This journal is © The Royal Society of Chemistry 2019

Appendix 1 Creative Exercises and matched questions for control groups

Setting 1

Group activity 1:

Based on everything you learned from Chapter 1 to 3, write down as many correct, distinct and relevant facts you can about:

120.1 g butane reacts with 278.5 g oxygen to form 203 g carbon dioxide and 195.6 g water. The reaction emits 1.19x10⁵J energy. (Density of oxygen is 1.429 g/L)

You'll receive 1 point for each statement. Seven statements will get you full credit for the problem.

Exam 1:

Based on everything you learned from Chapter 1 to 4, write down as many correct, distinct and relevant facts you can about:

251 kg Te-120 at the temperature of -22 °C (density of Te is 6.24 g/ cm³)

You'll receive 3 points for each statement. Six statements will get you full credit for the problem.

Matched questions for control group:

- 1. For Te-120, which one of the following is TRUE?
 - A. The atomic number is 120 B. The mass number is 52
 - C. It contains 66 neutrons D. It contains 52 electrons E. It is a nonmetal
- 2. What volume in milliliters of table salt would be needed to measure out 145 kg of salt $(density = 2.16 g/cm^5)$
 - A. 6.71 x 10⁻²mL B. 67.1 mL C. 6.71 x 10⁴ mL D. 3.13 x 10² mL E. 3.13 x 10⁵ mL
- 3. A race metal alloy is a superconductor at -22 °C. What is the temperature on the Kelvin scale?

A. – 251K B. 251 K C. 251.1 K D. 25.15 K E. 295.15 K

Group activity 2:

Based on everything you learned from Chapter 1 to 6, write down as many correct, distinct and relevant facts you can about:

$$61.6 \text{ kg Al}_2(SO_4)_3$$

You'll receive 1 point for each statement. Seven statements will get you full credit for the problem.

Exam 2:

Based on everything you learned from Chapter 1 to 7, write down as many correct, distinct and relevant facts you can about:

107.87g AgNO₃ (aq) reacts with 36.46 g HCl (aq)

You'll receive 3 points for each statement. Six statements will get you full credit for the problem.

Matched questions for control group:

- 1. All of the following compounds are soluble in water EXCEPT:
 - A. NaOH B. CaBr₂ C. FeI₃ D. NH₄NO₃
- 2. What are the moles of 107.87 grams of silver nitrate?

- A. 0.63498 B. 0.63 C. 169.88 D. 1.8x10⁴ E. 6.4959 x 10²⁵
- 3. What type of a reaction occurs when a silver nitrate solution is mixed with a hydrochloric acid?
 - A. combination B. decomposition C. single-displacement
 - D. double-displacement E. no reaction occurs

Extra Credit:

Based on everything you learned from this course, write down as many correct, distinct and relevant facts you can about:

When 0.06 mol of Al reacts with 0.06 mole of Cl_2 , the chemical reaction below occurs: 2 Al(s) + 2 Cl_2 (g) \rightarrow 2 AlCl₃(aq), 4.0 grams of AlCl₃ is formed by the reaction and used to make 255 mL AlCl₃ solution.

You will receive 0.5 points for each statement. Ten statements will get you full credit (5 points) for this assignment.

Matched questions for control group:

- 1. Which one is the electron configuration of Al?
 - A. 1s²2s²2p⁶3s²3p¹ B. 1s²2s²2p¹⁰3s²3p¹ C. 1s²2s²2p⁶3s² D. [Ne]3p¹ E. [Ar]4s²3p¹
- 2. How many electrons in p subshell of Al?
 - A. 0 B. 2 C. 6 D. 10 E. 13
- 3. How many electrons does Al³⁺ have?
 - A. 0 B. 3 C. 10 D. 13 E. 16
- 4. When 0.06 mol of Al reacts with 0.06 mole of Cl_2 , the chemical reaction below occurs: 2 Al (s) + 3 $Cl_2(g) \rightarrow 2$ AlCl₃ (aq), how many grams of AlCl₃ can be made?
 - A. 0.04 B. 0.06 C. 5 D. 8 E. 3
- 5. What is the morality when 4.0 grams of AlCl₃ is added to water to make 255 mL solution?
 - A. $1.2 \times 10^{-4} \,\mathrm{M}$ B. $2.1 \times 10^{3} \,\mathrm{M}$ C. $0.12 \,\mathrm{M}$ D. $2.1 \,\mathrm{M}$ E. $7.7 \,\mathrm{M}$

Setting 2

Group activity 1:

Based on everything you learned from Chapter 1 to 4, write down as many correct, distinct, and relevant facts you can about:

251 kg Te-120 at the temperature of -22 °C (density of Te is 6.24 g/cm³)

You'll receive two points for each statement. Six statements will get you full credit for the problem.

