SUPPORTING INFORMATION

For

An Unusual Stereoretentive 1,3-Quaternary Carbon Shift Resulting in a Rh^{II}-Catalyzed Enantioselective Formal [4+1]-Cycloaddition Between Diazo Compounds and Vinyl Ketenes

Kevin X. Rodriguez, Tara C. Pilato, and Brandon L. Ashfeld*

Department of Chemistry and Biochemistry, University of Notre Dame 305 McCourtney Hall, Notre Dame, IN 46556

<u>bashfeld@nd.edu</u>

Contents

General	S2
Experimental Procedures	S2-S17
Crystallographic Data for 3b	S18-S24
Crystallographic Data for 4a	S25-S31
References	S32
¹ H and ¹³ C NMR Spectra	S33-S146

1. GENERAL

Solvents and reagents were ACS reagent grade and used without further purification unless noted below. Dimethylformamide (DMF), tetrahydrofuran (THF), dichloromethane (CH₂Cl₂) and diethyl ether (Et₂O) were passed through a column of molecular sieves and stored under argon. All reactions were carried out in flame-dried glassware under an argon atmosphere unless otherwise specified. Diazooxindoles **1a-1j**,¹ **6b-6d**,² cyclobutenone **2b**,³ 3-phenyl-2-(triethylsilyl)-2-cyclobutenone,³ Rh₂(*S*-TCPTTL)4,⁴ Rh₂(*S*-TFPTTL)4,⁵ Rh₂(*S*-NTTL)4,⁶ Rh₂(*S*-IBAZ)4,⁷ were prepared according to literature procedures, and spectral data (¹H and ¹³C NMR) were consistent with those reported.

¹H Nuclear magnetic resonance (NMR) spectra were obtained at 400, 500 or 600 MHz, and ¹³C NMR spectra at 100, 125 or 150 MHz. Chemical shifts are reported in parts per million (ppm, δ), and referenced to residual solvent or tetramethylsilane (TMS). Coupling constants are reported in Hertz (Hz). Spectral splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet; comp, complex; app, apparent; hom, higher order multiplet; and br, broad. Infrared (IR) spectra were obtained using a Thermo Electron Nicolet 380 FT-IR using a silicon (Si) crystal in an attenuated total reflectance (ATR) tower and reported as wavenumbers (cm⁻¹). High and Low resolution electrospray ionization (ESI) measurements were made with a Bruker MicroTOF II mass spectrometer. Analytical thin layer chromatography (TLC) was performed using EMD 250 micron 60 F₂₅₄ silica gel plates, visualized with UV light and stained with a *p*-anisaldehyde solution. Flash column chromatography was performed according to Still's procedure (Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* **1978**, *43*, 2923) using EMD 40-63 µm 60 Å silica gel.

2. EXPERIMENTAL PROCEDURES

tert-Butyldimethyl((4-((triethylsilyl)ethynyl)benzyl)oxy)silane. A solution of "BuLi (3.7 mmol, 2.0 hexanes. 1.84 mL) was slowly added to а solution of tert-butyl((4-Μ in ethynylbenzyl)oxy)dimethylsilane⁸ (0.76 g, 3.06 mmol) in THF (10 mL) at -78 °C and stirred for 30 min. Chlorotriethylsilane (0.55 g, 3.67 mmol, 0.62 mL) was then added dropwise, allowed to warm to room temperature by removal of the dry ice/acetone bath, and the resulting solution stirred for an additional 2 h. The crude mixture was diluted with $H_2O(15 \text{ mL})$, the layers separated, and the aqueous phase extracted with Et_2O (3 x 15 mL). The combined organic extracts were washed sequentially with saturated aqueous NaHCO₃ (3 x 15 mL) and saturated aqueous NaCl (3 x 15 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The resulting crude mixture was purified by flash chromatography eluting with hexanes/EtOAc (40:1) to provide 1.07 g (97%) of the title compound as a clear, colorless oil. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.44 \text{ (d, } J = 8.4 \text{ Hz}, 2 \text{ H}), 7.24 \text{ (d, } J = 8.4 \text{ Hz}, 2 \text{ H}), 4.73 \text{ (s, } 2 \text{ H}), 1.05 \text{ (t, } J = 8.0 \text{ Hz}, 2 \text{ H})$ 9 H), 0.93 (s, 9 H), 0.67 (q, J = 8.0 Hz, 6 H), 0.09 (s, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 142.0, 132.1, 125.9, 121.9, 106.6, 91.2, 64.8, 26.1, 7.6, 4.6, 3.5, -5.1; IR (neat) 2955, 2874, 2156, 1506 cm⁻¹; HRMS (ESI) *m/z* 361.2368 [C₂₁H₃₇OSi₂(M+H) requires 361.2377].

General procedure for the synthesis of silyl acetylenes: A solution of aryl aldehyde (15 mmol) was added to a solution of CBr₄ (5.64 g, 17 mmol) in CH₂Cl₂ (25 mL) at 0 °C and the mixture was stirred for 5 min. A solution of PPh₃ (8.39 g, 32 mmol) in CH₂Cl₂ (25 mL) was then added dropwise over 10 min,

the reaction was allowed to warm to room temperature by removal of the ice bath, and stirred for an additional 5 h. The resulting heterogeneous mixture reaction was filtered through a pad of celite eluting with hexanes (40 mL) and the filtrate was concentrated under reduced pressure. The resulting crude mixture was purified by flash chromatography eluting with hexanes/EtOAc (4:1) to provide the target vinyl dibromide.

A solution of dibromoalkene (13 mmol) in THF (40 mL) was cooled to -78 °C, a solution of "BuLi (31 mmol, 1.97 M in hexanes, 16 mL) was added dropwise, and the mixture stirred for 45 min. The corresponding trialkyl chlorosilane silane (16 mmol) was added, stirring continued for an additional 30 min, and then allowed to warm to room temperature by removal of the dry-ice/acetone bath. The resulting solution was diluted with H₂O (50 mL), the layers separated, and the aqueous phase extracted with Et₂O (2 x 30 mL). The combined organic extracts were washed sequentially with saturated aqueous NaHCO₃ (1 x 30 mL) and saturated aqueous NaCl (1 x 30 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The crude mixture was purified by flash chromatography eluting with hexanes/EtOAc at the indicated ratio (20:1-50:1) to provide the title silyl alkyne.

Triethyl((4-methoxyphenyl)ethynyl)silane. The alkynylation of 3-methoxybenzaldehyde was conducted on a 15 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (30:1) to afford 4.01 g (91%) of the title compound as a clear, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.21 (t, *J* = 7.8 Hz, 1 H), 7.08 (td, *J* = 7.6, 1.2 Hz, 1 H), 7.00 (dd, *J* = 2.5, 1.4 Hz, 1 H), 6.87 (ddd, *J* = 8.4, 2.5, 1.4 Hz, 1 H), 3.81 (s, 3 H), 1.06 (t, *J* = 7.9 Hz, 9 H), 0.68 (q, *J* = 7.9 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 129.5, 124.9, 116.9, 115.3, 106.5, 91.7, 55.5, 7.7, 4.6; IR (neat) 2954, 2874, 2153, 1576 cm⁻¹; HRMS (ESI) *m/z* 247.1543 [C₁₅H₂₃OSi(M+H) requires 247.1512].

Triethyl(*o*-tolylethynyl)silane. The alkynylation of 2-methylbenzaldehyde was conducted on a 8.0 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (30:1) to afford 1.73 g (94%) of the title compound as a clear, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.6 Hz, 1 H), 7.23-7.19 (m, 2 H), 7.14-7.0 (m, 1 H), 2.46 (s, 3 H), 1.07 (t, *J* = 8.0 Hz, 9 H), 0.69 (q, *J* = 8.0 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 140.7, 132.4, 129.5, 128.5, 125.5, 123.3, 105.3, 20.9, 7.7, 4.7; IR (neat) 2955, 2874, 2153, 2090 cm⁻¹; HRMS (ESI) *m/z* 231.1541 [C₁₅H₂₃Si(M+H) requires 231.1563].

General procedure for a-trialkylsilylcyclobutenone 2 synthesis:³ A solution of trichloroacetylchloride (3.64 g, 20 mmol, 2.2 mL) in Et₂O (50 mL) was added slowly to a refluxing solution of silyl alkyne (17 mmol) and Zn/Cu (3.8 g, 60 mmol) in Et₂O (35 mL) over 3 h and then stirred for an additional 15 h. The mixture was cooled to room temperature by removal of the oil bath and the heterogeneous mixture filtered through a pad of celite eluting with Et₂O (50 mL). The filtrate was washed sequentially with saturated aqueous NaHCO₃ (3 x 100 mL), H₂O (100 mL), and saturated aqueous NaCl (30 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The resulting crude 4,4-dichlorocyclobutenone (5 mmol) was dissolved in EtOH (17 mL) and added slowly to a mixture of zinc

(1.9 g, 29 mmol), *N*,*N*,*N'*,*N'*-tetramethylethylenediamine (3.37 g, 29 mmol, 4.3 mL) and acetic acid (1.74 g, 29 mmol, 1.7 mL) in EtOH (25 mL) at 0 °C over 20 min. The mixture was allowed to warm up to room temperature by removal of the ice bath, stirred for 3 h, then diluted with 1:1 hexanes/Et₂O (20 mL) and filtered through a pad of celite. The filtrate was washed sequentially with saturated aqueous NaHCO₃ (3 x 50 mL), H₂O (50 mL) and saturated aqueous NaCl (1 x 50 mL), dried (Na₂SO₄) and concentrated under reduced pressure [note: rotary evaporator bath temperature not to exceed 40 °C]. The crude mixture was purified by flash chromatography eluting with hexanes/EtOAc at the indicated ratio (8:1-50:1) to provide the title α-silylcyclobutenone **5**. [Note: the cyclobutenones **5** were stored in a 4 °C refrigerator until needed (~1-2 weeks). Prolonged storage required re-purification prior to use.]

3-(*p***-Tolyl)-2-(triethylsilyl)cyclobut-2-en-1-one (2a).** The cycloaddition of triethyl(*p*-tolylethynyl)silane⁹ was conducted on a 2.6 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (50:1 to 40:1) to provide 270 mg (38%) of **2a** as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 2 H), 7.30 (d, *J* = 7.8 Hz, 2 H), 3.70 (s, 2 H), 2.43 (s, 3 H), 0.96 (t, *J* = 8.4 Hz, 9 H), 0.84 (q, *J* = 8.4 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃) δ 190.5, 184.5, 156.2, 132.6, 128.2, 127.4, 127.3, 55.7, 19.9, 7.2, 2.6; IR (neat) 2954, 2875, 1742, 1678, 1598, 1509, 1284 cm⁻¹; HRMS (ESI) *m/z* 273.1659 [C₁₇H₂₅OSi(M+H) requires 273.1669].

3-([1,1'-Biphenyl]-4-yl)-2-(triethylsilyl)cyclobut-2-en-1-one. The cycloaddition of ([1,1'-biphenyl]-4-ylethynyl)triethylsilane¹⁰ was conducted on a 2.1 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (30:1) to provide 189 mg (27%) of the title compound as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2 H), 7.69 (d, *J* = 8.3 Hz, 2 H), 7.66 (d, *J* = 8.5 Hz, 2 H), 7.48 (t, *J* = 7.4 Hz, 2 H), 7.41 (t, *J* = 7.4 Hz, 1 H) 0.99 (t, *J* = 8.1 Hz, 9 H), 0.87 (q, *J* = 8.1 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃) δ 191.6, 177.5, 147.0, 144.1, 139.8, 132.4, 129.6, 129.0, 128.2, 127.4, 52.1, 7.5, 3.4; IR (neat) 2953, 2083, 1731 cm⁻¹; HRMS (ESI) *m/z* 335.1813 [C₂₂H₂₇OSi(M+H) requires 335.1825].

2-(*tert***-Butyldimethylsilyl)-3-phenylcyclobut-2-en-1-one.** The cycloaddition of *tert*-butyldimethyl(*p*-tolylethynyl)silane¹¹ was conducted on a 3.2 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (30:1) to provide 181 mg (22%) of the title compound as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.65 (m, 2 H), 7.49-7.48 (m, 3 H), 3.73 (s, 2 H), 0.97 (s, 9 H), 0.29 (s, 6 H); ¹³C NMR (150 MHz, CDCl₃) δ 191.5, 178.0, 147.8, 133.6, 131.6, 129.3, 128.8, 52.4, 26.8, 18.0, -4.8; IR (neat) 2954, 2857, 1752, 1681, 1591, 1471, 1252 cm⁻¹; HRMS (ESI) *m/z* 259.1518 [C₁₆H₂₃OSi(M+H) requires 259.1513].

3-Phenyl-2-(triisopropylsilyl)cyclobut-2-en-1-one. The cycloaddition of triisopropyl(phenylethynyl)silane¹¹ was conducted on 3.3 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (30:1) to provide 626 mg (63%) of the title compound as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.67-7.65 (m, 2 H), 7.49-7.48 (m, 3 H), 3.76 (s, 2 H), 1.49 (sep, J = 7.7 Hz, 3 H), 1.09 (d, J = 7.7 Hz, 18 H); ¹³C NMR (150 MHz, CDCl₃) δ 192.1, 179.3, 146.9, 134.0, 131.6, 129.0, 128.9, 52.6, 19.0, 12.2; IR (neat) 2943, 2865, 2080, 1741 cm⁻¹; HRMS (ESI) *m/z* 301.1964 [C₁₉H₂₉OSi(M+H) requires 301.1982].

3-(4-(((*tert***-Butyldimethylsilyl)oxy)methyl)phenyl)-2-(triethylsilyl)cyclobut-2-en-1-one.** The cycloaddition of *tert*-butyldimethyl((4-((triethylsilyl)ethynyl)benzyl)oxy)silane was conducted on a 1.70 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (25:1) to provide 164 mg (24%) of the title compound as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 7.8 Hz, 2 H), 7.45 (d, *J* = 7.8 Hz, 2 H), 4.81 (s, 2 H), 3.72 (s, 2 H), 0.98-0.94 (m, 20 H), 0.86 (t, *J* = 8.4 Hz, 6 H), 0.13 (s, 6 H); ¹³C NMR (150 MHz, CDCl₃) δ 191.9, 178.1, 146.6, 145.6, 132.4, 129.3, 126.2, 64.7, 52.2, 26.1, 18.6, 7.64, 3.53, -5.1; IR (neat) 2955, 2877, 1737, 1703, 1605, 1547, 1414 cm⁻¹; HRMS (ESI) *m/z* 403.2488 [C₂₃H₃₉O₂Si₂(M+H) requires 403.2483].

