoc-deprotection (step 2) and washing (step 3) were repeated for all additional AA's in the sequence. After the final Fmoc-deprotection, the resin was removed from the heating block and washed with MeOH (2 × 10 mL), EtOAc (2 × 10 mL), hexanes (2 × 5.0 mL), DCM (2 × 5.0 mL) and Et₂O (2 × 10 mL) and dried *in vacuo*. The peptide was cleaved from the resin using 10 mL cleavage cocktail (DCM:TFA:TIPS 98:1.5:0.5) The solution was evaporated to dryness for analysis . [†]The AA solution was calculated based upon the final swollen resin volume; reagents were calculated accordingly for a 0.3 M solution based on the swollen volume (for 0.1g of PS-this was 1 cm³).

5. Amino acid loading data

ESI Table 5.1: Results of loading using polystyrene 2-chlorotrityl chloride resin without optimisation

	Flow rate of AA solution (mL min ⁻¹) ^a	Mass of resin sample (mg)	Absorbance value (AU)	Loading (mmol/g) ^b	Loading (%)°	Mean Loading (% ± error)
		2.4	0.186	0.443	60.8	
Batch	N/A	2.6	0.183	0.402	55.2	56.8 ± 3.4
		5.3	0.362	0.390	53.5	
		2.5	0.237	0.542	74.3	
Flow	0.13	3.2	0.251	0.448	61.5	66.7 ± 6.7
		6.3	0.517	0.469	64.3	

^a 4 equivalents of AA and 8 equivalents of DIPEA in DCM.

^b Calculated using standard UV quantitation method.

^c Loading as a percentage of possible loading amount.

Resin	Acetyl chloride solution (M) ^a	Flow rate of acetyl chloride solution (mL min ⁻¹)	Flow rate of AA solution (mL min ⁻¹) ^b	Mass of resin sample (mg)	Absorbance value (AU)	Loading (mmol/g)	Loading (%)	Mean Loading (% ± error)
				3.7	0.316	0.488	66.9	
Polystyrene	0.5	0.33	0.33	4.9	0.432	0.504	69.1	70.9 ± 5.0
				7.9	0.771	0.558	76.5	
				7.6	0.797	0.599	82.2	-
Polystyrene	1	0.33	0.33	2.3	0.232	0.576	79.1	82.1 ± 3.0
				8.2	0.889	0.620	85.0	_
				4.3	0.452	0.601	82.4	
Polystyrene	1	1	0.33	9.1	1.03	0.647	88.7	84.9 ± 3.3
				3.4	0.363	0.610	83.7	
				4.4	0.502	0.652	89.4	_
Polystyrene	1	1	1	9.0	0.993	0.630	86.5	86.8 ± 2.5
				3.1	0.334	0.616	84.5	
				2.2	0.267	0.694	95.1	_
Polystyrene	1	2.5	1	3.9	0.439	0.643	88.2	91.0 ± 3.7
				7.0	0.799	0.652	89.5	
				3.0	0.301	0.573	78.7	_
Polystyrene	1	2.5	2.5	6.2	0.592	0.546	74.9	76.8 ± 1.9
				5.7	0.560	0.561	77.0	
				3.9	0.479	0.702	96.3	_
Polystyrene	3	1	1	6.0	0.753	0.717	98.4	97.2 ± 1.1
				5.5	0.681	0.708	97.1	
				3.0	0.301	0.573	78.7	-
Polystyrene	3	2.5	2.5	6.2	0.647	0.596	81.8	82.4 ± 4.1
				4.2	0.465	0.633	86.8	
[7]				7.0	0.377	0.308	74.9	
Chem	3	1	1	8.5	0.441	0.296	72.2	76.3 ± 4.9
Matrix				3.9	0.229	0.336	81.7	
C1				5.6	0.378	0.386	93.9	_
Chem Motrix	6	1	1	7.1	0.499	0.402	97.8	96.2 ± 2.1
watrix				3.8	0.265	0.398	97.0	
C1				3.7	0.239	0.369	89.9	_
Chem Matrix	10	1	1	9.6	0.534	0.318	77.4	83.2 ± 6.3
watrix				6.1	0.361	0.338	82.3	

ESI Table 5.2: Optimisation of flow loading conditions treating resin with acetyl chloride, followed by amino	acid.
---	-------

^a Acetyl chloride in DCM. ^b 4 equivalents of AA and 8 equivalents of DIPEA in DCM.

Percent loading of 20 natural amino acids

Amino Acid

ESI Figure 5.1: Comparison of loading percentages of 20 natural amino acids using the optimised loading method.

ESI Table 5.3: Exact weights and calculations for loading 20 natural amino acids on both PS-2-ClTrtCl and CM-ClTrt resins.