Exam 1:

Based on everything you learned from Chapter 1 to 5, write down as many correct, distinct and relevant facts you can about:

$61.6 \text{ kg Al}_2(SO_4)_3$

You'll receive 2 points for each statement. Six statements will get you full credit for the problem.

Matched questions for control group:

- 1. What is the formula mass for B_2Cl_4 ?
 - A. 234.34 amu. B. 127.98 amu C. 198.89 amu. D.163.43 amu E. none of the above
- 2. What is the name of this compound B₂Cl₄?

- 3. Convert 61.6 kg into grams.
- 4. If the density of ethanol is 0.789 g/cm³, what volume would 403 grams of ethanol occupy?

Group activity 2:

Based on everything you learned from Chapter 1 to 8, write down as many correct, distinct and relevant facts you can about:

107.87g AgNO₃ (aq) reacts with 36.46 g HCl (aq)

You'll receive 3 point for each statement. Six statements will get you full credit for the problem.

Exam 2:

Based on everything you learned from Chapter 1 to 9, write down as many correct, distinct and relevant facts you can about:

710.05 g of aqueous sodium sulfate reacts with aqueous 2.0 moles of lead(II) chloride You'll receive 2 points for each statement. Six statements will get you full credit for the problem.

Matched questions for control group:

Write a molecular equation for aqueous sodium sulfate reacting with aqueous plumbous nitrate. Then calculate how many formula units of plumbous nitrate are needed to react with 3.29 mol of sodium sulfate.

Group activity 3:

Based on everything you learned from Chapter 1 to 11, write down as many correct, distinct, and relevant facts you can about:

0.41 mol of aqueous HBr reacts with excess calcium, producing H₂ and CaBr₂. This reaction occurs at 1.61 atm and at 45 degrees Celsius.

You'll receive two points for each statement. Seven statements will get you full credit for the problem.

Exam 3:

Based on everything you learned from Chapter 1 to 12, write as many distinct, accurate, and relevant statements you can for:

2.00 mol of CH₄(l) is placed in a 120.0 L container containing O₂ at 1.00 atm and -170.0 °C. When the container is heated to 25 °C, CH₄(g) can react with O₂(g). CH₄ boils at -164.0 °C, and Δ H_{vap} = 8.17 kJ/mol. c_{liquid}=52.93 J/(mol °C) c_{gas} = 35.69 J/(mol °C).

You'll receive two points for each correct statement. Six statements will get you full credit for the problem.

Matched questions for control group:

Use the following data to answer the following questions.

	Methane (CH ₄)	Oxygen
ΔH _{fus} (kJ/mol)	1.10	0.444
ΔH _{vap} (kJ/mol)	8.17	6.82
C _{liquid} (J/mol°C)	52.93	53.28
C _{gas} (J/mol°C)	35.69	29.378

- 1. How much energy is required to completely boil 2.00 moles of methane?
- 2. What type of intermolecular force does methane undergo?
- 3. How much energy is required to change the temperature of 2.00 moles of methane from -164 °C to 25 °C? It is a gas the entire time.
- 4. How many moles of oxygen are present if there are 5.00 atm at 25 °C in a 120.0 L tank?
- 5. What are the products if methane and oxygen react?
- 6. Draw the Lewis structure of oxygen.

Group activity 4:

Based on everything you learned from Chapter 1 to 15, write down as many correct, distinct and relevant facts you can about:

$$N_2(g) + H_2(g) \rightleftharpoons NH_3(g)$$

At a certain temperature, the equilibrium constant for this reaction is $6.00 \times 10^{-2} M^{-2}$. The equilibrium concentrations of nitrogen and ammonia are 0.080 M and 0.13 M, respectively, and the reaction is taking place in a 5.00 L container.

You'll receive 2 points for each statement. Seven statements will get you full credit for the problem.

Exam 4:

Based on everything you learned from Chapter 1 to 15, write down as many correct, distinct and relevant facts you can about:

 $125\ mL$ of $2.50\ M$ hydrochloric acid reacts with $5.00\ grams$ of sodium hydroxide. This reaction produces $37.34\ kJ$ of heat.

You'll receive 2 points for each statement. Seven statements will get you full credit for the problem.