4-(3-Oxo-2-(triethylsilyl)cyclobut-1-en-1-yl)benzaldehyde. Concentrated HCl (37% in H₂O, 54 μL) was added to a solution of 3-(4-(((tert-Butyldimethylsilyl)oxy)methyl)phenyl)-2-(triethylsilyl)cyclobut-2-en-1-one (125 mg, 0.27 mmol) in MeOH (5.4 mL) at 0 °C. The solution was allowed to warm to room temperature by removal of the ice bath, stirred for 2 h, then diluted with Et₂O (5 mL). The solution was neutralized to pH = 7 with saturated aqueous NaHCO₃ (0.4 mL), the layers were separated and the aqueous phase extracted with Et₂O (3 x 5 mL). The combined organic fractions were washed with saturated aqueous NaCl (1 x 10 mL), dried (Na₂SO₄) and concentrated under reduced pressure [note: rotary evaporator bath temperature not to exceed 40 °C]. The resulting crude mixture was reconstituted in CH₂Cl₂ (2.7 mL) followed by the addition of pyridinium chlorochromate (172 mg, 1.2 mmol) and silica gel (100 mg) in one portion each. The heterogeneous mixture was stirred at room temperature for 1 h, filtered through a pad of celite eluting with CH₂Cl₂ (10 mL), then concentrated under reduced pressure. The crude mixture was purified by flash chromatography eluting with hexanes/EtOAc (20:1 to 15:1) to afford 25 mg (65%) of the title compound as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 10.09 (s, 1 H), 8.00 (d, J = 8.5 Hz, 2 H), 7.76 (d, J = 8.5 Hz, 2 H), 3.80 (s, 2 H), 0.95 (t, J = 8 Hz, 9 H), 0.86 (q, J = 8 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 191.4, 176.3, 151.5, 137.6, 130.0, 129.4, 127.7, 52.6, 7.6, 3.5; IR (neat) 2955, 2875, 2085, 1742, 1703, 1604, 1546 cm⁻¹; HRMS (ESI) m/z 287.1459 [C₁₇H₂₃O₂Si(M+H) requires 287.1461].

2-(*tert***-Butyldimethylsilyl)-3-(4-methoxyphenyl)cyclobut-2-en-1-one.** The cycloaddition of *tert*butyl((4-methoxyphenyl)ethynyl)dimethylsilane¹² was conducted on a 1.93 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (20:1) to provide 228 mg (41%) of the title compound as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.9 Hz, 2 H), 6.98 (d, *J* = 8.9 Hz, 2 H), 3.89 (s, 3 H), 3.69 (s, 2 H), 0.97 (s, 9 H), 0.29 (s, 3 H), 0.0 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 191.4, 177.1, 162.3, 144.4, 131.4, 126.3, 114.1, 55.5, 52.0, 26.7, 18.0, -4.9; IR (neat) 2948, 1740, 1682, 1510 cm⁻¹; HRMS (ESI) *m/z* 289.1616 [C₁₇H₂₅O₂Si(M+H) requires 289.1618].

3-(*o***-Tolyl)-2-(triethylsilyl)cyclobut-2-en-1-one.** The cycloaddition of triethyl(*o*-tolylethynyl)silane was conducted on a 2.13 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (20:1) to provide 157 mg (27%) of the title compound as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.30 (m, 2 H), 7.24 (t, *J* = 7.1 Hz, 2 H), 3.79 (s, 2 H), 2.41 (s, 3 H), 0.89 (q, *J* = 8.1 Hz, 9 H), 0.66 (t, *J* = 8.1 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 182.9, 153.0, 135.6, 135.2, 130.9, 128.2, 125.8, 55.8, 20.9, 7.4, 3.3; IR (neat) 2950, 2831, 2083, 1741, 1580, 1548, cm⁻¹; HRMS (ESI) *m/z* 273.1654 [C₁₇H₂₅OSi(M+H) requires 273.1669].

3-(3-Methoxyphenyl)-2-(triethylsilyl)cyclobut-2-en-1-one. The cycloaddition of triethyl((4-methoxyphenyl)ethynyl)silane was conducted on a 2.0 mmol scale. Purification was performed by flash chromatography eluting with hexanes/EtOAc (10:1) to provide 190 mg (33%) of the title compound as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (t, *J* = 8.0 Hz, 1 H), 7.19 (dq, *J* = 2.6, 1.7 Hz, 1 H), 7.13 (dd, *J* = 2.5, 1.7 Hz, 1 H), 7.03 (dd, *J* = 2.5, 1.0 Hz, 1 H), 3.86 (s, 3 H), 3.71 (s, 2 H), 0.95 (t, *J* = 7.5 Hz, 9 H), 0.85 (q, *J* = 7.5 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 191.9, 178.3, 159.9, 147.6, 135.1, 130.0, 122.0, 117.7, 113.9, 55.7, 52.4, 7.7, 3.6; IR (neat) 2953, 2874, 2083, 1742, 1545, 1230 cm⁻¹; HRMS (ESI) *m/z* 289.1604 [C₁₇H₂₅O₂Si(M+1) requires 289.1618].

General procedure for the enantioselective Rh^{II}-catalyzed, formal [4+1]-cycloaddition of diazo oxindole 1 and cyclobutenone 2: A solution of 2 (0.1 mmol) and Rh₂(S-TCPTTL)₄ (5.4 mg, 3.0 μ mol) in PhMe (0.33 mL) was stirred at 90 °C for 20 min then cooled to the indicated temperature. A solution of 1 (0.12 mmol) in PhMe (0.67 mL) was added slowly over 1 h, stirred for an additional 2 h, then SiO₂ (1 mmol) was added and stirred for the indicated time. The reaction mixture was concentrated under reduced

pressure and the crude residue purified by flash chromatography eluting with hexanes/EtOAc at the indicated ratio (2:1-10:1) to provide the title spirooxindole cyclopentenone **3**.

(*R*)-1'-methyl-4-(*p*-tolyl)-3-(triethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3a). The cycloaddition of 1a and 2a was performed on 0.08 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (6:1) to provide 30 mg (90%) of 3a in 90% *ee* as a pink solid. ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 7.8 Hz, 2 H), 7.30 (td, *J* = 7.2, 1.8 Hz, 1 H), 7.25 (d, *J* = 7.8 Hz, 2 H), 7.04-7.00 (m, 2 H), 6.88 (d, *J* = 7.8 Hz, 1 H), 3.59 (d, *J* = 18.6 Hz, 1 H), 3.26 (s, 3 H), 3.16 (d, *J* = 18.6 Hz, 1 H), 2.43 (s, 3 H), 0.80 (t, *J* = 7.8 Hz, 9 H), 0.58 (q, *J* = 7.8 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃) δ 206.1, 186.9, 175.1, 144.9, 140.1, 137.5, 135.6, 130.5, 129.1, 128.7, 127.0, 122.9, 121.5, 108.7, 63.1, 46.2, 26.8, 21.6, 7.5, 3.6; IR (neat) 2954, 2875, 1718, 1694, 1612, 1470, 1167 cm⁻¹; HRMS (ESI) *m/z* 418.2221 [C₂₆H₃₂NO₂Si(M+H) requires 418.2196]; m.p. = 97-100 °C; Chiralpak AD, 25 cm, 97:3 hexanes/ⁱPrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 21.3 min, t_r (minor) = 16.3 min. [α]p²⁰ +81.6 (c 1.00, CHCl₃).

(*R*)-1'-Methyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3b). The cycloaddition of 1a and 2b was performed on 0.08 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (5:1) to provide 26 mg (91%) of 3b in 90% *ee* as a red solid. Recrystallization from CHCl₃/pentanes provided 3b in 98% *ee*. ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.42 (m, 3 H), 7.42-40 (m, 2 H), 7.32-7.29 (m, 1 H), 7.05-7.03 (m, 2 H), 6.89 (d, *J* = 7.9 Hz, 1 H), 3.60 (d, *J* = 19 Hz, 1 H), 3.27 (s, 3 H), 3.17 (d, *J* = 19 Hz, 1 H), 0.05 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 205.6, 185.3, 175.0, 144.9, 140.2, 138.3, 130.4, 129.9, 128.8, 128.5, 127.2, 123.0, 121.5, 108.7, 63.1, 45.9, 26.8, -0.6; IR (neat) 2954, 1715, 1693, 1609, 1171, cm⁻¹; HRMS (ESI) *m/z* 384.1378 [C₂₂H₂₃NO₂Si(M+Na) requires 384.1390]; m.p. = 185-188 °C. Chiralpak AD, 25 cm, 97:3 hexanes/¹PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 34.4 min, t_r (minor) = 19.3 min. [α]_D²⁰ +121.4 (c 1.00, CHCl₃).

(*R*)-1'-Methyl-4-phenyl-3-(triethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3c). The cycloaddition of 1a and 3-phenyl-2-(triethylsilyl)-2-cyclobutenone³ was performed on 0.10 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (4:1) to provide 32 mg (79%) of 3c in 92% *ee* as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.44 (m, 3 H), 7.42-7.40 (m, 2 H), 7.32-7.28 (m, 1 H), 7.06-7.03 (m, 2 H), 6.89 (d, *J* = 7.8 Hz, 1 H), 3.60 (d, *J* = 18 Hz, 1 H), 3.27 (s, 3 H), 3.17 (d, *J* = 18 Hz, 1 H), 0.79 (t, *J* = 8.4 Hz, 9 H), 0.06 (d, *J* = 8.4 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃) δ 206.0, 186.8, 175.0, 144.9, 138.6, 138.2, 130.4, 129.8, 128.8,

128.5, 126.9, 123.0, 121.5, 108.7, 63.1, 46.3, 26.8, 7.5, 3.5; IR (neat) 2953, 2874, 1717, 1693, 1610, 1491, 1469, 1165 cm⁻¹; HRMS (ESI) *m/z* 404.2054 [C₂₅H₃₀NO₂Si(M+H) requires 404.2040]; m.p. = 98-100 °C; Chiralpak AD, 25 cm, 98:2 hexanes/^{*i*}PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 25.7 min, t_r (minor) = 18.1 min.

(*R*)-3-(*tert*-Butyldimethylsilyl)-1'-methyl-4-phenylspiro[cyclopentane-1,3'-indolin]-3-ene-2,2'dione (3d). The cycloaddition of 1a and 2-(*tert*-butyldimethylsilyl)-3-phenylcyclobut-2-en-1-one was performed on 0.10 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (5:1) to provide 28 mg (69%) of 3d in 90% *ee* as a pink solid. ¹H NMR (600 MHz, CDCl₃) δ 7.44-7.43 (m, 3 H), 7.40-7.39 (m, 2 H), 7.32-7.29 (m, 1 H), 7.06-7.05 (m, 2 H), 6.89 (d, *J* = 7.8 Hz, 1 H), 3.59 (d, *J* = 18.6 Hz, 1 H), 3.26 (s, 3 H), 3.14 (d, *J* = 18.6 Hz, 1 H), 0.89 (s, 9 H), -0.08 (s, 3 H), -0.19 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 206.0, 187.4, 175.0, 144.9, 138.9, 138.8, 130.3, 129.2, 128.8, 128.3, 126.7, 123.0, 121.4, 108.8, 63.0, 47.4, 27.5, 26.8, 17.9, -4.5, -.4.5; IR (neat) 2952, 2857, 1719, 1698, 1611, 1470, 1163 cm⁻¹; HRMS (ESI) *m/z* 404.2059 [C₂₅H₃₀NO₂Si(M+H) requires 404.2040]; m.p. = 135-138 °C; Chiralpak AD, 25 cm, 98:2 hexanes/^{*i*}PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 19.7 min, t_r (minor) = 16.2 min.

(*R*)-1'-Methyl-4-phenyl-3-(triisopropylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3e). The cycloaddition of 1a and 3-phenyl-2-(triisopropylsilyl)cyclobut-2-en-1-one was performed on 0.10 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (5:1) to provide 24 mg (54%) of 3e in 90% *ee* as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.42 (m, 5 H), 7.33-7.28 (m, 1 H), 7.05 (d, *J* = 4 Hz, 2 H), 6.88 (d, *J* = 7.8 Hz, 1 H), 3.60 (d, *J* = 19 Hz, 1 H), 3.26 (s, 3 H), 3.15 (d, *J* = 19 Hz, 1 H), 1.16 (sep, *J* = 8.3 Hz, 3 H), 0.95-0.91 (d, *J* = 8.3 Hz, 18 H); ¹³C NMR (125 MHz, CDCl₃) δ 206.9, 187.9, 175.1, 145.0, 139.2, 137.7, 130.5, 128.9, 128.3, 126.7, 123.0, 121.6, 108.8, 62.9, 48.1, 26.9, 19.2, 19.1, 11.6; IR (neat) 2943, 2865, 1718, 1695, 1611, 1491 cm⁻¹; HRMS (ESI) *m/z* 468.2311 [C₂₈H₃₅NO₂Si(M+Na) requires 468.2329]; m.p. = 48 °C. Chiralpak AD, 25 cm, 98:2 hexanes/ⁱPrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 17.4 min, t_r (minor) = 12.4 min.

(*R*)-4-([1,1'-biphenyl]-4-yl)-1'-methyl-3-(triethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3f). The cycloaddition of 1a and 3-([1,1'-biphenyl]-4-yl)-2-(triethylsilyl)cyclobut-2-en-1-one was performed on a 0.10 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (7:1) to provide 19 mg (54%) of 3f in 86% *ee* as a pink solid. ¹H NMR (500 MHz, CDCl₃) δ 7.71-7.66 (m, 4 H), 7.52-7.46 (m, 4 H), 7.42-7.38 (m, 1 H), 7.33-7.29 (m, 1 H), 7.05-7.04 (m, 2 H), 6.89 (d, J = 7.8 Hz, 1 H), 3.65 (d, J = 18 Hz, 1 H), 3.27 (s, 3 H), 3.25 (d, J = 18 Hz, 1 H), 0.82 (t, J = 8.2 Hz, 3 H), 0.61 (q, J = 8.2 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 205.9, 186.1, 174.9, 144.7, 142.5, 140.1, 138.1, 137.2, 130.3, 128.9, 128.6, 127.9, 127.5, 127.1, 126.9, 122.8, 121.4, 108.6, 62.9, 46.0, 26.7, 7.41, 3.4; IR (neat) 3019, 2953, 1715, 1693, 1612, 1572, 1486, 1350 cm⁻¹; HRMS (ESI) *m/z* 480.2344 [C₃₁H₃₄NO₂Si(M+H) requires 480.2353]; m.p. = 128 °C; Chiralpak AD, 25 cm, 96:4 hexanes/¹PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 29.4 min, t_r (minor) = 20.7 min. [α]_D²⁰ +74.8 (c 1.00, CHCl₃).