Amino Acid	Molecular weight of AA including Protecting groups	Resin Type	Stated Resin Substitution (mmol/g)	Theoretical AA Resin Loading (mmol/g)	AA amount for 100mg load (mg)(4eq)	Mass of resin sample (mg)	Absorbance Measured (Au)	Loading (mmol/g)	Loading (%)	Mean Loading (% ± error)
						3.9	0.479	0.702	96.4	
		Polystyrene	0.98	0.728	152	6.0	0.753	0.717	98.5	97.3 ± 1.1
Emer Dhe OU	297 42					5.5	0.681	0.708	97.2	
Fmoc-Pne-OH	387.43					5.6	0.378	0.386	93.8	
		Chem Matrix	0.48	0.411	75	7.1	0.499	0.402	97.7	96.1 ± 2.0
						3.8	0.265	0.398	97.0	
						2.3	0.302	0.750	97.2	
		Polystyrene	0.98	0.772	122	7.4	0.981	0.758	98.1	97.4 ± 0.6
	211.22					5.6	0.734	0.749	97.0	
Fmoc-Ala-OH	311.33					3.2	0.234	0.418	98.6	
		Chem Matrix	0.48	0.424	60	3.9	0.277	0.406	95.7	97.7 ± 1.7
						6.7	0.491	0.419	98.8	
						6.6	0.822	0.712	95.3	
		Polystyrene	0.98	0.747	139	8.1	0.961	0.678	90.8	92.5 ± 2.4
	252.4					4.9	0.586	0.683	91.5	
Fmoc-Leu-OH	353.4					9.9	0.698	0.403	96.6	
		Chem Matrix	0.48	0.417	68	2.3	0.156	0.388	92.9	93.2 ± 3.3
						4.0	0.263	0.376	90.1	
						5.5	0.586	0.609	95.6	
		Polystyrene	0.98	0.637	230	7.4	0.741	0.572	89.8	91.5 ± 3.6
	505 7					2.6	0.258	0.567	89.0	
Fmoc-Cys(trt)-OH	585.7					4.7	0.197	0.240	63.0	
		Chem Matrix	0.48	0.38	112	5.9	0.266	0.258	67.8	67.3 ± 4.1
						6.6	0.312	0.270	71.1	
Fmoc-Ser(tBu)-OH	383.4	Polystvrene	0.98	0.731	150	1.9	0.234	0.704	96.3	92.4 ± 4.9
~ /										o
										ō

										9
Fmoc-Pro-OH	337.4	Polystyrene	0.98	0.757	132	4.0 5.0	0.451 0.558	0.644 0.638	85.1 84.2	83.2 ± 2.6
						1.9	0.121	0.364	87.3	
		Chem Matrix	0.48	0.417	68	3.0	0.199	0.379	90.9	91.3 ± 4.2
			0.49	0 417	(0	5.9	0.412	0.399	95.7	01.2 + 4.2
Fmoc-Ile-OH	353.4					8.1	0.978	0.690	92.4	
		Polystyrene	0.98	0./4/	139	3.6	0.458	0.727	97.3	95.5 ± 2.7
			0.00	0.747	120	5.7	0.721	0.723	96.8	055307
						9.3	0.629	0.386	92.2	
		Chem Matrix	0.48	0.419	65	5.3	0.371	0.400	95.5	92.6 ± 2.7
			0.40	0.410	<i>(</i> -	1.8	0.119	0.378	90.2	
Fmoc-Val-OH	339.4					7.4	0.895	0.691	91.5	
		Polystyrene	0.98	0.755	133	5.7	0.710	0.712	94.3	91.0 ± 3.6
						6.8	0.783	0.658	87.2	
						3.4	0.245	0.412	96.4	
		Chem Matrix	0.48	0.427	57	5.8	0.396	0.390	91.4	93.1 ± 2.9
						5.2	0.356	0.391	91.6	
Fmoc-Gly-OH	297.3					7.9	0.992	0.718	92.0	
		Polystyrene	0.98	0.78	117	6.3	0.847	0.768	98.5	94.9 ± 3.3
						5.9	0.758	0.734	94.1	
						6.5	0.310	0.273	72.7	
		Chem Matrix	0.48	0.375	119	3.4	0.159	0.267	71.3	72.9 ± 1.7
	01917					9.2	0.451	0.280	74.7	
Fmoc-His(trt)-OH	6197					2.0	0.198	0.566	90.8	
		Polystyrene	0.98	0.623	243	5.3	0.549	0.592	95.0	94.5 ± 3.5
						4.9	0.522	0.609	97.7	
						5.8	0.387	0.381	92.8	
		Chem Matrix	0.48	0.411	74	5.0	0.323	0.369	89.8	91.2 ± 1.5
						6.3	0.412	0.374	90.9	
						7.3	0.879	0.688	94.1	
						2.8	0.311	0.635	86.8	

						7.8	0.829	0.607	80.2	
						6.8	0.421	0.354	84.4	
		Chem Matrix	0.48	0.419	65	6.1	0.387	0.363	86.5	86.6 ± 2.3
						4.6	0.300	0.373	88.9	
						4.6	0.563	0.699	94.8	
		Polystyrene	0.98	0.738	146	5.6	0.658	0.671	91.0	94.0 ± 2.7
Emas Mat OII	271.5					2.1	0.261	0.710	96.2	
Filloc-Met-On	5/1.5					9.8	0.65	0.379	91.8	
		Chem Matrix	0.48	0.413	71	7.9	0.503	0.364	88.1	91.6 ± 3.4
						6.1	0.418	0.392	94.8	
						1.9	0.226	0.680	94.0	
		Polystyrene	0.98	0.723	156	5.8	0.687	0.677	93.6	94.7 ± 1.5
Fmoc-Thr(tBu)-OH	207 5					6.4	0.781	0.697	96.4	
	397.5					4.1	0.279	0.389	95.1	
		Chem Matrix	0.48	0.409	76	2.9	0.189	0.372	91.1	93.1 ± 2.0
						7.0	0.467	0.381	93.2	
						6.8	0.802	0.674	94.1	
		Polystyrene	0.98	0.716	161	4.6	0.544	0.676	94.4	93.5 ± 1.3
Emag Age(tDu) OU	411.5					4.5	0.519	0.659	92.0	
rmoc-Asp(tBu)-OH	411.5					6.9	0.458	0.379	93.2	
		Chem Matrix	0.48	0.407	79	7.8	0.543	0.398	97.7	95.1 ± 2.4
						1.8	0.121	0.384	94.4	
						2.0	0.239	0.683	96.3	
		Polystyrene	0.98	0.709	167	6.4	0.721	0.644	90.8	94.3 ± 3.1
Eman Cha(Dar) OU	125.5					4.7	0.559	0.680	95.9	
Fmoc-Glu(lBu)-OH	425.5					7.6	0.507	0.381	94.4	
		Chem Matrix	0.48	0.404	82	5.1	0.321	0.360	89.0	91.7 ± 2.7
						3.5	0.227	0.371	91.7	