Matched questions for control group:

- 1. How many moles of HCl are present in 125 mL of 2.50 M HCl?
- 2. How many moles of NaOH are present in 5.00 grams of NaOH?
- 3. If the HCl from problem 1 and NaOH from problem 2 are mixed, which one will be the limiting reactant?
- 4. If 37.34 kJ of energy are released from the reaction in problem 3, what is the ΔH for the reaction?
- 5. What would be the pH of the solution resulting from problem 3?
- 6. What is the balanced reaction for problem 3?
- 7. What is the OH⁻ concentration of the solution resulting from problem 3?

Extra credit:

Based on everything you learned from this course, write down as many correct, distinct and relevant facts you can about:

250.0 grams of uranium-235 are placed in a reactor. A nucleus of uranium-235 absorbs a neutron and undergoes nuclear fission to produce barium-141 and krypton-92. A single atom's fission produces 211.3 MeV of energy. 1 MeV = $1.60218 \times 10-13$ Joules.

You will receive 2 points for each statement. Seven statements will get you full credit for this assignment.

Matched questions for control group:

- 1. How many atoms of uranium-235 are present in 250.0 grams of uranium-235? (hint: atomic mass of an isotope = the mass number)
- 2. If the fission of one atom of uranium-235 produces 211.3 MeV of energy, and if 1 MeV = 1.60218×10^{-13} J, how much energy will be released by 250.0 grams of uranium-235?
- 3. Write a reaction for the fission of uranium-235 after it is hit by a neutron if barium-141 and krypton-92 are two of the products.

Appendix 2 Code list for generating visual maps

Major topics	Concepts	Major topics	Concepts
topics	Concepts	topics	Classification of matter by
	Scientific notation		composition *classify substances as
			element or compound belong to here
	Decimal part		-Pure substance
	Exponential part		-Element
	Significant figures		-Compound
	Uncertainty		-Mixture
	Rules of significant figures		-Homogenous mixture
	Exact numbers		-Heterogeneous mixture
	Rounding numbers		Property
	Significant figures in calculations		-Physical property
	-Multiplication and Division		-Chemical property
	-Addition and Subtraction		Physical change
	-Both +,=,x, ÷		Chemical change
1.	International system (SI)		Law of conservation of mass
Units/Sig.Fig.	SI base units (m, kg, s, K)		Work
	Prefix multipliers		Energy
	Derived units		-Kinetic energy
	Volume		-Potential energy
	Unit conversion		-Thermal energy
	-from one to another		-Electrical energy
	-multistep		-Chemical energy
	-in both the numerator and denominator		Law of conservation of energy
	-with units raised to a power		Exothermic
	Units of energy and conversion		Endothermic
	(J, cal, Cal, kWH)	3. Energy	Heat
	Conversion between T scales (°F, °C, K)		System
	Conversion factors		Surroundings
	Density = mass/volume		Absolute zero
2. Matter	Three states of matter: solid, liquid, gas		Specific heat capacity
	Solid		q =cmΔT
	Crystalline		
	Amorphous		
	Liquid		
	Gas		
	Compressible		
	1		

Major		Major	
topics	Concepts	topics	Concepts
	Atom		-Metalloid
	Atomic theory		Main-group elements
	Plum-pudding model of the atom		Transition metals
	Nuclear theory of the atom		Period
	Electrical Charge		Group/ Family
	Nucleus		-Alkali metals
	-Neutron		-Alkaline earth metals
	Electron		-Halogens
	Bohr model		-Noble gases
	Orbital		Chemical formula (type, #, order)
			Subscripts in chemical formula (ratio
4. Atoms	Principal quantum number (n, shell)		of atoms)
4. Atoms	Subshell (s,p,d,f)		Types of chemical formula
	Ground state		-empirical formula
	Excited state		-molecular formula
	Electron spin		-structural formula
	Pauli exclusion principle		Molecular models
	Hund's rule	6.	-ball-and stick model
	Electron configuration	Compounds	-space-filling model
	Orbital diagram		-compounds: ionic or molecular
	Valence electron		Writing formula for ionic compound
	Isotopes and symbols		Ions
	Percent natural abundance		-Cations
	Isotope symbols		-Anions
	Mass number (A)		Ion charge
	Atomic mass (amu); name of		Polyatomic ions (formula, name and
	element		charge)
	-elements: atomic or molecular		-ionic compound
	Periodic trend		Binary: Type I or Type II
5. Elements	-Atomic size		Containing polyatomic ions
	-Metallic character	_	-molecular compound
	-lonization energy	7. Nomenclature	-acid
	Atomic number (Z)		Dillary
	Chemical symbol		oxyacids (oxyanions)
	Periodic table		oxyacids (oxyanions)
	-Metal		
	-Nonmetal		