(R)-4-(4-(((tert-Butyldimethylsilyl)oxy)methyl)phenyl)-1'-methyl-3-

(triethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3g). The cycloaddition of 1a and 3-(4-(((*tert*-butyldimethylsilyl)oxy)methyl)phenyl)-2-(triethylsilyl)cyclobut-2-en-1-one was performed on 0.08 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (5:1) to provide 21 mg (47%) of 3g in 84% *ee* as an orange oil. ¹H NMR (600 MHz, CDCl₃) δ 7.42-7.38 (m, 4 H), 7.29 (td, *J* = 7.8, 1.8 Hz, 1 H), 7.05-7.01 (m, 2 H), 6.88 (d, *J* = 7.8 Hz, 1 H), 4.81 (s, 2 H), 3.59 (d, *J* = 18.6 Hz, 1 H), 3.26 (s, 3 H), 3.16 (d, *J* = 18.6 Hz, 1 H), 0.96 (s, 9 H), 0.80 (t, *J* = 7.8 Hz, 9 H), 0.57 (t, *J* = 7.8 Hz, 6 H), 0.12 (s, 6 H); ¹³C NMR (150 MHz, CDCl₃) δ 204.9, 185.6, 174.4, 144.0, 140.1, 137.9, 132.2, 131.6, 130.1, 128.6, 127.3, 124.9, 115.5, 110.1, 62.9, 45.6, 27.0, -0.6; IR (neat) 2953, 2875, 1716, 1693, 1611, 1470, 1165 cm⁻¹; HRMS (ESI) *m/z* 548.3034 [C₃₂H₄₆NO₃Si₂(M+H) requires 548.3010]; Chiralpak AD, 25 cm, 97:3 hexanes/ⁱPrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 10.1 min, t_r (minor) = 9.0 min.

(*R*)-4-(1'-Methyl-2,2'-dioxo-3-(triethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-en-4yl)benzaldehyde (3h). The cycloaddition of 1a and 4-(3-oxo-2-(triethylsilyl)cyclobut-1-en-1yl)benzaldehyde was performed on 0.08 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (2:1) to provide 24 mg (68%) of 3h in 80% *ee* as a pink solid. ¹H NMR (500 MHz, CDCl₃) δ 10.12 (s, 1 H), 7.99 (d, *J* = 7.8 Hz, 2 H), 7.58 (d, *J* = 7.8 Hz, 2 H), 7.32 (td, *J* = 7.8, 1.8 Hz, 1 H), 7.07-7.03 (m, 2 H), 6.90 (d, *J* = 7.2 Hz, 1 H), 3.58 (d, *J* = 18.6 Hz, 1 H), 3.27 (s, 3 H), 3.18 (d, *J* = 18.6 Hz, 1 H), 0.80 (t, *J* = 7.8 Hz, 9 H), 0.53 (d, *J* = 7.8 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃) δ 205.6, 191.7, 184.6, 174.7, 144.9, 144.7, 140.1, 136.9, 130.0, 129.8, 129.0, 127.6, 123.1, 121.6, 108.9, 63.0, 46.4, 26.9, 7.5, 3.3; IR (neat) 2950, 2874, 2085, 1712, 1686, 1612, 1504, 1154 cm⁻¹; HRMS (ESI) *m/z* 454.1802 [C₂₆H₂₉NO₃Si(M+Na) requires 454.1808]; m.p. = 152-154 °C; Chiralpak AD, 25 cm, 90:10 hexanes/^{*i*}PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 24.2 min, t_r (minor) = 17.9 min. [α]p²⁰ +86.5 (c 1.00, CHCl₃).

(R)-3-(tert-butyldimethylsilyl)-4-(4-methoxyphenyl)-1'-methylspiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione cycloaddition (**3i**). The of **1**a and 2-(tert-Butyldimethylsilyl)-3-(4methoxyphenyl)cyclobut-2-en-1-one was performed on 0.08 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (4:1) to provide 35 mg (85%) of **3i** in 75% *ee* as a light red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.384 (d, J = 8.8 Hz, 2 H), 7.29 (m, 1 H), 7.06-7.01 (m, 2 H), 6.96 (d, J = 8.8 Hz, 2 H), 6.88 (d, J = 8.1 Hz, 1 H), 3.86 (s, 3 H), 3.59 (d, J= 18.5 Hz, 1 H), 3.26 (s, 3 H), 3.13 (d, J = 18.5 Hz, 1 H), 0.92 (s, 9 H), -0.03 (s, 3 H), -0.14 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) & 204.9, 185.8, 174.0, 159.6, 143.6, 136.7, 129.5, 127.5, 121.8, 120.3, 112.5, 107.6, 61.9, 54.3, 45.7, 26.5, 25.7, 17.0, -0.0, -1.0, -5.3; IR (neat); 2948, 2080, 1709, 1682; m.p. = 131-133 °C. Chiralpak AD, 25 cm, 97:3 hexanes/ⁱPrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 14.46 min, t_r (minor) = 13.36 min.

(*R*)-1'-Methyl-4-(*o*-tolyl)-3-(triethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3j). The cycloaddition of 1a and 3-(*o*-tolyl)-2-(triethylsilyl)cyclobut-2-en-1-one was performed on a 0.10 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (4:1) to provide 13 mg (32%) of 3j in 64% *ee* as a red oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.30 (m, 2 H), 7.28-7.25 (m, 2 H), 7.16 (br s, 1 H), 7.09-7.05 (m, 2 H), 6.89 (d, *J* = 7.8 Hz, 1 H), 3.46 (br d, *J* = 18.5 Hz, 1 H), 3.26 (s, 3 H), 3.12 (br d, *J* = 18.5 Hz, 1 H), 2.43 (br s, 3 H), 0.79 (t, *J* = 8.1 Hz, 9 H), 0.43 (t, *J* = 8.1 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 206.2, 188.6, 174.9, 145.0, 139.5, 138.6, 132.5, 130.4, 128.8, 128.7, 126.5, 125.8, 123.0, 121.7, 108.7, 107.8, 62.9, 46.9, 26.8, 19.7, 7.5, 2.5; IR (neat) 2951, 2873, 2081, 1717, 1700, 1609 cm⁻¹; HRMS (ESI) *m/z* 418.2158 [C₂₆H₃₂NO₂Si(M+H) requires 418.2196]; Chiralpak AD, 25 cm, 95:5 hexanes/ⁱPrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 12.6 min, t_r (minor) = 10.4 min.

(*R*)-4-(3-Methoxyphenyl)-1'-methyl-3-(triethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'dione (3k). The cycloaddition of 1a and 3-(3-methoxyphenyl)-2-(triethylsilyl)cyclobut-2-en-1-one was performed on 0.13 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (6:1) to provide 44 mg (78%) of 3k in 88% *ee* as a red oil. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (t, *J* = 7.9 Hz, 1 H), 7.30 (dd, *J* = 6.9, 2.0 Hz, 1 H), 7.06-7.01 (m, 4 H), 6.93-6.92, (m, 1 H), 6.89 (d, *J* = 7.8 Hz, 1 H); ¹³C NMR (150 MHz, CDCl₃) δ 3.87 (s, 3 H), 3.59 (d, *J* = 18 Hz, 1 H), 3.26 (s, 3H), 3.16 (d, *J* = 18 Hz, 1 H), 0.81 (t, *J* = 8.1 Hz, 9 H), 0.59 (q, *J* = 8.1 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 206.1, 186.7, 175.1, 159.6, 145.0, 140.0, 138.3, 130.5, 129.7, 128.9, 123.1, 121.6, 119.4, 115.3, 112.6, 108.9, 63.1, 55.6, 46.4, 26.9, 7.6, 3.5; IR (neat) 2956, 2874, 1718, 1695, 1611, 1569, 1470, 1220, 1152; HRMS (ESI) m/z 456.1970 [C₂₆H₃₁NNaO₃Si(M+Na) requires 456.1971]; Chiralpak AD, 25 cm, 96:4 hexanes/^{*i*}PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 18.1 min, t_r (minor) = 14.8 min. [α]_D²⁰ +79.7 (c 1.00, CHCl₃).

(*R*)-1'-Benzyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (31). The cycloaddition of 1b and 2b was performed on 0.08 mmol scale at 4 °C for 48 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (5:1) to provide 32 mg (91%) of 31 in 90% *ee* as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.45 (m, 3 H), 7.44-7.42 (m, 2 H), 7.38-7.33 (m, 4 H), 7.28-7.25 (m, 1 H), 7.16 (td, *J* = 7.9, 1.2 Hz, 1 H), 7.05-6.99 (m, 3 H), 6.71 (d, *J* = 7.9 Hz, 1 H), 5.12 (d, *J* = 16 Hz, 1 H), 4.84 (d, *J* = 16 Hz, 1 H), 3.68 (d, *J* = 19 Hz, 1 H), 3.23 (d, *J* = 19 Hz, 1 H), 0.07 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃) δ 205.4, 185.3, 175.2, 143.9, 140.2, 138.3, 135.6, 130.5, 129.9, 129.0, 128.7, 128.5, 127.7, 127.2, 127.2, 123.0, 121.5, 109.8, 63.1, 46.0, 44.2, -0.5; IR (neat) 3056, 2954, 1714, 1692, 1608, 1581, 1565, 1162, cm⁻¹; HRMS (ESI) *m/z* 438.1871 [C₂₈H₂₈NO₂Si(M+Na) requires 438.1884]; m.p. = 164-170 °C. Chiralpak AD, 25 cm, 94:6 hexanes/¹PrOH, 0.75 mL/min, 25 °C, 13 bar, tr (major) = 21.4 min, tr (minor) = 13.3 min. [α]_D²⁰ +68.5 (c 1.00, CHCl₃).

(*R*)-1'-Acetyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3m). The cycloaddition of 1c and 2b was performed on 0.08 mmol scale at 4 °C for 48 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (7:1) to provide 22 mg (72%) of 3m in 79% *ee* as a pink solid. ¹H NMR (600 MHz, CDCl₃) δ 8.29 (d, *J* = 8.3 Hz, 1 H), 7.48-7.47 (m, 3 H), 7.42-41 (m, 2 H), 7.35 (t, *J* = 8.3 Hz, 1 H), 7.20 (t, *J* = 7.6 Hz, 1 H), 7.05 (d, *J* = 6.9 Hz, 1 H), 3.65 (d, *J* = 19 Hz, 1 H), 3.23 (d, *J* = 19 Hz, 1 H), 2.69 (s, 3 H), 0.06 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃) δ 204.5, 185.6, 176.0, 170.7, 141.1, 139.5, 137.8, 130.2, 129.2, 129.1, 128.6, 127.2, 125.7, 121.1, 117.2, 63.7, 46.9, 26.7, -0.6; IR (neat) 3056, 2954, 1754, 1698, 1603, 1581, 1563, 1151, cm⁻¹; HRMS (ESI) *m/z* 390.1508 [C₂₃H₂₄NO₃Si(M+H) requires 390.1519]; m.p. = 123-128 °C. Chiralpak AD, 25 cm, 98:2 hexanes/[/]PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 28.3 min, t_r (minor) = 18.2 min. [α]_D²⁰ +73.8 (c 1.00, CHCl₃).

(*R*)-1'-Allyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3n). The cycloaddition of 1d and 2b was performed on 0.08 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (4:1) to provide 23 mg (74%) of 3n in 77% *ee* as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 7.47-7.45 (m, 3 H), 7.43-7.41 (m, 2 H), 7.28-7.25 (m, 1 H), 7.04-7.03 (m, 2 H), 6.87 (d, J = 7.8 Hz, 1 H), 5.87 (ddd, J = 17.0, 10.8, 4.8 Hz, 1 H), 5.35 (dd, J = 17.0, 1.2 Hz, 1 H), 5.25 (dd, J = 10.8, 1.2 Hz, 1 H), 4.47 (dd, J = 16.4, 4.8 Hz, 1 H),

4.30 (dd, J = 16.4, 4.8 Hz, 1 H), 3.63 (d, J = 18.6 Hz, 1 H), 3.19 (d, J = 18.6 Hz, 1 H), 0.05 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃) δ 205.5, 185.4, 174.8, 144.0, 140.1, 138.3, 131.1, 130.4, 130.0 128.6, 128.5, 127.2, 122.9, 121.5, 117.7, 109.6, 63.0, 45.9, 42.8, -0.5; IR (neat) 2360, 1717, 1693, 1609, 1564, 1487, 1355, 1163 cm⁻¹; HRMS (ESI) *m/z* 388.1746 [C₂₄H₂₆NO₂Si(M+H) requires 388.1727]; m.p. = 101-104 °C. Chiralpak AD, 25 cm, 97:3 hexanes/¹PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 40.9 min, t_r (minor) = 11.2 min. [α]_{D²⁰ +84.8 (c 1.00, CHCl₃).}

(*R*)-4-Phenyl-1'-(prop-2-yn-1-yl)-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'dione (3o). The cycloaddition of 1e (40% PhMe in CH₂Cl₂) and 2b was performed on 0.08 mmol scale at 4 °C for 48 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (6:1) to provide 21 mg (68%) of 3o in 90% *ee* as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.45 (m, 3 H), 7.42-7.40 (m, 2 H), 7.33 (td, *J* = 7.3, 1.6 Hz, 1 H), 7.13 (d, *J* = 7.3 Hz, 1 H), 7.06 (td, *J* = 7.3, 1.0 Hz, 1 H), 7.06-7.04 (m, 1 H), 4.71 (dd, *J* = 17.8, 2.6 Hz, 1 H), 4.42 (dd, *J* = 17.8, 2.6 Hz, 1 H), 3.63 (d, *J* = 18.6 Hz, 1 H), 3.19 (d, *J* = 18.6 Hz, 1 H), 2.26 (t, *J* = 2.6 Hz, 1 H), 0.05 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃) δ 205.2, 185.4, 174.2, 142.8, 140.1, 138.1, 130.2, 130.0, 128.8, 128.5, 127.2, 123.4, 121.6, 109.8, 76.9, 72.7, 62.9, 45.9, 29.8, -0.6; IR (neat) 3294, 2954, 2362, 2092, 1720, 1693, 1610, 1487, 1162 cm⁻¹; HRMS (ESI) *m/z* 386.1562 [C₂₄H₂₃NO₂Si(M+H) requires 386.1571]; m.p. = 115-118 °C. Chiralpak AD, 25 cm, 97:3 hexanes/¹PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 15.2 min, t_r (minor) = 9.1 min. [α]p²⁰ +53.4 (c 1.00, CHCl₃).

(*R*)-1',5'-Dimethyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (**3p**). The cycloaddition of **1f** and **2b** was performed on 0.08 mmol scale at 4 °C for 48 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (5:1) to provide 28 mg (93%) of **3p** in 90% *ee* as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.45 (m, 3 H), 7.44-7.42 (m, 2 H), 7.10 (dd, J = 7.8, 0.6 Hz, 1 H), 6.83 (d, J = 0.6 Hz, 1 H), 6.78 (d, J = 7.8 Hz, 1 H), 3.58 (d, J = 18.6 Hz, 1 H), 3.25 (s, 3 H), 3.16 (d, J = 18.6 Hz, 1 H), 2.32 (s, 3 H), 0.05 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃) δ 205.9, 185.5, 174.9, 142.5, 140.2, 138.3, 132.6, 130.3, 129.9, 129.0, 128.5, 127.3, 122.4, 108.4, 63.1, 45.9, 26.9, 21.3, -0.5; IR (neat) 3057, 2954, 1714, 1691, 1602, 1581, 1498, 1166, cm⁻¹; HRMS (ESI) *m/z* 376.1702 [C₂₃H₂₆NO₂Si(M+H) requires 376.1727]; m.p. = 150-153 °C. Chiralpak AD, 25 cm, 97:3 hexanes/ⁱPrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 35.7 min, t_r (minor) = 16.8 min. [α]_D²⁰ +71.7 (c 1.00, CHCl₃).