						6.8	0.657	0.552	87.4		
		Polystyrene	0.98	0.632	234	7.6	0.718	0.540	85.4	87.1 ± 1.6	
Emag Age(tet) OU	5067					4.1	0.402	0.560	88.7		
Finoc-Ash(trt)-OH	590.7					1.7	0.075	0.252	66.7		
		Chem Matrix	0.48	0.378	115	6.9	0.321	0.266	70.3	68.7 ± 1.8	
						6.7	0.306	0.261	69.0		
						5.5	0.546	0.567	90.5		
		Polystyrene	0.98	0.627	239	6.6	0.688	0.596	95.0	91.9 ± 1.9	
Emer Clu(44) OU	(10.7					2.9	0.287	0.566	90.2		
Fmoc-Gin(irt)-OH	610.7					2.3	0.105	0.261	69.4		
		Chem Matrix	0.48	0.376	117	2.7	0.132	0.279	74.3	72.2 ± 2.5	
						5.6	0.269	0.274	73.0		
						4.0	0.423	0.604	87.8		
		Polystyrene	0.98	0.688	184	7.4	0.812	0.627	91.1	88.6 ± 2.2	
Eman Law (Dea) OU	169.6					6.9	0.722	0.598	86.9		
Fmoc-Lys(Boc)-OH	408.0					5.1	0.343	0.384	96.8		
		Chem Matrix	0.48	0.397	90	3.4	0.224	0.376	94.8	96.3 ± 1.3	
						8.4	0.568	0.386	97.3		
						3.9	0.301	0.441	72.1		
		Polystyrene	0.98	0.612	254	5.3	0.439	0.473	77.3	73.0 ± 3.9	
	(10.0					4.8	0.358	0.426	69.6		
Fmoc-Arg(PbI)-OH	048.8					8.6	0.425	0.282	76.1		
		Chem Matrix	0.48	0.371	125	8.0	0.399	0.285	76.8	74.4 ± 3.6	
						4.1	0.187	0.261	70.2		
						2.8	0.324	0.661	95.4		
		Polystyrene	0.98	0.693	180	5.3	0.621	0.670	96.6	95.1 ± 1.7	
Emera Terr((Der) OII	450.5					6.8	0.769	0.646	93.2		
Fmoc-Tyr(tBu)-OH	439.3					6.9	0.460	0.381	95.5		
		Chem Matrix	0.48	0.399	88	7.3	0.471	0.369	92.4	90.3 ± 6.5	
						3.5	0.203	0.331	83.1		

						3.5	0.357	0.583	88.0	
		Polystyrene	0.98	0.662	206	6.3	0.579	0.525	79.3	85.2 ± 5.1
Fmoc-Trp(Boc)-OH	526.6					6.9	0.705	0.584	88.2	
		Chem Matrix		0.389	9 101	7.0	0.448	0.366	94.0	
			0.48			3.4	0.211	0.355	91.2	94.0 ± 2.9
						6.2	0.409	0.377	96.9	

ESI Table 5.4: Optimisation and loading calculations of amino acids that had less than 90% loading in first loading protocol which were further transferred to total flow loading and synthesis.

AcCl	Resin PS-2-CITrt-Cl	AcCl flow 1 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.604435347	Calculated loading	0.588817789	Percent	97.4162	0.140274	-0.69455
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	4.7	0.485	0.589665653	97.55644782		-0.14027	
Sample B	3.8	0.391	0.587969925	97.27590025		0.140274	
Sample C	4.5	0.467	0.593015873	98.11072042		-0.69455	
	Average	0.588817789					
AcCl sample	Resin CM-Trt	AcCl flow 1 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.362389799	Calculated loading	0.330935447	Percent	91.3203	2.717243	-0.30654
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	3.7	0.215	0.332046332	91.62684301		-0.30654	
Sample B	5.7	0.329	0.329824561	91.01375439		0.306544	
Sample C	4.2	0.236	0.321088435	88.60305572		2.717243	
	Average	0.330935447					
AcCl	Resin PS-2-ClTrt-Cl	AcCl flow 1 mL/min	Loading solution	1 mL/min		Error	
Theoretical Loading	0.604435347	Calculated loading	0.582663151	Percent	96.3979	1.973982	-2.19299
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	3.7	0.385	0.594594595	98.37190991		-1.97398	
Sample B	8.2	0.819	0.570731707	94.42394634		1.973982	
Sample C	4.2	0.438	0.595918367	98.59091973		-2.19299	
	Average	0.582663151					

