Facile synthesis of lanthanide doped yttria nanophosphors by a simple microplasma-assisted process

Liangliang Lin *a, Sergey A. Starostin ^b, Xintong Ma ^c, Sirui Li ^c, Saif A. Khan ^d and Volker Hessel ^c

a. School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

b. FUJIFILM Manufacturing Europe, Tilburg Research Labs, B.V, P.O.Box 90156, Tilburg, the Netherlands.

c. Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.

d. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore. *Email: linliangliang@jiangnan.edu.cn

Figure S1: The evolution of current, voltage and plasma power during a typical plasma-liquid interaction process.

Figure S2: XRD result of the dried sediments obtained from the plasma-treated electrolyte solution

Figure S3: SEM images at different magnifications of the dried sediments obtained from the plasma-treated electrolyte solution

Figure S4: (a-b) SEM and (c) EDX images of Y_2O_3 :5%Eu³⁺ nanoparticles annealed at 600 °C; (d) the whole element mapping area, (e) Y map, (f) O map and (g) Eu map.

Figure S5: Typical photographs of the synthesized Y_2O_3 and Y_2O_3 :5%Eu samples (a) in the solid form and (b) the aqueous solution under room light and UV irradiation (254 nm)

Species	System	Transition	Wavelength
ОН	3064 Å system	A ²Σ⁺→X ²∏	306.6 nm, 308.9 nm
н	Balmer series	n→2s,2p	486.0 nm (H _β), 657.2 nm (H _α)
0		3p⁵P→3s⁵S	777.2 nm
Ar	Ar I	4p→4s	696.5 nm (1s ₅ -2p ₂), 706.7 nm (1s ₅ -2p ₃),
			738.4 nm (1s ₄ -2p ₃), 750.4 nm (1s ₅ -2p ₁),
			763.5 nm (1s ₅ -2p ₆), 772.4 nm (1s ₃ -2p ₂),
			794.8 nm (1s ₃ -2p ₄), 826.5 nm (1s ₂ -2p ₂),
			842.5 nm (1s ₄ -2p ₈)

Table S1. Summary of optical emission lines recorded during the plasma-liquid interactions

Wavenumber range (cm ⁻¹)		Assignment
Y(OH) ₃ :(Eu)	Y ₂ O ₃ :(Eu)	
3602		O-H stretching
1664		O-H deformation vibration
1510	1510	Carboxylate group
1411	1411	Carboxylate group
1353		Nitrite ions
1052		Carboxylate group
819		Y-OH bending
603		Y-OH bending
	555	Y(Eu)-O stretching
	464	Y(Eu)-O stretching

Table S2. The IR absorptions bands of the dried $Y(OH)_3:(Eu)$ and $Y_2O_3:(Eu)$ nanoparticles