(*R*)-5'-Bromo-1'-methyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'dione (3q). The cycloaddition of 1g (10% CH₂Cl₂ in PhMe) and 2b was performed on 0.08 mmol scale at 4 °C for 48 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (5:1) to provide 31 mg (90%) of **3q** in 77% *ee* as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.46 (m, 3 H), 7.44-7.41 (m, 3 H), 7.13 (d, *J* = 1.9 Hz, 1 H), 6.77 (d, *J* = 8.3 Hz, 1 H), 3.59 (d, *J* = 18.6 Hz, 1 H), 3.25 (s, 3 H), 3.17 (d, *J* = 18.6 Hz, 1 H), 0.06 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃) δ 204.9, 185.6, 174.4, 144.0, 140.1, 137.9, 132.2, 131.6, 130.1, 128.6, 127.3, 124.9, 115.5, 110.1, 62.9, 45.6, 27.0, -0.6; IR (neat) 3060, 2925, 2338, 2084, 1718, 1695, 1606, 1581, 1565, 1167, cm⁻¹; HRMS (ESI) *m/z* 440.0683 [C₂₂H₂₃BrNO₂Si(M+H) requires 440.0658]; m.p. = 80-85 °C. Chiralpak AD, 25 cm, 96:4 hexanes/^{*i*}PrOH, 0.75 mL/min, 25 °C, 13 bar, t_r (major) = 17.7 min, t_r (minor) = 10.7 min. [α]_D²⁰ +62.1 (c 1.00, CHCl₃).

(*R*)-5'-Methoxy-1'-methyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3r). The cycloaddition of 1h and 2b was performed on 0.08 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (4:1) to provide 14 mg (43%) of 3r in 84% *ee* as a purple solid. ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.44 (m, 3 H), 7.42-7.40 (m, 2 H), 6.83-6.78 (m, 2 H), 6.64 (d, *J* = 2.25 Hz, 1 H), 3.77 (s, 3 H), 3.61 (d, *J* = 18.6 Hz, 1 H), 3.24 (s, 3 H), 3.15 (d, *J* = 18.6 Hz, 1 H), 0.04 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃) δ 205.6, 185.4, 174.7, 156.3, 140.2, 138.4, 138.2, 131.6, 129.9, 128.5, 127.2, 112.3, 109.7, 108.9, 63.4, 56.0, 45.9, 26.9, -0.6; IR (neat) 3058, 2953, 1714, 1689, 1602, 1581, 1566, 1496, 1169, cm⁻¹; HRMS (ESI) *m/z* 392.1667 [C₂₃H₂₆NO₃Si(M+H) requires 392.1676]; m.p. = 75-80 °C. Chiralpak AD, 25 cm, 96:4 hexanes/ⁱPrOH, 1.0 mL/min, 25 °C, 13 bar, t_r (major) = 25.1 min, t_r (minor) = 12.4 min. [α]_D²⁰+53.3 (c 1.00, CHCl₃).

(*R*)-6'-Methoxy-1'-methyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3s). The annulation of 1i and 2b was performed on a 0.10 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (3:1) to provide 19 mg (49%) of 3s in 86% *ee* as a beige solid. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.44 (m, 3 H), 7.42-7.39 (m, 2 H), 6.92 (d, *J* = 8.2 Hz, 1 H), 6.54 (dd, *J* = 8.2, 2.3 Hz, 1 H), 6.48 (d, *J* = 2.3 Hz, 1 H), 3.83 (s, 3 H), 3.58 (d, *J* = 19 Hz, 1 H), 3.24 (s, 3H), 3.13 (d, *J* = 19 Hz, 1 H), 0.04 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 206.6, 185.8, 176.1, 161.3, 146.6, 140.1, 138.9, 130.4, 129.0, 127.8, 122.8, 122.7, 107.4, 97.4, 63.1, 56.3, 46.5, 27.4; IR (neat) 3023, 1717, 1692, 1626, 1375 cm⁻¹; HRMS (ESI) *m/z* 392.1697 [C₂₃H₂₆NO₃Si(M+H) requires 392.1676]; m.p. = 164-166 °C. Chiralpak AD, 25 cm, 93:7 hexanes/ⁱPrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 28.5 min, t_r (minor) = 18.6 min. [α]_D²⁰ +75.9 (c 1.00, CHCl₃).

(*R*)-7'-Methoxy-1'-methyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (3t). The annulation of 1j and 2b was performed on a 0.08 mmol scale at room temperature for 28 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (4:1) to provide 24 mg (75%) of 3t in 88% *ee* as a red solid. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.43 (m, 2 H), 7.41-7.39 (m, 2 H), 6.97 (m, 1 H), 6.86 (app d, J = 8.4 Hz, 1 H), 6.64 (dd, J = 8.4, 0.9 Hz, 1 H), 3.86 (s, 3 H), 3.58 (d, J = 19 Hz, 1 H), 3.53 (s, 3 H), 3.13 (d, J = 19 Hz, 1 H), 0.04 (s, 9 H), ¹³C NMR (125 MHz, CDCl₃) δ 205.5, 185.3, 175.1, 145.7, 140.1, 138.3, 132.7, 131.8, 129.8, 128.5, 127.2, 123.6, 114.2, 112.7, 63.3, 56.2, 46.2, 30.1, -0.6; IR (neat) 2951, 1717, 1695, 1490 cm⁻¹; HRMS (ESI) *m/z* 392.1637 [C₂₃H₂₆NO₃Si(M+H) requires 392.1676]; m.p. = 128-131 °C; Chiralpak AD, 25 cm, 92:8 hexanes/^{*i*}PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 20.3 min, t_r (minor) = 11.3 min. [α]_D²⁰ +66.4 (c 1.00, CHCl₃).

(1R.2R)-1'-Methyl-2-(2-oxo-1-(trimethylsilyl)vinyl)-2-phenylspiro[cvclopropane-1,3'-indolin]-2'-one (4a). A solution of 2b (38 mg, 0.18 mmol) and Rh₂(S-TCPTTL)₄ (9.4 mg, 3.0 µmol) in PhMe (0.75 mL) was stirred for 20 min at 90 °C then cooled to room temperature by removal of the oil bath. A solution of 1a (36 mg, 0.21 mmol) in PhMe (1.0 mL) was then added slowly over 1 h and the resulting mixture stirred for an additional 1 h. The mixture was filtered through a pad of SiO_2 eluting first with hexanes (10 mL) then hexanes/EtOAc (2:1) and the filtrate concentrated under reduced pressure [note: rotary evaporator bath temperature not to exceed 40 °C]. The crude residue was purified by flash chromatography eluting with hexanes/EtOAc (6:1) to provide 38 mg (60%) of 4a in 95% ee as a pink solid (isolated as a 9:1 mixture with **3b** determined by ¹H NMR (500 MHz) analysis of the crude mixture (**4a**: 2.60 (d, 1 H); **3b**: 3.60 (d, 1 H)). ¹H NMR (500 MHz, CDCl₃) δ 7.29 (td, J = 7.7, 1.3 Hz, 1 H), 7.30-7.27 (m, 2 H), 7.25-7.22 (m, 3 H), 7.20 (dd, J = 7.5, 1.0 Hz, 1 H), 7.09 (td, J = 7.6, 1.0 Hz, 1 H), 6.90 (d, J = 7.7, 1 H), 3.17 (s, 3 H), 2.60 (d, J = 5.1, 1 H), 1.90 (d, J = 5.1, 1 H), 0.09 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 181.1, 173.8, 144.7, 141.3, 129.1, 128.2, 127.5, 127.4, 123.0, 122.5, 121.6, 108.7, 108.0, 40.27, 38.8, 28.5, 26.7, -0.4; IR (neat) 2955, 2084, 1717, 1614, 1492, 1469, 1252 cm⁻¹; HRMS (ESI) m/z 362.1561 [C₂₂H₂₄NO₂Si(M+H) requires 362.1570]. m.p. = 196-199 °C. Chiralpak AD, 25 cm, 97:3 hexanes/ⁱPrOH, $0.5 \text{ mL/min}, 25 \degree \text{C}, 13 \text{ bar}, t_r \text{ (major)} = 13.3 \text{ min}, t_r \text{ (minor)} = 20.6 \text{ min}.$

General procedure for the enantioselective Rh^{II}-catalyzed, formal [4+1]-cycloaddition of diazo compound 1 and cyclobutenone 2: A solution of 2b (0.1 mmol) and Rh₂(*S*-TCPTTL)₄ (5.4 mg, 3.0 μ mol) in PhMe (0.33 mL) was stirred at 90 °C for 20 min then cooled to the indicated temperature. A solution of 1 (0.12 mmol) in PhMe (0.67 mL) was added slowly over 1 h, stirred for an additional 2 h, then SiO₂ (1 mmol) was added and stirred for the indicated time. The reaction mixture was concentrated under reduced pressure and the crude residue purified by flash chromatography eluting with hexanes/EtOAc at the indicated ratio (10:1-20:1) to provide the title cyclopentenone 7 or cyclopropyl ketene 8.

Methyl (1*R*,2*R*)-2-(2-oxo-1-(trimethylsilyl)vinyl)-2-phenylcyclopropane-1-carboxylate (8a). The cyclopropanation of **6a** and **2b** was performed on a 0.08 mmol scale at room temperature for 5 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (20:1) to provide 13 mg (54%) of **4a** in a 1.4:1 mixture of diastereomers. Diastereoselectivity was determined by ¹H NMR (500 MHz) analysis of the crude mixture (**4a**: 2.16 (dd, 1 H); **minor**: 2.38 (dd, 1 H)). **4a**: Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.27 (m, 2 H), 7.24-7.22 (m, 2 H), 7.20-7.17 (comp, 1 H), 3.83 (qd, *J* = 7.2, 1.2 Hz, 2 H), 2.16 (dd, *J* = 8.2, 5.8 Hz, 1 H), 2.07 (dd, *J* = 5.8, 5.0 Hz, 1 H), 1.33 (dd, *J* = 8.2, 5.0 Hz, 1 H), 0.97 (t, *J* = 7.2 Hz, 3 H), 0.22 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 184.5, 161.5, 130.9, 129.6, 128.2, 127.8, 127.3, 60.3, 48.7, 33.8, -1.8; IR (neat) 2929, 2361, 1719, 1174 cm⁻¹; HRMS (ESI) *m/z* 303.1437 [C₁₇H₂₂O₃Si(M+H) requires 362.1416].

(R)-2-oxo-1,4-diphenyl-3-(trimethylsilyl)cyclopent-3-ene-1-carboxylate The Methyl (7b). cycloaddition of **6b** and **2b** was performed on a 0.10 mmol scale at 60 °C for 20 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (20:1 then 15:1) to provide 27 mg (63%) of **8b** and **7b** in a 2.3:1 ratio. Ratio determined by ¹H NMR (500 MHz) analysis of the crude mixture (**8b**: 2.67 (d, 1 H); **7b**: 4.07 (d, 1 H)). **7b**: Colorless oil, 54% ee. ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.39 (m, 3 H), 7.36-7.35 (m, 4 H), 7.31-7.29 (m, 3 H), 4.07 (d, J = 19 Hz, 1 H), 3.75 (s, 3 H), 3.28 (d, J = 19 Hz, 1 H), 0.68 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 206.7, 183.2, 171.9, 140.0, 138.7, 136.0, 130.2, 129.3, 128.9, 128.6, 128.0, 127.7, 65.6, 53.8, 49.7, 0.6; IR (neat) 2952, 1726, 1698, 1249 cm⁻¹; HRMS (ESI) *m/z* 365.1540 [C₂₂H₂₅O₃Si(M+H) requires 365.1567]. Chiralpak AD, 25 cm, 99:1 hexanes/ⁱPrOH, 1.0 mL/min, 25 °C, 13 bar, tr (major) = 11.9 min, tr (minor) = 13.2 min. Methyl (1R,2R)-2-(2-oxo-1-(trimethylsilyl)vinyl)-1,2-diphenylcyclopropane-1-carboxylate (8b): Colorless oil, 52% ee. Stereochemistry determined by ROESY analysis (correlation between 2.67 (d, 1 H) and 7.34 (m, 2 H); 1.70 (d, 1 H) and 7.60 (m, 2 H) ppm). ¹H NMR (500 MHz, CDCl₃) δ 7.60-7.57 (m, 2 H), 7.42-7.34 (m, 5 H), 7.33-7.29 (m, 2 H), 7.21 (td, J = 6.7, 1.4 Hz, 1 H), 7.09 (td, J = 7.6, 1.0 Hz, 1 H), 3.20 (s, 3 H), 2.67 $(d, J = 5.6 \text{ Hz}, 1 \text{ H}), 1.70 (d, J = 5.6 \text{ Hz}, 1 \text{ H}), -0.12 (s, 9 \text{ H}); {}^{13}\text{C} \text{ NMR} (125 \text{ MHz}, \text{CDCl}_3) \delta 179.6, 170.6,$ 142.6, 136.2, 131.9, 128.7, 128.3, 128.1, 128.0, 127.1, 52.2, 42.5, 36.2, 23.5, 22.0, -0.25; IR (neat) 2952, 2080, 1726, 1249 cm⁻¹; HRMS (ESI) m/z 365.1548 [C₂₂H₂₅O₃Si(M+H) requires 365.1567]; Chiralpak AD, 25 cm, 99:1 hexanes/ⁱPrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 12.6 min, t_r (minor) = 17.3 min. $[\alpha]_D^{20} + 14.2$ (c 1.00, CHCl₃).

(*R*)-3,5-Diphenyl-2-(trimethylsilyl)cyclopent-2-en-1-one (7c). The cycloaddition of 6c and 2b was performed on a 0.08 mmol scale at rt for 16 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (30:1) to provide 15 mg (63%) of 7c in 82% *ee* as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.41 (m, 3 H), 7.35-7.32 (m, 4 H), 7.24 (comp, 1 H), 7.20-7.19 (m, 2 H), 3.71, (dd,

J = 7.5, 3.1 Hz, 1 H), 4.43 (dd, J = 19, 7.5 Hz, 1 H), 3.06 (dd, J = 19, 3.1 Hz, 1 H), 0.2 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 212.3, 183.9, 141.1, 140.2, 139.1, 129.4, 128.9, 128.4, 127.7, 126.9, 53.0, 44.6, -0.4; IR (neat) 2953, 1712, 1694, 1248 cm⁻¹; HRMS (ESI) *m/z* 307.1535 [C₂₀H₂₃OSi(M+H) requires 307.1512]. Chiralpak AD, 25 cm, 97:3 hexanes/^{*i*}PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 13.5 min, t_r (minor) = 10.4 min. [α]_D²⁰ +54.6 (c 1.00, CHCl₃).