AcCl sample	Resin CM-Trt	AcCl flow 1 mL/min	Loading solution 1	mL/min		Error	
Theoretical Loading	0.362389799	Calculated loading	0.333654456	Percent	92.0706	3.579613	-1.57404
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	2.3	0.132	0.327950311	90.49656244		1.574036	
Sample B	4.9	0.291	0.339358601	93.64463396		-1.57404	
Sample C	6.7	0.376	0.320682303	88.49098507		3.579613	
	Average	0.333654456					
AcCl	Resin PS-2-CITrt-Cl	AcCl flow 1 mL/min	Loading solution 5	5 mL/min		Error	
Theoretical Loading	0.604435347	Calculated loading	0.455524387	Percent	75.3636	2.537245	-0.52328
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	4.9	0.3879	0.452361516	74.84034787		0.523277	
Sample B	3.7	0.297	0.458687259	75.88690193		-0.52328	
Sample C	9.1	0.701	0.440188383	72.82638012		2.537245	
	Average	0.455524387					
AcCl sample	Resin CM-Trt	AcCl flow 1 mL/min	Loading solution 5	5 mL/min		Error	
Theoretical Loading	0.362389799	Calculated loading	0.252313109	Percent	69.6248	1.493651	-2.03135
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	4.9	0.221	0.257725948	71.11843335		-1.49365	
Sample B	5.3	0.229	0.24690027	68.13113127		1.493651	
Sample C	7.9	0.359	0.259674503	71.65612928		-2.03135	
	Average	0.252313109					
AcCl	Resin PS-2-CITrt-Cl	AcCl flow 0.5 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.604435347	Calculated loading	0.589091777	Percent	97.4615	1.429541	-1.42954
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	5.7	0.579	0.580451128	96.03196291		1.429541	
Sample B	6.3	0.659	0.597732426	98.89104429		-1.42954	
Sample C	2.9	0.297	0.585221675	96.8212197		0.640284	
	Average	0.589091777					
AcCl sample	Resin CM-Trt	AcCl flow 0.5 mL/min	Loading solution2	mL/min		Error	
Theoretical Loading	0.362389799	Calculated loading	0.331492871	Percent	91.4741	0.32015	-0.97164
							13

Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	7.3	0.422	0.330332681	91.15396794		0.32015	
Sample B	8.4	0.489	0.332653061	91.79426748		-0.32015	
Sample C	5.1	0.299	0.335014006	92.44576053		-0.97164	
	Average	0.331492871					
AcCl	Resin PS-2-CITrt-Cl	AcCl flow 2.0 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.604435347	Calculated loading	0.492808927	Percent	81.5321	3.398216	-4.20519
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	3.4	0.281	0.472268908	78.13389972		3.398216	
Sample B	6.1	0.548	0.513348946	84.93033193		-3.39822	
Sample C	2.9	0.263	0.518226601	85.73730903		-4.20519	
	Average	0.492808927					
AcCl sample	Resin CM-Trt	AcCl flow 2.0 mL/min	Loading solution2	mL/min		Error	Error
Theoretical Loading	0.362389799	Calculated loading	0.27755102	Percent	76.5891	2.25262	-2.25262
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	6.7	0.335	0.285714286	78.84170213		-2.25262	
Sample B	3.5	0.165	0.269387755	74.33646201		2.25262	
Sample C	4.9	0.243	0.283381924	78.1980964		-1.60901	
	Average	0.27755102					
HCTU DCM	Resin PS-2-CITrt-Cl	AcCl flow 2.0 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.362393739	Calculated loading	0.018290291	Percent	5.04708	3.179794	-3.17979
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	7.6	0.009	0.006766917	1.867283171		3.179794	
Sample B	2.3	0.012	0.029813665	8.226870781		-3.17979	
Sample C	9.1	0.014	0.008791209	2.425872153		2.621205	
	Average	0.018290291					
AcCl sample	Resin CM-Trt	AcCl flow 2.0 mL/min	Loading solution2	mL/min		Error	Error
Theoretical Loading	0.362389799	Calculated loading	0.01977317	Percent	5.45633	2.155976	-2.15598
Fmoc-Arg(Pbf)-OH	Amount	Average Abs	Loading				
Sample A	4.3	0.009	0.011960133	3.300350322		2.155976	

Sample B	2.9	0.014	0.027586207	7.612302274		-2.15598	
Sample C	4.3	0.011	0.01461794	4.033761504		1.422565	
	Average	0.01977317					
AcCl	Resin PS-2-ClTrt-Cl	AcCl flow 1 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.628390691	Calculated loading	0.589317659	Percent	93.782	0.748304	-0.7483
Fmoc-Cys(Trt)-OH	Amount	Average Abs	Loading				
Sample A	4.3	0.447	0.594019934	94.53035216		-0.7483	
Sample B	5.2	0.532	0.584615385	93.03374359		0.748304	
Sample C	6.3	0.645	0.585034014	93.10036281		0.681685	
	Average	0.589317659					
AcCl sample	Resin CM-Trt	AcCl flow 1 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.370870417	Calculated loading	0.342318059	Percent	92.3013	0.145356	-2.17715
Fmoc-Cys(Trt)-OH	Amount	Average Abs	Loading				
Sample A	4.8	0.288	0.342857143	92.44661398		-0.14536	
Sample B	5.3	0.317	0.341778976	92.15590136		0.145356	
Sample C	9.1	0.558	0.350392465	94.4784077		-2.17715	
	Average	0.342318059					
AcCl	Resin PS-2-CITrt-Cl	AcCl flow 1 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.604435347	Calculated loading	0.544371118	Percent	90.0628	4.682004	-4.682
Fmoc-His(Trt)-OH	Amount	Average Abs	Loading				
Sample A	3.2	0.289	0.516071429	85.3807494		4.682004	
Sample B	4.6	0.461	0.572670807	94.74475818		-4.682	
Sample C	7.6	0.738	0.554887218	91.80257594		-1.73982	
	Average	0.544371118					
AcCl sample	Resin CM-Trt	AcCl flow 1 mL/min	Loading solution	l mL/min		Error	
Theoretical Loading	0.362389799	Calculated loading	0.318188915	Percent	87.8029	3.705129	-3.88703
Fmoc-His(Trt)-OH	Amount	Average Abs	Loading				
Sample A	3.6	0.192	0.304761905	84.0978156		3.705129	
Sample B	6.1	0.354	0.331615925	91.50807394		-3.70513	
Sample C	2.7	0.157	0.332275132	91.68997951		-3.88703	