Major		Major	
topics	Concepts	topics	Concepts
	Avogadro's number		Spectator ion
	Mole (mole ratio)		Classifying chemical reaction
	Molar mass		-Precipitation reaction (precipitate)
	For an element		-Acid-base (neutralization) reactions
	-find molar mass from the periodic		-Gas evolution reactions
	table -convert between grams and moles		-Oxidation-reduction (redox)
	-convert between grains and moles		reaction
	atoms		Combustion reaction
	-convert between grams and # of atoms		Classifying chemical reactions by what atoms do
	atoms		- Synthesis or combination reaction
			- Decomposition reaction
			·
8.			-Single-displacement reaction
Composition	For a compound		-Double-displacement reaction Oxidation numbers
	-calculate molar mass		
	-convert between grams and moles		oxidizing agent/reducing agent Stoichiometry
	-convert between moles and # of		Mole-to-mole
	atoms -convert between grams and # of atoms		Mole-to-mass
	Convert between a compound and a		INIOIE-LO-IIIASS
	constituent element		Mass-to mass
	-moles to moles	10.	Limiting reactant
	-grams to grams	Stoichiometry	Theoretical yield
	Mass percent		Actual yield
	-calculate based on mass or chemical formula		Percent yield
	-use it as conversion factor		Enthalpy calculation
	Evidence of a chemical reaction		Solute
9. Reactions	Reactants and products		Solvent
	States in chemical equations		Solution
	Coefficient in chemical equations		Electrolyte & Nonelectrolyte solution
	Balance chemical equations		Concentration of solution
	Aqueous solution	44 6.1 11	-mass percent
	Soluble compounds	11. Solutions	-Molarity (M)
	Insoluble compounds		
	Solubility rules		
	Molecular equation		
	Complete ionic equation		
	Net ionic equation	1	

Major		Major	
topics	Concepts	topics	Concepts
	Colligative properties		Strong acids/strong bases
	Molality		Weak acids/weak bases
	Henry's law		Buffers
	Stock solution		Henderson-Hasselbalch
	Dilution equation M1V1=M2V2	16. acid-base	Self-ionization of water, Kw
	Solution stoichiometry		pH and pOH
12. Bonding	Volume-to-volume		Titrations
	Lewis Structures		Arrhenius acids/bases
	Polarity		Bronsted acids/bases (including conjugates)
	Molecular geometry		H+ and OH- calculations
	Electron geometry		Decay series
	Electronegativity		-alpha decay
	London Dispersion/Van der Waal's		- P
	forces		-beta decay
	Dipole interactions	47	-electron capture
	Hydrogen bonding	17. nuclear	-positron emission
13.	Network solids		Fission
Intermolecular	-ionic solids		Fusion
forces	-covalent solids		Half-life
	-metallic solids		Radioactivity
	Boiling point/freezing point trends		
	Heat of fusion		
	Heat of vaporization		
	Gas laws		
	PV=nRT		
	Dalton's Law		
14. Gases	Partial pressure		
15. equilibrium	Pressure volume temperature		
	relationships		
	Ideal gas behavior		
	Reversible reactions		
	Spontaneity		
	Entropy Equilibrium constants		
	Gas-phase equilibria		
	Heterogeneous equilibria		
	Le châtelier's principle		
	, ,		
	Catalysts		

Appendix 3 Free-response survey questions and code list

Survey questions:

- 1. Do you think Creative Exercises help you make connections among content in this class?
- 2. Please explain why you chose the answer for question 1.
- 3. How did you prepare for this type of question on exams?
- 4. What are the differences when you prepared this type of question versus other types of questions such as multiple-choice questions or written ones?
- 5. How easy did you find it to answer this type of question?
- 6. How does this type of question help you understand chemistry conceptually?

6. How does this type of question help you understand chemistry conceptually?		
Categories & Codes		
Helpful category		
1. Knowledge integration	1.1 Aware of connections	
	1.2 Use connections	
	1.3 Application of knowledge (real world)	
2 Canaantual Understanding	2.1 Conceptual Understanding	
2. Conceptual Understanding	2.2 Deep understanding of concepts	
3. Flexibility	3.1 Freedom to choose topic	
	3.2 Unlimited answers	
	4.1 Study habits (frequencies and types of	
4. Study habits	actions toward studying)	
	4.2 Motivation	
	4.3 Metacognition	
Unhelpful category		
1. Challenging		
2. Need more instruction or feedback		
3. Self-doubt		