(*R*)-4-Phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,4'-isochroman]-3-ene-2,3'-dione (7d). The cycloaddition of 6d and 2b was performed on a 0.10 mmol scale at 4 °C for 48 h. Purification was performed by flash chromatography eluting with hexanes/EtOAc (20:1) to provide 27 mg (75%) of 7d in 86% *ee* as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.48 (m, 3 H), 7.46-7.35 (m, 2 H), 7.34-7.32 (m, 2 H), 7.26-7.24 (m, 2 H), 7.09 (comp, 1 H), 6.13, (d, *J* = 14 Hz, 1 H), 5.32 (d, *J* = 14 Hz, 1 H), 4.22 (d, *J* = 19 Hz, 1 H), 3.36 (d, *J* = 19 Hz, 1 H), -0.2 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 206.2, 185.9, 169.6, 138.1, 136.1, 133.0, 131.6, 130.1, 128.7, 128.6, 127.9, 127.2, 125.3, 123.7, 71.2, 61.6, 46.4, -0.6; IR (neat) 2955, 1731, 1698, 1248 cm⁻¹; HRMS (ESI) *m/z* 363.1412 [C₂₂H₂₃O₃Si(M+H) requires 363.1410]. Chiralpak AD, 25 cm, 97:3 hexanes/ⁱPrOH, 0.75 mL/min, 25 °C, 13 bar, t_r (major) = 20.5 min, t_r (minor) = 15.3 min. [α]_D²⁰ +28.7 (c 1.00, CHCl₃).

(1R,3S,4R)-1'-Methyl-4-phenyl-3-(trimethylsilyl)spiro[cyclopentane-1,3'-indoline]-2,2'-dione

(9). To a stirring solution of Pd/C (4.2 mg, 20 µmol) in ethyl acetate (0.1 mL) was added a solution of **3b** (36 mg, 0.1 mmol) in ethyl acetate (0.4 mL). The mixture stirred for 5 h and then filtered through a pad of celite and concentrated under reduced pressure. The crude residue was purified by flash chromatography eluting with hexanes/EtOAc (3:1) to provide 31 mg (85%) of **9** in a 6:1 mixture of diastereomers. Stereochemistry determined by ROESY analysis (correlation between 7.39 (m, 4 H) and - 0.07 (s, 9 H); 7.39 (m, 4 H) and 6.88 (d, 1 H) ppm). Diastereoselectivity was determined by ¹H NMR (500 MHz) analysis of the crude mixture (**9**: 4.35 (comp, 1 H); **minor**: 4.83 (comp, 1 H)). **9**: white solid, 99% *ee*. ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.36 (m, 4 H), 7.32-7.28 (m, 2 H), 7.25 (d, *J* = 7.6 Hz, 1 H), 7.03 (td, *J* = 7.6, 1.0 Hz, 1 H), 6.88 (d, *J* = 7.7 Hz, 1 H), 4.35 (comp, 1 H), 3.28 (d, *J* = 13 Hz, 1 H), 3.26 (s, 3 H), 2.84 (dd, *J* = 8.6, 2.1 Hz, 1 H), 2.52 (ddd, *J* = 13, 5.7, 2.1 Hz, 1 H), -0.07 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 211.9, 175.8, 144.4, 139.9, 131.8, 128.8, 128.7, 128.4, 127.4, 122.9, 122.4, 108.7, 64.5, 51.5, 43.3, 37.1, 26.7, -0.09; IR (neat) 2923, 1698, 1610, 1492 cm⁻¹; m.p. 165-168 °C; HRMS (ESI) *m/z* 364.1693 [C₂₂H₂₆NO₂Si(M+H) requires 364.1727]. Chiralpak AD, 25 cm, 97:3 hexanes/¹PrOH, 0.5 mL/min, 25 °C, 13 bar, t_r (major) = 15.9 min, t_r (minor) = 11.2 min. [α]_D²⁰ +39.7 (c 1.00, CHCl₃).

(*R*)-1'-Methyl-4-phenylspiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (10). To a stirring solution of **3b** (18 mg, 0.05 mmol) in THF (0.4 mL) was added dropwise a solution of TBAF (0.1 mL, 1.0

M solution) at -20 °C. The reaction mixture stirred for 3 h after which 1.0 mL of saturated ammonium chloride was added. The reaction mixture was diluted with EtOAc (2 mL) and the layers were separated. The organic layer was washed with brine, sodium sulfate and concentrated under reduced pressure. The crude residue was purified by flash chromatography eluting with hexanes/EtOAc (1:1) to provide 15 mg (99%) of **10** in 99% *ee* as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.72 (m, 2 H), 7.54-7.49 (m, 3 H), 7.32 (comp, 1 H), 7.05-7.03 (m, 2 H), 6.90 (d, *J* = 7.8, 1 H), 6.68 (t, *J* = 1.8, 1 H), 3.71 (dd, *J* = 18, 2 Hz, 1 H), 3.28 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 201.7, 174.6, 144.9, 133.2, 132.2, 130.1, 129.2, 129.0, 127.4, 125.3, 123.1, 122.1, 108.8, 62.1, 39.9, 26.9; IR (neat) 2924, 1716, 1693, 1598 cm⁻¹; HRMS (ESI) *m/z* 312.0990 [C₁₉H₁₅NO₂(M+Na) requires 312.0994]. m.p. = 185-188 °C. Chiralpak AS, 25 cm, 80:20 hexanes/^{*i*}PrOH, 1.0 mL/min, 25 °C, 13 bar, t_r (major) = 35.9 min, t_r (minor) = 30.1 min. [α]_D²⁰ +80.6 (c 1.00, CHCl₃).

3. CRYSTAL DATA FOR **3**B:

Crystal data for C₂₂H₂₃NO₂Si; M_r = 361.50; Orthorhombic; space group P2₁2₁2₁; a = 9.4164(3) Å; b = 11.6775(4) Å; c = 17.2070(6) Å; $\alpha = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; V = 1892.08(11) Å³; Z = 4; T = 120(2) K; $\lambda = 1.54178$ Å; $\mu = 1.214$ mm⁻¹; d_{calc} = 1.269g.cm⁻³; 40424 reflections collected; 3643 unique (R_{int} = 0.0290); giving R₁ = 0.0266, wR₂ = 0.0703 for 3638 data with [I>2 σ (I)] and R₁ = 0.0266, wR₂ = 0.0703 for all 3643 data. Residual electron density (e⁻.Å⁻³) max/min: 0.131/-0.292.

Table 1. Crystal data and structure refinement for **3b**.

Identification code	KR41772	
Empirical formula	C22 H23 N O2 Si	
Formula weight	361.50	
Temperature	120(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 9.4164(3) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 11.6775(4) Å	$\beta = 90^{\circ}$
	c = 17.2070(6) Å	$\gamma = 90^{\circ}$
Volume	1892.08(11) Å ³	

Z	4
Density (calculated)	1.269 g.cm ⁻³
Absorption coefficient (μ)	1.214 mm ⁻¹
F(000)	768
Crystal size	$0.334\times0.301\times0.222\ mm^3$
θ range for data collection	4.576 to 71.740°
Index ranges	$\text{-}11 \leq h \leq 11, \text{-}12 \leq k \leq 13, \text{-}21 \leq l \leq 21$
Reflections collected	40424
Independent reflections	$3643 [R_{int} = 0.0290]$
Completeness to $\theta = 67.679^{\circ}$	98.5 %
Absorption correction	Semi-empirical from equivalents
Absorption correction Max. and min. transmission	Semi-empirical from equivalents 0.7535 and 0.6162
Absorption correction Max. and min. transmission Refinement method	Semi-empirical from equivalents 0.7535 and 0.6162 Full-matrix least-squares on F ²
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters	Semi-empirical from equivalents 0.7535 and 0.6162 Full-matrix least-squares on F ² 3643 / 0 / 239
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Semi-empirical from equivalents 0.7535 and 0.6162 Full-matrix least-squares on F ² 3643 / 0 / 239 1.103
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2σ(I)]	Semi-empirical from equivalents 0.7535 and 0.6162 Full-matrix least-squares on F ² 3643 / 0 / 239 1.103 R ₁ = 0.0266, wR ₂ = 0.0703
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2σ(I)] R indices (all data)	Semi-empirical from equivalents 0.7535 and 0.6162 Full-matrix least-squares on F ² 3643 / 0 / 239 1.103 $R_1 = 0.0266, wR_2 = 0.0703$ $R_1 = 0.0266, wR_2 = 0.0703$
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2 σ (I)] R indices (all data) Absolute structure parameter	Semi-empirical from equivalents 0.7535 and 0.6162 Full-matrix least-squares on F ² 3643 / 0 / 239 1.103 $R_1 = 0.0266, wR_2 = 0.0703$ $R_1 = 0.0266, wR_2 = 0.0703$ 0.048(3)
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2 σ (I)] R indices (all data) Absolute structure parameter Extinction coefficient	Semi-empirical from equivalents 0.7535 and 0.6162 Full-matrix least-squares on F ² 3643 / 0 / 239 1.103 $R_1 = 0.0266, wR_2 = 0.0703$ $R_1 = 0.0266, wR_2 = 0.0703$ 0.048(3) n/a

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **3b**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)
Si(1)	0.13678(4)	0.24407(4)	0.73453(3)	0.017(1)
O(1)	0.70659(16)	0.09997(15)	0.76997(10)	0.040(1)
O(2)	0.37734(14)	0.16140(12)	0.84872(7)	0.027(1)
N(1)	0.73230(17)	0.20403(14)	0.88291(9)	0.023(1)
C(1)	0.68153(19)	0.30862(16)	0.91239(10)	0.020(1)
C(2)	0.67722(19)	0.18175(18)	0.81098(11)	0.026(1)
C(3)	0.56926(18)	0.27590(17)	0.79253(10)	0.022(1)
C(4)	0.58633(19)	0.35737(16)	0.85961(10)	0.020(1)
C(5)	0.5218(2)	0.46069(18)	0.87583(12)	0.028(1)
C(6)	0.5550(2)	0.51465(19)	0.94587(14)	0.035(1)
C(7)	0.6509(2)	0.4662(2)	0.99717(12)	0.034(1)

C(8)	0.7166(2)	0.36158(18)	0.98144(11)	0.026(1)
C(9)	0.41737(18)	0.22395(16)	0.79662(10)	0.020(1)
C(10)	0.33595(17)	0.26139(15)	0.72781(9)	0.018(1)
C(11)	0.42786(18)	0.31047(16)	0.67770(10)	0.018(1)
C(12)	0.5767(2)	0.3249(2)	0.71004(10)	0.029(1)
C(13)	0.39902(18)	0.34380(15)	0.59652(10)	0.018(1)
C(14)	0.4699(2)	0.43522(17)	0.56111(11)	0.023(1)
C(15)	0.4421(2)	0.46315(18)	0.48407(11)	0.027(1)
C(16)	0.3440(2)	0.40072(18)	0.44141(11)	0.027(1)
C(17)	0.2750(2)	0.30869(18)	0.47572(11)	0.026(1)
C(18)	0.30294(19)	0.27965(16)	0.55227(10)	0.021(1)
C(19)	0.0334(2)	0.32505(18)	0.66005(11)	0.026(1)
C(20)	0.0947(2)	0.08845(16)	0.73137(13)	0.031(1)
C(21)	0.0906(2)	0.31043(18)	0.83009(11)	0.027(1)
C(22)	0.8314(2)	0.1300(2)	0.92330(14)	0.034(1)
H(5)	0.4566	0.4942	0.8403	0.034
H(6)	0.5111	0.5855	0.9585	0.042
H(7)	0.6726	0.5051	1.0442	0.041
H(8)	0.7825	0.3284	1.0167	0.032
H(12A)	0.6041	0.4067	0.7111	0.035
H(12B)	0.6465	0.2822	0.6782	0.035
H(14)	0.5374	0.4784	0.5898	0.028
H(15)	0.4906	0.5254	0.4605	0.033
H(16)	0.3242	0.4208	0.3890	0.033
H(17)	0.2082	0.2654	0.4466	0.031
H(18)	0.2565	0.2156	0.5749	0.026
H(19A)	0.0709	0.4031	0.6559	0.039
H(19B)	-0.0667	0.3280	0.6755	0.039
H(19C)	0.0418	0.2866	0.6096	0.039
H(20A)	-0.0078	0.0776	0.7374	0.046
H(20B)	0.1447	0.0492	0.7736	0.046
H(20C)	0.1253	0.0566	0.6814	0.046
H(21A)	0.1334	0.3868	0.8335	0.041
H(21B)	0.1269	0.2624	0.8723	0.041
H(21C)	-0.0129	0.3170	0.8346	0.041
H(22A)	0.7910	0.1072	0.9734	0.052
H(22B)	0.9208	0.1711	0.9319	0.052

$\Pi(22C)$ 0.0490 0.0010 0.0910 0.09	H(22C)	0.8496	0.0616	0.8918	0.052
--------------------------------------	--------	--------	--------	--------	-------

Table 3. Anisotropic displacement parameters (Å²) for **3b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

	U11	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
Si(1)	0.0142(2)	0.0180(2)	0.0191(2)	0.0015(2)	-0.0009(2)	-0.0014(2)
O(1)	0.0269(7)	0.0485(9)	0.0440(9)	-0.0207(8)	0.0009(7)	0.0058(7)
O(2)	0.0225(7)	0.0383(8)	0.0198(6)	0.0097(5)	0.0006(5)	0.0007(6)
N(1)	0.0180(7)	0.0268(8)	0.0248(7)	0.0003(6)	-0.0044(6)	0.0039(6)
C(1)	0.0164(8)	0.0257(9)	0.0184(8)	0.0036(7)	0.0010(6)	-0.0027(7)
C(2)	0.0163(8)	0.0354(11)	0.0250(9)	-0.0054(8)	-0.0002(7)	0.0005(8)
C(3)	0.0154(8)	0.0359(11)	0.0154(8)	0.0013(7)	-0.0003(6)	0.0005(7)
C(4)	0.0156(8)	0.0273(10)	0.0174(8)	0.0029(7)	0.0006(6)	-0.0019(7)
C(5)	0.0214(9)	0.0277(11)	0.0361(10)	0.0079(8)	0.0035(8)	0.0003(8)
C(6)	0.0283(11)	0.0250(11)	0.0505(13)	-0.0072(9)	0.0120(9)	-0.0054(8)
C(7)	0.0325(11)	0.0396(12)	0.0314(10)	-0.0122(9)	0.0083(9)	-0.0169(9)
C(8)	0.0236(9)	0.0370(11)	0.0185(8)	0.0010(8)	-0.0014(7)	-0.0098(8)
C(9)	0.0164(8)	0.0270(10)	0.0161(8)	0.0002(7)	0.0005(7)	0.0022(7)
C(10)	0.0175(8)	0.0205(8)	0.0155(8)	-0.0015(7)	-0.0016(6)	0.0002(6)
C(11)	0.0167(8)	0.0223(9)	0.0154(8)	-0.0011(6)	-0.0005(6)	0.0005(7)
C(12)	0.0167(8)	0.0540(13)	0.0160(8)	0.0053(8)	-0.0004(7)	-0.0064(9)
C(13)	0.0167(8)	0.0233(9)	0.0145(8)	-0.0001(6)	0.0011(6)	0.0034(7)
C(14)	0.0211(9)	0.0271(10)	0.0210(9)	0.0010(7)	0.0005(7)	-0.0013(7)
C(15)	0.0273(10)	0.0309(10)	0.0243(9)	0.0071(8)	0.0032(8)	0.0014(8)
C(16)	0.0299(10)	0.0377(11)	0.0139(8)	0.0035(7)	0.0007(7)	0.0060(8)
C(17)	0.0262(9)	0.0332(10)	0.0177(8)	-0.0041(7)	-0.0023(7)	0.0026(8)
C(18)	0.0224(8)	0.0234(9)	0.0182(8)	-0.0014(7)	0.0010(7)	0.0017(7)
C(19)	0.0192(8)	0.0299(11)	0.0287(9)	0.0036(8)	-0.0031(7)	0.0028(7)
C(20)	0.0295(10)	0.0212(9)	0.0420(11)	0.0041(8)	-0.0047(9)	-0.0058(8)
C(21)	0.0230(9)	0.0358(11)	0.0232(9)	-0.0004(8)	0.0043(7)	0.0050(8)
C(22)	0.0230(10)	0.0336(12)	0.0469(12)	0.0105(9)	-0.0085(9)	0.0040(8)