Average

0.318188915

AcCl	Resin PS-2-CITrt-Cl	AcCl flow 1 mL/min	Loading solution 5	5 mL/min		Error	
Theoretical Loading	0.719907852	Calculated loading	0.693744485	Percent	96.3657	1.755571	-1.75557
Fmoc-Ser(tBu)-OH	Amount	Average Abs	Loading				
Sample A	6.2	0.739	0.681105991	94.61016283		1.755571	
Sample B	4.7	0.581	0.706382979	98.12130496		-1.75557	
Sample C	7.1	0.852	0.685714286	95.25028571		1.115448	
	Average	0.693744485					

AcCl sample	Resin CM-Trt	AcCl flow 1 mL/min	Loading solution 5	5 mL/min		Error	
Theoretical Loading	0.400952732	Calculated loading	0.380736014	Percent	94.9578	2.186881	-2.18688
Fmoc-Ser(tBu)-OH	Amount	Average Abs	Loading				
Sample A	4.9	0.334	0.389504373	97.14471112		-2.18688	
Sample B	5.3	0.345	0.371967655	92.77094913		2.186881	
Sample C	7.9	0.529	0.382640145	95.43273164		-0.4749	
	Average	0.380736014					
AcCl	Resin PS-2-CITrt-Cl	AcCl flow 0.5 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.67834935	Calculated loading	0.658771827	Percent	97.1139	1.591126	-1.59113
Fmoc-Lys(Boc)-OH	Amount	Average Abs	Loading				
Sample A	4.6	0.539	0.669565217	98.70507246		-1.59113	
Sample B	5.3	0.601	0.647978437	95.5228212		1.591126	
Sample C	2.3	0.265	0.658385093	97.05693582		0.057011	
	Average	0.658771827					

AcCl sample	Resin CM-Trt	AcCl flow 0.5 mL/min	Loading solution2	mL/min		Error	
Theoretical Loading	0.387723199	Calculated loading	0.368511788	Percent	95.0451	0.651339	-2.63066
Fmoc-Lys(Boc)-OH	Amount	Average Abs	Loading				
Sample A	7.3	0.474	0.371037182	95.69641004		-0.65134	
Sample B	8.4	0.538	0.365986395	94.39373136		0.651339	
Sample C	5.1	0.338	0.378711485	97.67573515		-2.63066	
	Average	0.368511788					

AcCl	Resin PS-2-CITrt-Cl	AcCl flow 2.0 mL/min	Loading solution 2	2 mL/min		Error	
Theoretical Loading	0.744564678	Calculated loading	0.692550191	Percent	93.0141	0.543734	-1.04976
Fmoc-Pro-OH	Amount	Average Abs	Loading				
Sample A	4.2	0.512	0.696598639	93.55784127		-0.54373	
Sample B	4.1	0.494	0.688501742	92.47037398		0.543734	
Sample C	3.9	0.478	0.7003663	94.06386325		-1.04976	
	Average	0.692550191					
AcCl sample	Resin CM-Trt	AcCl flow 2.0 mL/min	Loading solution2	mL/min		Error	Error
Theoretical Loading	0.408491797	Calculated loading	0.369936034	Percent	90.5614	3.669836	-0.36538
Fmoc-Pro-OH	Amount	Average Abs	Loading				
Sample A	6.7	0.432	0.368443497	90.19605767		0.365378	
Sample B	6.8	0.442	0.371428571	90.92681277		-0.36538	
Sample C	5.2	0.323	0.354945055	86.89159918		3.669836	
	Average	0.369936034					

6. Peptide synthesis and characterization data

(S)-2-((S)-2-((R)-2-aminopropanamido)-4-methylpentanamido)propanamido)-3-(butoxy)propanoic acid Optimized procedure for the construction of 1 using PS-2CITrtCl resin. Compound 1 was synthesized utilising the general

procedure for total flow synthesis using the following amino acids and reagent amounts[†]. Loaded with (Fmoc-Ser(*t*Bu)-OH (115 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 3 step 3

Exact Mass: 394.19 HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. After the final Fmoc-deprotection, the resin was removed from the heating block and washed with MeOH (2 × 10 mL), EtOAc (2 × 10 mL), hexanes (2 × 5 mL), DCM (2 × 5 mL) and Et₂O (2 × 10 mL) and dried *in vacuo*. The peptide was cleaved from the resin using 10 mL cleavage cocktail (DCM:TFA:TIPS 98:1.5:0.5) The solution was evaporated to dryness for analysis. MS (ESI⁺) *m/z* 395 (M + 1, 100 %). HRMS (ESI⁺) for C₁₈H₂₇N₄O₆; calculated 395.1931, found, 395.1931. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 5.68 min. ¹H NMR (300 MHz, DMSO- d_6) δ 8.48 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.28 - 7.24 (m, 4H), 7.23 - 7.14 (m, 1H), 4.55 (d, J = 8.6 Hz, 1H), 4.39 (p, J = 7.0 Hz, 1H), 4.33 - 4.24 (m, 1H), 3.62 (dd, J = 9.3, 4.4 Hz, 3H), 3.50 (dd, J = 9.3, 3.7 Hz, 3H), 3.11 - 2.99 (m, 2H), 2.77 (dd, J = 14.1, 10.1 Hz, 1H), 1.28 (d, J = 6.7 Hz, 3H), 1.22 (d, J = 7.0 Hz, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 181.48, 172.37, 170.83, 138.09, 129.62, 128.55, 126.80, 73.19, 62.01, 54.56, 50.64, 48.42, 48.41, 37.78, 27.62, 18.78.

[†]The AA solution was calculated based upon the final swollen resin volume; reagents were calculated accordingly for a 0.3 M solution based on the swollen volume (for 0.1g of PS this was 1 cm³).

