Electronic Supplementary Information

DNA quadruplexes as molecular scaffolds for controlled assembly of fluorogens with aggregation-induced emission

Longyi Zhu,^a Jun Zhou,^a Guohua Xu,^b Conggang Li,^b Pinghua Ling,^a Bin Liu,^{*c} Huangxian Ju^{*a} and Jianping Lei^{*a}

^aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

^bState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan

Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.

^cDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 4

Science Drive 4, Singapore 117585, Singapore.

*Address correspondence to J.P.L. (email: jpl@nju.edu.cn), H.X.J. (email: hxju@nju.edu.cn) or to B.L. (email: cheliub@nus.edu.sg).

Supporting Figures

Fig. S1 (A) Synthetic scheme of O1-DTPE, (B) TOF-MS of O1-DTPE.

Fig. S2 Dynamic light scattering analysis of 1.0 μ M TPE-N₃ in DMSO/H₂O (v/v, 1/399). No signal was observed for O1-DTPE in H₂O at 25 °C.

Fig. S3 Fluorescent spectra of 1.0 µM O2-DTPE in presence of indicated strands.

Fig. S4 Fluorescent intensity of mixture of 1.0 μ M O1'-6G with (1) 0.25 μ M, (2) 0.5 μ M and (3) 1.0 μ M O1-DTPE.

Fig. S5 PAGE results of 10 μ M O1-DTPE hybridized with (1) O1'-6G, (2) O1'-6C, (3) O1'-6T and (4) O1'-6A.

Fig. S6 Fluorescent spectra of 1.0 μ M O1-DTPE hybridized with O1'-6G (1.0 μ M) in TE reaction buffer (10 mM TE, pH 7.4, 100 mM NaCl, 10 mM MgCl₂), Li⁺ buffer, and H₂O.

Fig. S7 Fluorescent spectra of 1.0 μ M O1-DTPE mixed with (1) O1'-6G, (2) O1-6G, and (3) 15T-6G.

Fig. S8 Ratios of fluorescent peak intensity of 1.0 μ M (A) O1-AMCA, (B) O1-FAM, and (C) O1-Cy3 after to before (*F*/*F*₀) hybridization with 1.0 μ M O1' with 6G, 6A, 6C, and 6T.

Fig. S9 PAGE results of O1-DTPE hybridized with (1) O1'-8G, (2) O1'-7G, (3) O1'-6G, (4) O1'-5G, (5) O1'-4G, (6), O1'-3G, (7) O1'-2G, (8) O1'-1G, and (9) O1'.

Fig. S10 Fluorescent intensity (FL) of 1.0 μ M O1"-DTPE hybridized with O1' bearing 0 to 8 Gs at 3' end.

Fig. S11 CD spectra of 20 μ M (1) O1, (2) O1'-2C, (3) O1'-4C, (4) O1'-8C, (5) O1'-6C, (6) O1'-10C and (7) O1'-12C in pH 4.8 TAE reaction buffer (10 mM Tris-acetate, 100 mM NaCl, 10 mM MgCl₂, 1 mM sodium EDTA).

Fig. S12 Normalized CD (N. CD) melting curves monitored at 285 nm of 20.0 μ M O1' bearing different numbers of Cs (O1'-*n*C, *n* = 2 to 12); temperature was increased at a rate of 2.0 °C/min. Data are normalized to the highest CD value at 285 nm.

Fig. S13 Fluorescence intensity of 1.0 μ M O1"-DTPE hybridized with O1'-*n*C (*n* = 0 to 12) in pH 4.8 TAE reaction buffer.

Fig. S14 PAGE results of (1) target DNA + TP'-G4-5bp + H-DNA + O1-DTPE, (2) TP'-G4-5bp + H-DNA + O1-DTPE, (3) TP'-G4-5bp + H-DNA, (4) H-DNA + O1-DTPE, (5) TP'-G4-5bp + O1-DTPE, (6) O1-DTPE, (7) H-DNA, (8) TP'-G4-5bp, (9) target DNA.

Fig. S15 Stopped-flow fluorescence over time for the mixtures of 1.0 μ M O1-FAM, H-DNA, and TP'-G4-TAMRA in presence and absence of target DNA.

Fig. S16 Fluorescence intensity of a mixture of 1.0 μ M H-DNA, target DNA, O1-DTPE, and 16nt limbs of TP'-G4 with different numbers of base pairs (TP'-G4-*n*bp, *n* = 3 to 10) in pH 7.4 reaction buffer.

Fig. S17 Ratios of fluorescent peak intensity of 1.0 μ M O1-DTPE after to before (*F*/*F*₀) hybridization with (1) O1'and (2) O1'-mG4 in TE reaction buffer.

Supporting Tables

Table, S1	Oligonucleo	tide sequences	used in t	the experiments.
1 4010 01	Ongonacieo	nue sequences	useu m	me experiments.