Table 4. Bond lengths [Å] for **3b**.

distance	atom-atom	distance	
1.861(2)	Si(1)-C(19)	1.8666(19)	Si(1)-
1.8691(19)	Si(1)-C(10)	1.8899(17)	O(1)-
1.219(2)	O(2)-C(9)	1.216(2)	N(1)-
1.367(2)	N(1)-C(1)	1.406(2)	N(1)-
1.450(2)	C(1)-C(8)	1.380(3)	C(1)-
1.397(3)	C(2)-C(3)	1.531(3)	C(3)-
1.504(2)	C(3)-C(12)	1.532(2)	C(3)-
1.555(2)	C(4)-C(5)	1.379(3)	C(5)-
1.395(3)	C(5)-H(5)	0.9500	C(6)-
1.384(3)	C(6)-H(6)	0.9500	C(7)-
1.396(3)	C(7)-H(7)	0.9500	C(8)-
0.9500	C(9)-C(10)	1.477(2)	C(10)-
1.349(2)	C(11)-C(13)	1.475(2)	C(11)-
1.517(2)	C(12)-H(12A)	0.9900	C(12)-
0.9900	C(13)-C(14)	1.399(3)	C(13)-
1.400(2)	C(14)-C(15)	1.390(3)	C(14)-
0.9500	C(15)-C(16)	1.387(3)	C(15)-
0.9500	C(16)-C(17)	1.388(3)	C(16)-
0.9500	C(17)-C(18)	1.385(3)	C(17)-
0.9500	C(18)-H(18)	0.9500	C(19)-
0.9800	C(19)-H(19B)	0.9800	C(19)-
0.9800	C(20)-H(20A)	0.9800	C(20)-
0.9800	C(20)-H(20C)	0.9800	C(21)-
0.9800	C(21)-H(21B)	0.9800	C(21)-
0.9800	C(22)-H(22A)	0.9800	C(22)-
0.9800	C(22)-H(22C)	0.9800	
	distance 1.861(2) 1.8691(19) 1.219(2) 1.367(2) 1.450(2) 1.397(3) 1.504(2) 1.555(2) 1.395(3) 1.384(3) 1.396(3) 0.9500 1.349(2) 1.517(2) 0.9900 1.400(2) 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9800	distanceatom-atom $1.861(2)$ Si(1)-C(19) $1.8691(19)$ Si(1)-C(10) $1.219(2)$ O(2)-C(9) $1.367(2)$ N(1)-C(1) $1.450(2)$ C(1)-C(8) $1.397(3)$ C(2)-C(3) $1.504(2)$ C(3)-C(12) $1.555(2)$ C(4)-C(5) $1.395(3)$ C(5)-H(5) $1.384(3)$ C(6)-H(6) $1.396(3)$ C(7)-H(7) 0.9500 C(9)-C(10) $1.349(2)$ C(11)-C(13) $1.517(2)$ C(12)-H(12A) 0.9900 C(13)-C(14) $1.400(2)$ C(14)-C(15) 0.9500 C(15)-C(16) 0.9500 C(17)-C(18) 0.9500 C(19)-H(19B) 0.9800 C(20)-H(20A) 0.9800 C(21)-H(21B) 0.9800 C(21)-H(21B) 0.9800 C(22)-H(22A) 0.9800 C(22)-H(22C)	distanceatom-atomdistance $1.861(2)$ $Si(1)$ -C(19) $1.8666(19)$ $1.8691(19)$ $Si(1)$ -C(10) $1.8899(17)$ $1.219(2)$ $O(2)$ -C(9) $1.216(2)$ $1.367(2)$ $N(1)$ -C(1) $1.406(2)$ $1.450(2)$ $C(1)$ -C(8) $1.380(3)$ $1.397(3)$ $C(2)$ -C(3) $1.531(3)$ $1.504(2)$ $C(3)$ -C(12) $1.532(2)$ $1.555(2)$ $C(4)$ -C(5) $1.379(3)$ $1.395(3)$ $C(5)$ -H(5) 0.9500 $1.384(3)$ $C(6)$ -H(6) 0.9500 $1.396(3)$ $C(7)$ -H(7) 0.9500 0.9500 $C(9)$ -C(10) $1.477(2)$ $1.349(2)$ $C(11)$ -C(13) $1.475(2)$ $1.517(2)$ $C(12)$ -H(12A) 0.9900 0.9900 $C(13)$ -C(14) $1.399(3)$ $1.400(2)$ $C(14)$ -C(15) $1.387(3)$ 0.9500 $C(15)$ -C(16) $1.387(3)$ 0.9500 $C(16)$ -C(17) $1.388(3)$ 0.9500 $C(16)$ -C(17) $1.388(3)$ 0.9500 $C(10)$ -H(19B) 0.9800 0.9800 $C(20)$ -H(20A) 0.9800 0.9800 $C(20)$ -H(20C) 0.9800 0.9800 $C(21)$ -H(21B) 0.9800 0.9800 $C(22)$ -H(22C) 0.9800

Symmetry transformations used to generate equivalent atoms:

Table 5. Bond angles [°] for **3b**.

atom-atom-atom	angle	atom-atom-atom	angle	
C(20)-Si(1)-C(19)	111.33(10)	C(20)-Si(1)-C(21)	112.40(10)	C(19)-
Si(1)-C(21)	105.81(9)	C(20)-Si(1)-C(10)	108.29(9)	C(19)-
Si(1)-C(10)	114.92(8)	C(21)-Si(1)-C(10)	103.92(8)	C(2)-
N(1)-C(1)	111.27(15)	C(2)-N(1)-C(22)	124.39(18)	C(1)-
N(1)-C(22)	124.33(17)	C(8)-C(1)-C(4)	122.07(19)	C(8)-
C(1)-N(1)	128.20(18)	C(4)-C(1)-N(1)	109.72(16)	O(1)-
C(2)-N(1)	125.94(19)	O(1)-C(2)-C(3)	126.38(18)	N(1)-
C(2)-C(3)	107.65(16)	C(4)-C(3)-C(2)	102.95(14)	C(4)-
C(3)-C(12)	118.02(17)	C(2)-C(3)-C(12)	115.47(16)	C(4)-
C(3)-C(9)	108.07(14)	C(2)-C(3)-C(9)	108.74(15)	C(12)-

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)-C(9)	103.28(14)	C(5)-C(4)-C(1)	120.49(18)	C(5)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)-C(3)	131.40(17)	C(1)-C(4)-C(3)	108.04(16)	C(4)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)-C(6)	118.11(19)	C(4)-C(5)-H(5)	120.9	C(6)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)-H(5)	120.9	C(7)-C(6)-C(5)	120.8(2)	C(7)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)-H(6)	119.6	C(5)-C(6)-H(6)	119.6	C(6)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)-C(8)	121.55(19)	С(6)-С(7)-Н(7)	119.2	C(8)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)-H(7)	119.2	C(1)-C(8)-C(7)	116.94(19)	C(1)-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)-H(8)	121.5	C(7)-C(8)-H(8)	121.5	O(2)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(10)	127.44(16)	O(2)-C(9)-C(3)	123.55(16)	C(10)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(3)	109.01(14)	C(11)-C(10)-C(9)	107.77(14)	C(11)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-Si(1)	136.14(13)	C(9)-C(10)-Si(1)	115.75(12)	C(10)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)-C(13)	126.80(16)	C(10)-C(11)-C(12)	113.90(15)	C(13)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)-C(12)	119.21(15)	C(11)-C(12)-C(3)	104.84(15)	C(11)-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(12)-H(12A)	110.8	C(3)-C(12)-H(12A)	110.8	C(11)-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(12)-H(12B)	110.8	C(3)-C(12)-H(12B)	110.8	H(12A)-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(12)-H(12B)	108.9	C(14)-C(13)-C(18)	118.69(16)	C(14)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)-C(11)	121.73(16)	C(18)-C(13)-C(11)	119.53(16)	C(15)-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(14)-C(13)	120.28(18)	C(15)-C(14)-H(14)	119.9	C(13)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-H(14)	119.9	C(16)-C(15)-C(14)	120.48(18)	C(16)-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15)-H(15)	119.8	C(14)-C(15)-H(15)	119.8	C(15)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)-C(17)	119.59(17)	C(15)-C(16)-H(16)	120.2	C(17)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)-H(16)	120.2	C(18)-C(17)-C(16)	120.32(18)	C(18)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)-H(17)	119.8	C(16)-C(17)-H(17)	119.8	C(17)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)-C(13)	120.60(18)	C(17)-C(18)-H(18)	119.7	C(13)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)-H(18)	119.7	Si(1)-C(19)-H(19A)	109.5	Si(1)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)-H(19B)	109.5	H(19A)-C(19)-H(19B)	109.5	Si(1)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)-H(19C)	109.5	H(19A)-C(19)-H(19C)	109.5	H(19B)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)-H(19C)	109.5	Si(1)-C(20)-H(20A)	109.5	Si(1)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)-H(20B)	109.5	H(20A)-C(20)-H(20B)	109.5	Si(1)-
$\begin{array}{cccccccc} C(20)\mbox{-}H(20C) & 109.5 & Si(1)\mbox{-}C(21)\mbox{-}H(21A) & 109.5 & Si(1)\mbox{-}\\ C(21)\mbox{-}H(21B) & 109.5 & H(21A)\mbox{-}C(21)\mbox{-}H(21B) & 109.5 & Si(1)\mbox{-}\\ C(21)\mbox{-}H(21C) & 109.5 & H(21A)\mbox{-}C(21)\mbox{-}H(21C) & 109.5 & H(21B)\mbox{-}\\ C(21)\mbox{-}H(21C) & 109.5 & N(1)\mbox{-}C(22)\mbox{-}H(22A) & 109.5 & N(1)\mbox{-}\\ C(22)\mbox{-}H(22B) & 109.5 & H(22A)\mbox{-}C(22)\mbox{-}H(22B) & 109.5 & N(1)\mbox{-}\\ C(22)\mbox{-}H(22C) & 109.5 & H(22A)\mbox{-}C(22)\mbox{-}H(22C) & 109.5 & H(22B)\mbox{-}\\ C(22)\mbox{-}H(22C) & 109.5 & H(22A)\mbox{-}C(22)\mbox{-}H(22C) & 109.5 & H(22B)\mbox{-}\\ \end{array}$	C(20)-H(20C)	109.5	H(20A)-C(20)-H(20C)	109.5	H(20B)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)-H(20C)	109.5	Si(1)-C(21)-H(21A)	109.5	Si(1)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)-H(21B)	109.5	H(21A)-C(21)-H(21B)	109.5	Si(1)-
C(21)-H(21C)109.5N(1)-C(22)-H(22A)109.5N(1)-C(22)-H(22B)109.5H(22A)-C(22)-H(22B)109.5N(1)-C(22)-H(22C)109.5H(22A)-C(22)-H(22C)109.5H(22B)-C(22)-H(22C)109.5H(22A)-C(22)-H(22C)109.5H(22B)-	C(21)-H(21C)	109.5	H(21A)-C(21)-H(21C)	109.5	H(21B)-
C(22)-H(22B)109.5H(22A)-C(22)-H(22B)109.5N(1)-C(22)-H(22C)109.5H(22A)-C(22)-H(22C)109.5H(22B)-C(22)-H(22C)109.5109.5H(22B)-	C(21)-H(21C)	109.5	N(1)-C(22)-H(22A)	109.5	N(1)-
C(22)-H(22C) 109.5 H(22A)-C(22)-H(22C) 109.5 H(22B)- C(22)-H(22C) 109.5	C(22)-H(22B)	109.5	H(22A)-C(22)-H(22B)	109.5	N(1)-
C(22)-H(22C) 109.5	C(22)-H(22C)	109.5	H(22A)-C(22)-H(22C)	109.5	H(22B)-
	C(22)-H(22C)	109.5			

Table 6. Torsion angles [°] for **3b**.