(S)-2-((S)-2-((R)-2-aminopropanamido)-4-methylpentanamido)propanamido)-3-(butoxy)propanoic acid Optimized procedure for the construction of 1 using CM-trt-OH resin. Compound 1 was synthesized utilising the general

procedure for total flow synthesis using the following amino acids and reagent amounts[†]. Loaded with (Fmoc-Ser(*t*Bu)-OH (230 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol)), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol)), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol)), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 3.

1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. After the final Fmoc-deprotection, the resin was removed from the heating block and washed with MeOH (2 × 10 mL), EtOAc (2 × 10 mL), hexanes (2 × 5 mL), DCM (2 × 5 mL) and Et₂O (2 × 10 mL) and dried *in vacuo*. The peptide was cleaved from the resin using 10 mL cleavage cocktail (DCM:TFA:TIPS 98:1.5:0.5) The solution was evaporated to dryness for analysis. MS (ESI⁺) *m/z* 395 (M + 1, 100 %). RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, *t*_R 5.70 min.

(S)-2-((S)-2-((S)-2-((R)-2-aminopropanamido)-4-methylpentanamido)propanamido)-3-(imidazol-4-yl)propanoic acid (2)

Optimized procedure for the construction of 2 using PS-2CITrtCl resin. Compound 2 was synthesized utilising the general

procedure for total flow synthesis using the following amino acids and reagent amounts[†]. Loaded with (Fmoc-His(trt)-OH (185 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3.

step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. After the final Fmoc-deprotection, the resin was removed from the heating block and washed with MeOH (2 × 10 mL), EtOAc (2 × 10 mL), hexanes (2 × 5 mL), DCM (2 × 5 mL) and Et₂O (2 × 10 mL) and dried *in vacuo*. The peptide was cleaved from the resin using 10 mL cleavage cocktail (DCM:TFA:TIPS 98:1.5:0.5) The solution was evaporated to dryness for analysis. MS (ESI⁺) *m/z* 445 (M + 1, 100 %). HRMS (ESI⁺) for C₂₁H₂₉N₆O₅; calculated 445.2199, found, 445.2197. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, *t*_R 2.58 min. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.91 (s, 1H), 8.51 (d, *J* = 8.1 Hz, 1H), 8.30 (dd, *J* = 7.6, 4.6 Hz, 2H), 8.00 (s, 3H), 7.36 (s, 1H), 7.33 – 7.11 (m, 5H), 4.63 – 4.46 (m, 2H), 4.24 (m, 1H), 3.75 (q, *J* = 7.0 Hz, 1H), 3.13 (dd, *J* = 15.2, 5.5 Hz, 1H), 3.10 – 2.91 (m, 2H), 2.72 (dd, *J* = 14.1, 10.3 Hz, 1H), 1.30 (d, *J* = 6.9 Hz, 3H), 1.20 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 172.64, 172.30, 170.96, 170.03, 138.13, 134.29, 129.84, 129.61, 128.56, 126.82, 117.44, 54.55, 51.52, 48.63, 48.38, 37.59, 26.75, 18.49, 17.67.

[†]The AA solution was calculated based upon the final swollen resin volume; reagents were calculated accordingly for a 0.3 M solution based on the swollen volume (for 0.1g of PS this was 1 cm³).

(S)-2-((S)-2-((R)-2-aminopropanamido)-4-methylpentanamido)propanamido)-3-(imidazol-4-yl)propanoic acid (2)

Optimized procedure for the construction of 2 using CM-trt-OH resin. Compound 2 was synthesized utilising the general

hemical Formula: C₂₁H₂₈N₆O₅ Exact Mass: 444.21

procedure for total flow synthesis using the following amino acids and reagent amounts[†]. Loaded with (Fmoc-His(trt)-OH (371 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL)

and DIPEA (209 µL, 1.2 mmol), step 2, step 3. After the final Fmoc-deprotection, the resin was removed from the heating block and washed with MeOH (2 × 10 mL), EtOAc (2 × 10 mL), hexanes (2 × 5 mL), DCM (2 × 5 mL) and Et₂O (2 × 10 mL) and dried *in vacuo*. The peptide was cleaved from the resin using 10 mL cleavage cocktail (DCM:TFA:TIPS 98:1.5:0.5) The solution was evaporated to dryness for analysis. MS (ESI⁺) m/z 445 (M + 1, 100 %). RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 2.59 min.

(R)-2-((S)-2-((R)-2-aminopropanamido)-4-methylpentanamido)propanamido)-3-(thio)propanoic acid (3) Optimized procedure for the construction of 3 using PS-2CITrtCl resin. Compound 3 was synthesized utilising the general

Exact Mass: 410.16

procedure for total flow synthesis using the following amino acids and reagent amounts[†]. Loaded with (Fmoc-Cys(trt)-OH (176 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol)), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol)), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 3. Step 1 (Fmoc-Phe-OH (116 mg, 0.3 mmol)), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 3

1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. After the final Fmoc-deprotection, the resin was removed from the heating block and washed with MeOH (2 × 10 mL), EtOAc (2 × 10 mL), hexanes (2 × 5 mL), DCM (2 × 5 mL) and Et₂O (2 × 10 mL) and dried *in vacuo*. The peptide was cleaved from the resin using 10 mL cleavage cocktail (DCM:TFA:TIPS 98:1.5:0.5) The solution was evaporated to dryness for analysis. MS (ESI⁺) *m/z* 411 (M + 1, 100 %). HRMS (ESI⁺) for C₁₈H₂₇N₄O₅S; calculated 411.1702, found, 411.1703. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, *t*_R 4.35 min. ¹H NMR (300 MHz, DMSO-*d*₆) δ ¹H NMR (300 MHz, dmso) δ 8.40 (bs, 2H), 7.80 (d, *J* = 7.7 Hz, 1H), 7.28 – 7.02 (m, 5H), 4.34 (dd, *J* = 12.8, 7.7 Hz, 1H), 4.12 (s, 1H), 3.66 (t, *J* = 6.2 Hz, 1H), 3.07 (dd, *J* = 13.8, 5.0 Hz, 1H), 2.89 (dd, *J* = 13.8, 8.1 Hz, 1H), 2.40 – 2.15 (m, 2H), 2.05 – 1.71 (m, 3H), 0.80 (d, *J* = 6.5 Hz, 6H); ¹³C NMR (75 MHz, dmso) δ = 174.82, 173.56, 170.90, 170.43, 138.68, 129.58, 128.32, 126.41, 58.65, 54.77, 53.16, 40.91, 40.64, 40.36, 40.08, 39.80, 39.52, 39.24, 37.77, 31.54, 30.97, 28.68, 19.61, 18.52.