Name	Sequences (from 5' to 3' end)
O1-DBCO	AGTTGGAGACGTAAG-(CH ₂) ₆ NHCO(CH ₂) ₄ -DBCO
O2-DBCO	CCTACGTCTCCAACTAACTTACGGCCCTCATTCAATACCCTACG-
O1″-DBCO	(CH ₂) ₆ NHCO(CH ₂) ₄ -DBCO DBCO-(CH ₂) ₄ -ONH(CH ₂) ₂ -AGTTGGAGACGTAAG
01'	CTTACGTCTCCAACT
01′-1G	GCTTACGTCTCCAACT
01′-2G	GGCTTACGTCTCCAACT
01′-3G	GGGCTTACGTCTCCAACT
01′-4G	GGGGCTTACGTCTCCAACT
01′-5G	GGGGGCTTACGTCTCCAACT
01′-6G	GGGGGGCTTACGTCTCCAACT
01′-7G	GGGGGGCTTACGTCTCCAACT
O1′-8G	GGGGGGGGCTTACGTCTCCAACT
O1′-6A	AAAAACTTACGTCTCCAACT
O1′-6T	TTTTTTCTTACGTCTCCAACT
O1'-2C	CCCTTACGTCTCCAACT
O1'-4C	CCCCCTTACGTCTCCAACT
O1′-6C	CCCCCCTTACGTCTCCAACT
O1′-8C	CCCCCCCTTACGTCTCCAACT
O1'-10C	CCCCCCCCTTACGTCTCCAACT
O1'-12C	CCCCCCCCCCTTACGTCTCCAACT
O1'-5A-6G	GGGGGGAAAAACTTACGTCTCCAACT
O1'-10A-6G	GGGGGGAAAAAAAAAACTTACGTCTCCAACT
O1'-15A-6G	GGGGGGAAAAAAAAAAAAAAACTTACGTCTCCAACT
O1'-20A-6G	GGGGGGAAAAAAAAAAAAAAAAAAAAACTTACGTCTCCAACT
O1'-5T-6G	GGGGGGTTTTTCTTACGTCTCCAACT
01′-10T-6G	GGGGGGTTTTTTTTTTTTTCTTACGTCTCCAACT
O1'-15T-6G	GGGGGGTTTTTTTTTTTTTTTTTTCTTACGTCTCCAACT

O1'-20T-6G	GGGGGGTTTTTTTTTTTTTTTTTTTTTTTTCTTACGTCTCCAACT
01′-6G-5A	GGGGGGCTTACGTCTCCAACTAAAAA
01′-6G-10A	GGGGGGCTTACGTCTCCAACTAAAAAAAAA
01′-6G-15A	GGGGGGCTTACGTCTCCAACTAAAAAAAAAAAAAAAA
01′-6G-20A	GGGGGGCTTACGTCTCCAACTAAAAAAAAAAAAAAAAAA
01′-6G-5T	GGGGGGCTTACGTCTCCAACTTTTT
O1'-6G-10T	GGGGGGCTTACGTCTCCAACTTTTTTTTTTT
01′-6G-15T	GGGGGGCTTACGTCTCCAACTTTTTTTTTTTTTTTTTTT
O1'-6G-20T	GGGGGGCTTACGTCTCCAACTTTTTTTTTTTTTTTTTTT
O2'-6A	AAAAAACGTAGGGTATTGAATGAGGGCCGTAAGTTAGTTGGAGACGT AGG
O2'-6C	CCCCCCGTAGGGTATTGAATGAGGGCCGTAAGTTAGTTGGAGACGTA GG
O2'-6T	TTTTTTCGTAGGGTATTGAATGAGGGCCGTAAGTTAGTTGGAGACGTA GG
O2'-6G	GGGGGGGCGTAGGGTATTGAATGAGGGCCGTAAGTTAGTT
O1-6G	GGGGGGAGTTGGAGACGTAAG
15T-6G	GGGGGGTTTTTTTTTTTTTTT
O1-AMCA	AGTTGGAGACGTAAG-AMCA
O1-FAM	AGTTGGAGACGTAAG-FAM
O1-Cy3	AGTTGGAGACGTAAG-Cy3
1G-01'	CTTACGTCTCCAACTG
2G-01'	CTTACGTCTCCAACTGG
3G-01′	CTTACGTCTCCAACTGGG
4G-01'	CTTACGTCTCCAACTGGGG
5G-01′	CTTACGTCTCCAACTGGGGG
6G-01′	CTTACGTCTCCAACTGGGGGG
7G-01'	CTTACGTCTCCAACTGGGGGGG
8G-01'	CTTACGTCTCCAACTGGGGGGGG
O1'-4C4T4C	CCCCTTTTCCCCTCTTACGTCTCCAACT
TP(10)-G4	GGGGGGGTCTCCAACTAAAAA
TP'-G4-3bp	GGGGGGTCAATACTACCTCA
TP'-G4-4bp	GGGGGGTCAAATACTACCTCA
TP'-G4-5bp	GGGGGGTCAACATACTACCTCA
TP'-G4-6bp	GGGGGGTCAACCATACTACCTCA

TP'-G4-7bp	GGGGGGTCAACCTATACTACCTCA
TP'-G4-8bp	GGGGGGTCAACCTCATACTACCTCA
TP'-G4-9bp	GGGGGGTCAACCTCTATACTACCTCA
TP'-G4-10bp	GGGGGGTCAACCTCTGATACTACCTCA
H-DNA	AACTATACAAGCTCTGCATTC
Target	TGAGGTAGTATCTTGTATAGTT
TP'-G4-	GGGGGGT(TAMRA)CAACATACTACCTCA
TAMARA O1'-mG4	GGGTGGGTGGGTGGGTCTTACGTCTCCAACT

The blue bases are designed to form the nanostructure core or equivalent region in controls. FAM is 6-carboxyfluorescein, AMCA is aminomethylcoumarin, and Cy3 is cyanine 3.

Table. S2 CD melting temperatures ($T_m s$) of O1' bearing different numbers of Gs at the 5' end.

DNA strands	01′	01′-1G	01′-2G	01′-3G	01'-4G	01′-5G	01′-6G	01′-7G	O1′-8G
T _m / °C	-	-	-	< 20	44	49	53	54	54