atom-atom-atom	angle	atom-atom-atom-atom	angle	
C(2)-N(1)-C(1)-C(8)	-177.51(18)	C(22)-N(1)-C(1)-C(8)	1.9(3)	C(2)-
N(1)-C(1)-C(4)	1.5(2)	C(22)-N(1)-C(1)-C(4)	-179.09(18)	C(1)-
N(1)-C(2)-O(1)	176.8(2)	C(22)-N(1)-C(2)-O(1)	-2.6(3)	C(1)-
N(1)-C(2)-C(3)	-4.9(2)	C(22)-N(1)-C(2)-C(3)	175.72(17)	O(1)-
C(2)-C(3)-C(4)	-175.6(2)	N(1)-C(2)-C(3)-C(4)	6.06(19)	O(1)-
C(2)-C(3)-C(12)	-45.5(3)	N(1)-C(2)-C(3)-C(12)	136.12(17)	O(1)-
C(2)-C(3)-C(9)	70.0(2)	N(1)-C(2)-C(3)-C(9)	-108.40(16)	C(8)-
C(1)-C(4)-C(5)	-1.1(3)	N(1)-C(1)-C(4)-C(5)	179.83(16)	C(8)-
C(1)-C(4)-C(3)	-178.30(16)	N(1)-C(1)-C(4)-C(3)	2.6(2)	C(2)-
C(3)-C(4)-C(5)	178.02(19)	C(12)-C(3)-C(4)-C(5)	49.5(3)	C(9)-
C(3)-C(4)-C(5)	-67.0(2)	C(2)-C(3)-C(4)-C(1)	-5.18(19)	C(12)-
C(3)-C(4)-C(1)	-133.66(17)	C(9)-C(3)-C(4)-C(1)	109.76(17)	C(1)-
C(4)-C(5)-C(6)	0.3(3)	C(3)-C(4)-C(5)-C(6)	176.76(19)	C(4)-
C(5)-C(6)-C(7)	0.6(3)	C(5)-C(6)-C(7)-C(8)	-0.8(3)	C(4)-
C(1)-C(8)-C(7)	0.9(3)	N(1)-C(1)-C(8)-C(7)	179.82(17)	C(6)-
C(7)-C(8)-C(1)	0.0(3)	C(4)-C(3)-C(9)-O(2)	-65.9(2)	C(2)-
C(3)-C(9)-O(2)	45.2(2)	C(12)-C(3)-C(9)-O(2)	168.35(19)	C(4)-
C(3)-C(9)-C(10)	115.17(16)	C(2)-C(3)-C(9)-C(10)	-133.75(15)	C(12)-
C(3)-C(9)-C(10)	-10.6(2)	O(2)-C(9)-C(10)-C(11)	-167.89(19)	C(3)-
C(9)-C(10)-C(11)	11.0(2)	O(2)-C(9)-C(10)-Si(1)	17.8(3)	C(3)-
C(9)-C(10)-Si(1)	-163.30(12)	C(20)-Si(1)-C(10)-C(11)	117.7(2)	C(19)-
Si(1)-C(10)-C(11)	-7.4(2)	C(21)-Si(1)-C(10)-C(11)	-122.6(2)	C(20)-
Si(1)-C(10)-C(9)	-70.06(15)	C(19)-Si(1)-C(10)-C(9)	164.77(13)	C(21)-
Si(1)-C(10)-C(9)	49.64(15)	C(9)-C(10)-C(11)-C(13)	169.61(17)	Si(1)-
C(10)-C(11)-C(13)	-17.8(3)	C(9)-C(10)-C(11)-C(12)	-6.9(2)	Si(1)-
C(10)-C(11)-C(12)	165.73(16)	C(10)-C(11)-C(12)-C(3)	0.0(2)	C(13)-
C(11)-C(12)-C(3)	-176.78(16)	C(4)-C(3)-C(12)-C(11)	-112.74(19)	C(2)-
C(3)-C(12)-C(11)	124.94(18)	C(9)-C(3)-C(12)-C(11)	6.4(2)	C(10)-
C(11)-C(13)-C(14)	150.64(19)	C(12)-C(11)-C(13)-C(14)	-33.0(3)	C(10)-
C(11)-C(13)-C(18)	-32.2(3)	C(12)-C(11)-C(13)-C(18)	144.11(18)	C(18)-
C(13)-C(14)-C(15)	1.7(3)	C(11)-C(13)-C(14)-C(15)	178.87(17)	C(13)-
C(14)-C(15)-C(16)	-0.1(3)	C(14)-C(15)-C(16)-C(17)	-1.0(3)	C(15)-
C(16)-C(17)-C(18)	0.4(3)	C(16)-C(17)-C(18)-C(13)	1.2(3)	C(14)-
C(13)-C(18)-C(17)	-2.3(3)	C(11)-C(13)-C(18)-C(17)	-179.48(17)	

Symmetry transformations used to generate equivalent atoms:

4. CRYSTAL DATA FOR 4A:

Crystal data for C₂₂H₂₃NO₂ Si; M_r = 361.50; Monoclinic; space group P2₁; a = 10.4794(8) Å; b = 7.0464(6) Å; c = 13.4791(10) Å; $\alpha = 90^{\circ}$; $\beta = 100.094(5)^{\circ}$; $\gamma = 90^{\circ}$; V = 979.92(13) Å³; Z = 2; T = 120(2) K; $\lambda = 1.54178$ Å; $\mu = 1.173$ mm⁻¹; d_{calc} = 1.235g.cm⁻³; 21771 reflections collected; 3869 unique (R_{int} = 0.0979); giving R₁ = 0.0596, wR₂ = 0.1657 for 3398 data with [I>2 σ (I)] and R₁ = 0.0774, wR₂ = 0.2024 for all 3869 data. Residual electron density (e⁻.Å⁻³) max/min: 0.231/-0.514.

Table 1. Crystal data and structure refinement for 4A.

kr565-a
C ₂₂ H ₂₃ N O ₂ Si
361.50
120(2) K
1.54178 Å
Monoclinic
P21
$a = 10.4794(8)$ Å $\alpha = 90^{\circ}$
$b = 7.0464(6)$ Å $\beta = 100.094(5)^{\circ}$
$c = 13.4791(10) \text{ Å} \qquad \gamma = 90^{\circ}$
979.92(13) Å ³
2
1.235 g.cm ⁻³

Absorption coefficient (μ)	1.173 mm ⁻¹
F(000)	390
Crystal size	$0.198 \times 0.175 \times 0.118 \text{ mm}^3$
θ range for data collection	3.330 to 72.241°
Index ranges	$-12 \le h \le 12, -8 \le k \le 8, -16 \le l \le 16$
Reflections collected	21771
Independent reflections	3869 [R _{int} = 0.0979]
Completeness to $\theta = 67.679^{\circ}$	99.8 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3869 / 1 / 239
Goodness-of-fit on F ²	1.269
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0596, wR_2 = 0.1657$
R indices (all data)	$R_1 = 0.0774, wR_2 = 0.2024$
Absolute structure parameter	-0.01(4)
Extinction coefficient	n/a
Largest diff. peak and hole	0.231 and -0.514 e ⁻ .Å ⁻³

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **4A.** U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)
Si(1)	0.43987(13)	0.5779(2)	0.17725(10)	0.032(1)
O(1)	1.0223(4)	0.7060(6)	0.2383(3)	0.041(1)
O(2)	0.6056(4)	0.2012(7)	0.3387(3)	0.049(1)
N(1)	1.0238(4)	0.6380(7)	0.4066(3)	0.034(1)
C(1)	0.9330(5)	0.6305(7)	0.4700(4)	0.033(1)
C(2)	0.9658(5)	0.6758(8)	0.3081(4)	0.035(1)
C(3)	0.8222(5)	0.6779(8)	0.3079(4)	0.033(1)
C(4)	0.8068(5)	0.6556(8)	0.4151(4)	0.033(1)
C(5)	0.7024(5)	0.6583(8)	0.4633(4)	0.036(1)
C(6)	0.7220(6)	0.6316(8)	0.5684(4)	0.039(1)
C(7)	0.8477(6)	0.6082(9)	0.6219(4)	0.042(1)
C(8)	0.9539(6)	0.6074(8)	0.5743(4)	0.038(1)
C(9)	0.7292(5)	0.5870(8)	0.2177(3)	0.030(1)
C(10)	0.7387(5)	0.7981(8)	0.2276(4)	0.035(1)

C(11)	0.7913(5)	0.4849(8)	0.1391(4)	0.031(1)
C(12)	0.8452(5)	0.3063(9)	0.1613(4)	0.036(1)
C(13)	0.8981(6)	0.2062(9)	0.0900(4)	0.040(1)
C(14)	0.8974(5)	0.2830(10)	-0.0059(4)	0.039(1)
C(15)	0.8435(5)	0.4609(9)	-0.0274(4)	0.038(1)
C(16)	0.7906(5)	0.5631(9)	0.0444(4)	0.035(1)
C(17)	0.6060(5)	0.4939(8)	0.2381(4)	0.030(1)
C(18)	0.6091(5)	0.3391(8)	0.2914(4)	0.034(1)
C(19)	0.3235(6)	0.3836(10)	0.1854(5)	0.044(1)
C(20)	0.4480(6)	0.6399(10)	0.0447(5)	0.046(2)
C(21)	0.3905(6)	0.7882(10)	0.2453(5)	0.045(1)
C(22)	1.1630(5)	0.6300(8)	0.4398(4)	0.039(1)
H(5)	0.6175	0.6779	0.4263	0.044
H(6)	0.6502	0.6296	0.6028	0.047
H(7)	0.8603	0.5924	0.6929	0.051
H(8)	1.0389	0.5915	0.6116	0.045
H(10A)	0.6642	0.8662	0.2471	0.042
H(10B)	0.7831	0.8672	0.1795	0.042
H(12)	0.8459	0.2526	0.2260	0.043
H(13)	0.9351	0.0846	0.1062	0.048
H(14)	0.9332	0.2144	-0.0552	0.047
H(15)	0.8425	0.5144	-0.0922	0.046
H(16)	0.7545	0.6853	0.0285	0.042
H(19A)	0.3529	0.2680	0.1557	0.066
H(19B)	0.2379	0.4195	0.1485	0.066
H(19C)	0.3181	0.3601	0.2562	0.066
H(20A)	0.5183	0.7311	0.0434	0.069
H(20B)	0.3656	0.6964	0.0127	0.069
H(20C)	0.4645	0.5249	0.0080	0.069
H(21A)	0.4049	0.7619	0.3178	0.068
H(21B)	0.2985	0.8149	0.2215	0.068
H(21C)	0.4423	0.8984	0.2324	0.068
H(22A)	1.2063	0.6305	0.3810	0.058
H(22B)	1.1855	0.5136	0.4787	0.058
H(22C)	1.1912	0.7405	0.4822	0.058

Table 3. Anisotropic displacement parameters $(Å^2)$ for kr565-a.

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

	U11	U ₂₂	U33	U ₂₃	U13	U ₁₂
Si(1)	0.0311(7)	0.0320(7)	0.0330(7)	0.0008(6)	0.0048(5)	0.0013(6)
O(1)	0.037(2)	0.050(2)	0.0369(19)) -0.0038(18)	0.0090(15)	-0.0091(18)
O(2)	0.048(2)	0.040(2)	0.058(2)	0.013(2)	0.0083(19)	-0.0018(19)
N(1)	0.033(2)	0.032(2)	0.036(2)	-0.0006(18)	0.0021(17)	-0.0017(17)
C(1)	0.040(3)	0.022(2)	0.037(3)	-0.0027(19)	0.004(2)	-0.0034(19)
C(2)	0.039(3)	0.031(3)	0.034(2)	-0.004(2)	0.005(2)	-0.008(2)
C(3)	0.037(3)	0.034(3)	0.029(2)	-0.003(2)	0.0069(19)	-0.005(2)
C(4)	0.039(3)	0.028(2)	0.031(2)	-0.004(2)	0.006(2)	-0.005(2)
C(5)	0.041(3)	0.033(3)	0.035(3)	-0.005(2)	0.008(2)	-0.005(2)
C(6)	0.051(3)	0.038(3)	0.032(3)	-0.001(2)	0.017(2)	-0.004(2)
C(7)	0.059(3)	0.038(3)	0.030(2)	-0.003(2)	0.009(2)	-0.005(3)
C(8)	0.046(3)	0.031(3)	0.034(2)	0.000(2)	0.001(2)	0.000(2)
C(9)	0.030(2)	0.031(2)	0.027(2)	0.000(2)	0.0013(17)	0.000(2)
C(10)	0.041(3)	0.033(3)	0.034(3)	-0.001(2)	0.008(2)	-0.001(2)
C(11)	0.030(2)	0.033(3)	0.029(2)	-0.004(2)	0.0028(18)	-0.005(2)
C(12)	0.035(3)	0.039(3)	0.032(2)	0.002(2)	0.004(2)	0.001(2)
C(13)	0.037(3)	0.044(3)	0.040(3)	0.000(2)	0.008(2)	0.000(2)
C(14)	0.031(3)	0.049(3)	0.040(3)	-0.008(3)	0.013(2)	-0.004(2)
C(15)	0.032(3)	0.052(4)	0.029(2)	0.000(2)	0.004(2)	-0.011(2)
C(16)	0.035(2)	0.039(3)	0.029(2)	0.002(2)	0.0039(19)	-0.006(2)
C(17)	0.030(2)	0.029(2)	0.030(2)	-0.0010(19)	0.0033(18)	0.004(2)
C(18)	0.030(2)	0.032(3)	0.039(3)	0.002(2)	0.002(2)	0.004(2)
C(19)	0.033(3)	0.050(4)	0.046(3)	0.006(3)	0.001(2)	-0.009(3)
C(20)	0.046(3)	0.051(4)	0.043(3)	0.011(3)	0.013(2)	0.015(3)
C(21)	0.041(3)	0.046(3)	0.049(3)	-0.011(3)	0.010(3)	0.011(3)
C(22)	0.032(3)	0.037(3)	0.047(3)	0.000(2)	0.002(2)	-0.002(2)

Table 4. Bond lengths [Å] for 4A.

atom-atom	distance	atom-atom	distance	
Si(1)-C(19)	1.850(6)	Si(1)-C(20)	1.856(6)	Si(1)-
C(21)	1.863(6)	Si(1)-C(17)	1.885(5)	O(1)-

C(2)	1 215(7)	O(2)- $C(18)$	1 167(7)	N(1)-
C(2)	1.215(7) 1 385(7)	N(1)-C(1)	1.387(7)	N(1)-
C(22)	1.505(7) 1 450(6)	C(1)- $C(8)$	1.307(7) 1.395(7)	C(1)-
C(22)	1.100(0) 1 409(7)	C(2)-C(3)	1.595(7) 1.505(8)	C(3)-
C(4)	1.109(7) 1 490(7)	C(3)- $C(10)$	1.505(0) 1.523(7)	C(3)
C(9)	1.450(7) 1.556(7)	C(4)- $C(5)$	1.325(7) 1.367(8)	C(5)
C(5)	1.330(7) 1 $409(7)$	C(4)-C(5) C(5)-H(5)	0.9500	C(5)-
C(0)	1.405(7) 1 395(8)	C(5)-H(5)	0.9500	$C(0)^{-}$
C(8)	1.373(0) 1.378(8)	C(0)-H(0) C(7) H(7)	0.9500	$C(7)^{-}$
$\mathbf{U}(8)$	0.9500	$C(7) - \Pi(7)$ C(9) C(10)	1 /05(8)	C(0)
C(17)	0.9300 1 516(7)	C(9)- $C(10)C(0)$ $C(11)$	1.493(6) 1.517(7)	C(9)-
U(10A)	1.310(7)	C(9)-C(11)	1.317(7)	C(10)-
H(10A)	0.9900	C(10)-H(10B)	0.9900	C(11)-
C(16)	1.390(7)	C(11)-C(12)	1.390(8)	C(12)-
C(13)	1.384(8)	C(12)-H(12)	0.9500	C(13)-
C(14)	1.400(8)	C(13)-H(13)	0.9500	C(14)-
C(15)	1.384(9)	C(14)-H(14)	0.9500	C(15)-
C(16)	1.396(8)	C(15)-H(15)	0.9500	C(16)-
H(16)	0.9500	C(17)-C(18)	1.303(8)	C(19)-
H(19A)	0.9800	C(19)-H(19B)	0.9800	C(19)-
H(19C)	0.9800	C(20)-H(20A)	0.9800	C(20)-
H(20B)	0.9800	C(20)-H(20C)	0.9800	C(21)-
H(21A)	0.9800	C(21)-H(21B)	0.9800	C(21)-
H(21C)	0.9800	C(22)-H(22A)	0.9800	C(22)-
H(22B)	0.9800	C(22)-H(22C)	0.9800	- ()
× /		())		