[†]The AA solution was calculated based upon the final swollen resin volume; reagents were calculated accordingly for a 0.3 M solution based on the swollen volume (for 0.1g of PS this was 1 cm³).

(R)-2-((S)-2-((R)-2-aminopropanamido)-4-methylpentanamido)propanamido)-3-(thio)propanoic acid (3) Optimized procedure for the construction of 3 using CM-trt-OH resin. Compound 3 was synthesized utilising the general

procedure for total flow synthesis using the following amino acids and reagent amounts[†]. Loaded with (Fmoc-Cys(trt)-OH (351 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol)), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol)), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 3. Step 1 (Fmoc-Phe-OH (232 mg, 0.6 mmol)), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. St

Exact Mass: 410.16 HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. After the final Fmoc-deprotection, the resin was removed from the heating block and washed with MeOH (2 × 10 mL), EtOAc (2 × 10 mL), hexanes (2 × 5 mL), DCM (2 × 5 mL) and Et₂O (2 × 10 mL) and dried *in vacuo*. The peptide was cleaved from the resin using 10 mL cleavage cocktail (DCM:TFA:TIPS 98:1.5:0.5) The solution was evaporated to dryness for analysis. MS (ESI⁺) *m/z* 411 (M + 1, 100 %). RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, *t*_R 4.34 min.

(S)-2-((S)-2-((R)-2-aminopropanamido)-4-methylpentanamido)propanamido)-3-phenylpropanoic acid (7) Optimized procedure for the construction of 7 using PS-2CITrtCl resin. Compound 7 was synthesized utilising the general

procedure for total flow synthesis using the following amino acids and reagent amounts[†]. Loaded with (Fmoc-Phe-OH (116 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Leu-OH (107 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Leu-OH (107 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), DMF (1 mL) and DIPEA (104 μ L, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (93 mg, 0.3 mmol), HATU (114 mg, 0.3 mmol), DMF (1 mL) and DIPEA

(104 µL, 0.6 mmol), step 2, step 3. After the final Fmoc-deprotection, the resin was removed from the heating block and washed with MeOH (2 × 10 mL), EtOAc (2 × 10 mL), hexanes (2 × 5 mL), DCM (2 × 5 mL) and Et₂O (2 × 10 mL) and dried *in vacuo*. The peptide was cleaved from the resin using 10 mL cleavage cocktail (DCM:TFA:TIPS 98:1.5:0.5) The solution was evaporated to dryness for analysis. MS (ESI⁺) *m/z* 421 (M + 1, 100 %), 443 (M + Na, 75%). HRMS (ESI⁺) for C₂₁H₃₃N₄O₅; calculated 421.2451, found, 421.2452. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, *t*_R 5.69 min. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.43 (d, *J* = 8.1 Hz, 1H), 8.02 (t, *J* = 8.0 Hz, 2H), 7.31 – 7.11 (m, 5H), 4.45 – 4.17 (m, 3H), 3.83 (q, *J* = 6.9 Hz, 1H), 3.03 (dd, *J* = 13.9, 5.2 Hz, 1H), 2.88 (dd, *J* = 13.9, 8.5 Hz, 1H), 1.58 (dq, *J* = 12.9, 6.6 Hz, 1H), 1.41 (dd, *J* = 8.6, 5.9 Hz, 2H), 1.31 (d, *J* = 6.9 Hz, 3H), 1.16 (d, *J* = 7.0 Hz, 3H), 0.91 – 0.78 (m, 6H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.10, 172.40, 171.48, 169.76, 137.82, 129.57, 128.59, 126.87, 64.44, 51.46, 48.43, 48.32, 37.05, 24.48, 23.58, 21.84, 18.72, 17.67.

[†]The AA solution was calculated based upon the final swollen resin volume; reagents were calculated accordingly for a 0.3 M solution based on the swollen volume (for 0.1g of PS-this was 1 cm³).

(S)-2-((S)-2-((R)-2-aminopropanamido)-4-methylpentanamido)propanamido)-3-phenylpropanoic acid (7) Optimized procedure for the construction of 7 using CM-trt-OH resin. Compound 7 was synthesized utilising the general

procedure for total flow synthesis using the following amino acids and reagent amounts[†]. Loaded with (Fmoc-Phe-OH (232 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Leu-OH (212 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Leu-OH (212 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA (209 μ L, 1.2 mmol), Step 2, step 3. Step 1 (Fmoc-Ala-OH (186 mg, 0.6 mmol), HATU (228 mg, 0.6 mmol), DMF (1 mL) and DIPEA

(209 µL, 1.2 mmol), step 2, step 3. After the final Fmoc-deprotection, the resin was removed from the heating block and washed with MeOH (2 × 10 mL), EtOAc (2 × 10 mL), hexanes (2 × 5 mL), DCM (2 × 5 mL) and Et₂O (2 × 10 mL) and dried *in vacuo*. The peptide was cleaved from the resin using 10 mL cleavage cocktail (DCM:TFA:TIPS 98:1.5:0.5) The solution was evaporated to dryness for analysis. MS (ESI⁺) m/z 421 (M + 1, 100 %), 443 (M + Na, 90%). RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 5.71 min.

7. HPLC traces of final peptide sequences

ESI Figure 7.5: HPLC trace of PS-**3**.

ESI Figure 7.8: HPLC trace of CM-7.

8. Mass spectra of peptide sequences

ESI Figure 8.1: LRMS of PS-1.

ESI Figure 8.2: LRMS of CM-1.

ESI Figure 8.3: LRMS of PS-2.

ESI Figure 8.4: LRMS of CM-2.

ESI Figure 8.5: LRMS PS-3.

ESI Figure 8.6: LRMS CM-3.

ESI Figure 8.7: LRMS PS-7.

ESI Figure 8.8: LRMS of CM-7.

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = 0.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron Ions 23 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 10-20 H: 20-30 N: 0-7 O: 2-6 20181005_Lawson_Ser_Start 34 (0.621)

ESI Figure 8.9: HRMS of product 1.

Elemental Composition Report

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = 0.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron Ions 30 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 20-30 H: 20-30 N: 0-7 O: 2-6 20181005_Lawson_His_Start 18 (0.336) 445.2197 100-

1: TOF MS ES+ NH .OH . ÑΗ2 C Chemical Formula: C₂₁H₂₈N₆O₅ Exact Mass: 444.21 446.2234

04	437.0625 438.091 36.0 438.0	2 439.9618 440.0	443.1411 443 442.0	8.8924 144.0 446	447.2197 448 447.2197 448 5.0 448.0	1455 450.9840 450.0 45	453.0660	455.9 454.0	386 457.011 456.0	13 m/z
Minimu Maximu	m : m :	5.0	10.0	0.0 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formul	a		
445.21	97 445.2199 445.2240	-0.2 -4.3	-0.4 -9.7	10.5 14.5	184.8 188.6	0.0 3.8	С21 Н С26 Н	29 N6 29 N4	05 03	

ESI Figure 8.10: HRMS of Product 2.

%-

Page 1

1.21e+003

Elemental Composition Report

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = 0.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron Ions 54 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 10-20 H: 20-30 N: 0-5 O: 2-6 S: 0-2 20181005_Lawson_Cys_Start 31 (0.570)

ESI Figure 8.11: HRMS of Product 3.

Elemental Composition Report

Tolerance = 10.0 PPM / DBE: min = 0.0, max = 50.0

Single Mass Analysis

ESI Figure 8.12: HRMS of Product 7.

Page 1

9. NMR Spectra of peptide sequences

ESI Figure 9.1: ¹H NMR of product 1.

ESI Figure 9.2: ¹³C NMR of product 1.

ESI Figure 9.3: 2D Cosy of product 1.

ESI Figure 9.4: ¹H NMR of product **2**.

ESI Figure 9.5: ¹³C NMR of product **2**.

ESI Figure 9.6: 2D Cosy of product **2**.

ESI Figure 9.7: ¹H NMR of product **3**.

ESI Figure 9.8: ¹³C NMR of product **3**.

ESI Figure 9.9: 2D Cosy of product 3

ESI Figure 9.11: ¹³C NMR of product 7.

ESI Figure 9.12: 2D Cosy of product 7.

10. Recycled resin chromatographs

ESI Table 10.1: Loading percentages of the loaded, recycled and reloaded 2-CltrtCl resin using the general procedure for total flow synthesis of sequence 7. The same resin was used subsequently for each sequence after previous sequence construction and cleavage (as shown in scheme 10.1).

	% Loading									
Solid Support	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5					
Polystyrene	97 (± 1)	92 (± 1)	91 (± 3)	90 (± 2)	88 (± 3)					
Chem Matrix	96 (± 3)	94 (± 2)	93 (± 2)	92 (± 3)	90 (± 4)					

ESI Scheme 10.1. Continuous flow protocol to load, assemble, cleave, and recycle PS and CM trityl functionalised resin. *Reagents and condition; i*) Fmoc-Phe-OH (4 eq.), DIPEA (8 eq.), DCM, 1.0 mL/min, 40 °C; *ii*) MeOH (3 × 2mL, injections) 5 mL/min; *iii*) DMF, 10 mL/min, 60 °C; *iv*) 50% piperidine, DMF, 10 mL/min, 60 °C; *v*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vi*) Fmoc-Leu-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Leu-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *vii*) Fmoc-Ala-OH (0.3 M), HATU (0.3 M), HATU (0.3 M), DIPEA (0.6 M), DMF, 5 mL/min, 60 °C; *ix*) DCM, 0.5 mL/min, 40 °C; *x*) AcCl, 6.0 M, 40 °C, 0.5 mL/min.

ESI Figure 10.1: HPLC Trace of cycle 1 of product 7 using PS-2-CltrtCl resin

ESI Figure 10.2: HPLC Trace of cycle 2 of product 7 using PS-2-CltrtCl resin

ESI Figure 10.3: HPLC Trace of cycle 3 of product 7 using PS-2-CltrtCl resin

ESI Figure 10.4: HPLC Trace of cycle 4 of product 7 using PS-2-CltrtCl resin

ESI Figure 10.5: HPLC Trace of cycle 5 of product 7 using PS-2-CltrtCl resin

ESI Figure 10.6: HPLC Trace of cycle 1 of product 7 using CM 2-trtCl resin

ESI Figure 10.8: HPLC Trace of cycle 3 of product 7 using CM 2-trtCl resin

ESI Figure 10.9: HPLC Trace of cycle 4 of product 7 using CM 2-trtCl resin

ESI Figure 10.10: HPLC Trace of cycle 5 of product 7 using CM 2-trtCl resin