Table 5. Bond angles [°] for 4A.

atom-atom-atom	angle	atom-atom-atom	angle	
C(19)-Si(1)-C(20)	111.9(3)	C(19)-Si(1)-C(21)	108.5(3)	C(20)-
Si(1)-C(21)	110.5(3)	C(19)-Si(1)-C(17)	108.1(3)	C(20)-
Si(1)-C(17)	107.3(3)	C(21)-Si(1)-C(17)	110.5(2)	C(2)-
N(1)-C(1)	111.4(4)	C(2)-N(1)-C(22)	123.5(5)	C(1)-
N(1)-C(22)	124.7(4)	N(1)-C(1)-C(8)	128.5(5)	N(1)-
C(1)-C(4)	110.7(4)	C(8)-C(1)-C(4)	120.7(5)	O(1)-
C(2)-N(1)	125.8(5)	O(1)-C(2)-C(3)	128.3(5)	N(1)-
C(2)-C(3)	105.9(5)	C(4)-C(3)-C(2)	106.0(4)	C(4)-
C(3)-C(10)	126.9(5)	C(2)-C(3)-C(10)	117.1(5)	C(4)-
C(3)-C(9)	123.7(5)	C(2)-C(3)-C(9)	119.1(4)	C(10)-
C(3)-C(9)	58.1(3)	C(5)-C(4)-C(1)	120.5(5)	C(5)-
C(4)-C(3)	133.7(5)	C(1)-C(4)-C(3)	105.7(5)	C(4)-
C(5)-C(6)	119.2(5)	C(4)-C(5)-H(5)	120.4	C(6)-
C(5)-H(5)	120.4	C(7)-C(6)-C(5)	119.6(5)	C(7)-
C(6)-H(6)	120.2	C(5)-C(6)-H(6)	120.2	C(8)-
C(7)-C(6)	121.8(5)	C(8)-C(7)-H(7)	119.1	C(6)-
C(7)-H(7)	119.1	C(7)-C(8)-C(1)	118.2(5)	C(7)-
C(8)-H(8)	120.9	C(1)-C(8)-H(8)	120.9	C(10)-

C(9)-C(17)	117.4(5)	C(10)-C(9)-C(11)	120.3(5)	C(17)-
C(9)-C(11)	113.9(5)	C(10)-C(9)-C(3)	59.9(3)	C(17)-
C(9)-C(3)	118.2(4)	C(11)-C(9)-C(3)	117.0(4)	C(9)-
C(10)-C(3)	62.1(3)	C(9)-C(10)-H(10A)	117.6	C(3)-
С(10)-Н(10А)	117.6	C(9)-C(10)-H(10B)	117.6	C(3)-
С(10)-Н(10В)	117.6	H(10A)-C(10)-H(10B)	114.6	C(16)-
C(11)-C(12)	119.5(5)	C(16)-C(11)-C(9)	121.3(5)	C(12)-
C(11)-C(9)	119.2(5)	C(13)-C(12)-C(11)	120.7(5)	C(13)-
С(12)-Н(12)	119.7	C(11)-C(12)-H(12)	119.7	C(12)-
C(13)-C(14)	120.4(6)	С(12)-С(13)-Н(13)	119.8	C(14)-
С(13)-Н(13)	119.8	C(15)-C(14)-C(13)	118.6(6)	C(15)-
C(14)-H(14)	120.7	C(13)-C(14)-H(14)	120.7	C(14)-
C(15)-C(16)	121.3(5)	C(14)-C(15)-H(15)	119.4	C(16)-
С(15)-Н(15)	119.4	C(11)-C(16)-C(15)	119.6(6)	C(11)-
C(16)-H(16)	120.2	C(15)-C(16)-H(16)	120.2	C(18)-
C(17)-C(9)	121.5(5)	C(18)-C(17)-Si(1)	115.7(4)	C(9)-
C(17)-Si(1)	122.4(4)	O(2)-C(18)-C(17)	176.8(6)	Si(1)-
C(19)-H(19A)	109.5	Si(1)-C(19)-H(19B)	109.5	H(19A)-
C(19)-H(19B)	109.5	Si(1)-C(19)-H(19C)	109.5	H(19A)-
С(19)-Н(19С)	109.5	H(19B)-C(19)-H(19C)	109.5	Si(1)-
C(20)-H(20A)	109.5	Si(1)-C(20)-H(20B)	109.5	H(20A)-
C(20)-H(20B)	109.5	Si(1)-C(20)-H(20C)	109.5	H(20A)-
C(20)-H(20C)	109.5	H(20B)-C(20)-H(20C)	109.5	Si(1)-
С(21)-Н(21А)	109.5	Si(1)-C(21)-H(21B)	109.5	H(21A)-
C(21)-H(21B)	109.5	Si(1)-C(21)-H(21C)	109.5	H(21A)-
C(21)-H(21C)	109.5	H(21B)-C(21)-H(21C)	109.5	N(1)-
C(22)-H(22A)	109.5	N(1)-C(22)-H(22B)	109.5	H(22A)-
С(22)-Н(22В)	109.5	N(1)-C(22)-H(22C)	109.5	H(22A)-
C(22)-H(22C)	109.5	H(22B)-C(22)-H(22C)	109.5	

Table 6. Torsion angles [°] for 4A.

angle	atom-atom-atom-atom	angle	
-175.8(5)	C(22)-N(1)-C(1)-C(8)	-2.6(9)	C(2)-
2.5(6)	C(22)-N(1)-C(1)-C(4)	175.7(5)	C(1)-
173.5(6)	C(22)-N(1)-C(2)-O(1)	0.2(9)	C(1)-
-4.6(6)	C(22)-N(1)-C(2)-C(3)	-177.9(5)	O(1)-
-173.1(6)	N(1)-C(2)-C(3)-C(4)	4.9(6)	O(1)-
-25.0(8)	N(1)-C(2)-C(3)-C(10)	153.1(5)	O(1)-
41.8(9)	N(1)-C(2)-C(3)-C(9)	-140.2(5)	N(1)-
-178.2(5)	C(8)-C(1)-C(4)-C(5)	0.2(8)	N(1)-
0.8(6)	C(8)-C(1)-C(4)-C(3)	179.2(5)	C(2)-
175.4(6)	C(10)-C(3)-C(4)-C(5)	31.4(10)	C(9)-
-41.6(10)	C(2)-C(3)-C(4)-C(1)	-3.5(6)	C(10)-
-147.5(5)	C(9)-C(3)-C(4)-C(1)	139.6(5)	C(1)-
-1.3(8)	C(3)-C(4)-C(5)-C(6)	179.9(6)	C(4)-
	angle -175.8(5) 2.5(6) 173.5(6) -4.6(6) -173.1(6) -25.0(8) 41.8(9) -178.2(5) 0.8(6) 175.4(6) -41.6(10) -147.5(5) -1.3(8)	angleatom-atom-atom-atom $-175.8(5)$ $C(22)-N(1)-C(1)-C(8)$ $2.5(6)$ $C(22)-N(1)-C(1)-C(4)$ $173.5(6)$ $C(22)-N(1)-C(2)-O(1)$ $-4.6(6)$ $C(22)-N(1)-C(2)-C(3)$ $-173.1(6)$ $N(1)-C(2)-C(3)-C(4)$ $-25.0(8)$ $N(1)-C(2)-C(3)-C(10)$ $41.8(9)$ $N(1)-C(2)-C(3)-C(10)$ $41.8(9)$ $N(1)-C(2)-C(3)-C(9)$ $-178.2(5)$ $C(8)-C(1)-C(4)-C(5)$ $0.8(6)$ $C(8)-C(1)-C(4)-C(5)$ $0.8(6)$ $C(10)-C(3)-C(4)-C(5)$ $-41.6(10)$ $C(2)-C(3)-C(4)-C(1)$ $-147.5(5)$ $C(9)-C(3)-C(4)-C(1)$ $-1.3(8)$ $C(3)-C(4)-C(5)-C(6)$	angleatom-atom-atom-atomangle $-175.8(5)$ $C(22)-N(1)-C(1)-C(8)$ $-2.6(9)$ $2.5(6)$ $C(22)-N(1)-C(1)-C(4)$ $175.7(5)$ $173.5(6)$ $C(22)-N(1)-C(2)-O(1)$ $0.2(9)$ $-4.6(6)$ $C(22)-N(1)-C(2)-C(3)$ $-177.9(5)$ $-173.1(6)$ $N(1)-C(2)-C(3)-C(4)$ $4.9(6)$ $-25.0(8)$ $N(1)-C(2)-C(3)-C(10)$ $153.1(5)$ $41.8(9)$ $N(1)-C(2)-C(3)-C(10)$ $153.1(5)$ $41.8(9)$ $N(1)-C(2)-C(3)-C(9)$ $-140.2(5)$ $-178.2(5)$ $C(8)-C(1)-C(4)-C(5)$ $0.2(8)$ $0.8(6)$ $C(8)-C(1)-C(4)-C(5)$ $0.2(8)$ $0.8(6)$ $C(8)-C(1)-C(4)-C(5)$ $31.4(10)$ $-41.6(10)$ $C(2)-C(3)-C(4)-C(1)$ $-3.5(6)$ $-147.5(5)$ $C(9)-C(3)-C(4)-C(1)$ $139.6(5)$ $-1.3(8)$ $C(3)-C(4)-C(5)-C(6)$ $179.9(6)$

C(5)-C(6)-C(7)	1.8(9)	C(5)-C(6)-C(7)-C(8)	-1.0(9)	C(6)-
C(7)-C(8)-C(1)	-0.1(9)	N(1)-C(1)-C(8)-C(7)	178.7(5)	C(4)-
C(1)-C(8)-C(7)	0.5(8)	C(4)-C(3)-C(9)-C(10)	115.8(6)	C(2)-
C(3)-C(9)-C(10)	-105.6(6)	C(4)-C(3)-C(9)-C(17)	8.9(8)	C(2)-
C(3)-C(9)-C(17)	147.5(5)	C(10)-C(3)-C(9)-C(17)	-107.0(6)	C(4)-
C(3)-C(9)-C(11)	-133.2(6)	C(2)-C(3)-C(9)-C(11)	5.4(7)	C(10)-
C(3)-C(9)-C(11)	111.0(6)	C(17)-C(9)-C(10)-C(3)	108.3(5)	C(11)-
C(9)-C(10)-C(3)	-105.6(5)	C(4)-C(3)-C(10)-C(9)	-110.4(6)	C(2)-
C(3)-C(10)-C(9)	108.9(5)	C(10)-C(9)-C(11)-C(16)	-37.6(7)	C(17)-
C(9)-C(11)-C(16)	109.5(6)	C(3)-C(9)-C(11)-C(16)	-106.8(6)	C(10)-
C(9)-C(11)-C(12)	144.9(5)	C(17)-C(9)-C(11)-C(12)	-67.9(6)	C(3)-
C(9)-C(11)-C(12)	75.7(6)	C(16)-C(11)-C(12)-C(13)	0.0(8)	C(9)-
C(11)-C(12)-C(13)	177.5(5)	C(11)-C(12)-C(13)-C(14)	-0.3(8)	C(12)-
C(13)-C(14)-C(15)	0.3(9)	C(13)-C(14)-C(15)-C(16)	0.0(8)	C(12)-
C(11)-C(16)-C(15)	0.4(8)	C(9)-C(11)-C(16)-C(15)	-177.1(5)	C(14)-
C(15)-C(16)-C(11)	-0.3(8)	C(10)-C(9)-C(17)-C(18)	-136.4(5)	C(11)-
C(9)-C(17)-C(18)	75.4(6)	C(3)-C(9)-C(17)-C(18)	-67.8(7)	C(10)-
C(9)-C(17)-Si(1)	50.4(6)	C(11)-C(9)-C(17)-Si(1)	-97.7(5)	C(3)-
C(9)-C(17)-Si(1)	119.1(5)	C(19)-Si(1)-C(17)-C(18)	-13.1(5)	C(20)-
Si(1)-C(17)-C(18)	-134.0(5)	C(21)-Si(1)-C(17)-C(18)	105.5(5)	C(19)-
Si(1)-C(17)-C(9)	160.4(4)	C(20)-Si(1)-C(17)-C(9)	39.6(5)	C(21)-
Si(1)-C(17)-C(9)	-81.0(5)			

5. **References**:

(1) (a) Muthusamy, S.; Kumar, S. G., *Org. Biomol. Chem.* **2016**, *14*, 2228. (b) Murphy, G. K.; Abbas, F. Z.; Poulton, A. V., *Adv. Synth. Catal.* **2014**, *356*, 2919. (c) Cao, Z.-Y.; Wang, X.; Tan, C.; Zhao, X.-L.; Zhou, J.; Ding, K., *J. Am. Chem. Soc.* **2013**, *135*, 8197. (d) Muthusamy, S.; Azhagan, D., *Tetrahedron Lett.* **2011**, *52*, 6732.

(2) (a) Hansen, J.; Davies, H. M. L., *Coord. Chem. Rev.* **2008**, *252*, 545. (b) Javed, M. I.; Brewer, M., *Org. Lett.* **2007**, *9*, 1789. (c) Ren, A.; Lang, B.; Lin, J.; Lu, P.; Wang, Y., J. Org. Chem. **2017**.

(3) Loebach, J. L.; Bennett, D. M.; Danheiser, R. L., J. Org. Chem. **1998**, 63, 8380.

(4) Yamawaki, M.; Tsutsui, H.; Kitagaki, S.; Anada, M.; Hashimoto, S., *Tetrahedron Lett.* **2002**, *43*, 9561.

(5) Tsutsui, H.; Yamaguchi, Y.; Kitagaki, S.; Nakamura, S.; Anada, M.; Hashimoto, S., *Tetrahedron: Asymmetry* **2003**, *14*, 817.

(6) Tsutsui, H.; Abe, T.; Nakamura, S.; Anada, M.; Hashimoto, S., *Chemical and Pharmaceutical Bulletin* **2005**, *53*, 1366.

(7) Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B., J. Am. Chem. Soc. 2013, 135, 1463.

(8) Allen, C. P.; Benkovics, T.; Turek, A. K.; Yoon, T. P., J. Am. Chem. Soc. 2009, 131, 12560.

(9) Köllhofer, A.; Plenio, H., Chem. Eur. J. 2003, 9, 1416.

(10) Kownacki, I.; Orwat, B.; Marciniec, B.; Kownacka, A., Tetrahedron Lett. 2014, 55, 548.

(11) Tanaka, K.; Hoshino, Y.; Honda, K., Tetrahedron Lett. 2016, 57, 2448.

(12) Moegling, J.; Benischke, A. D.; Hammann, J. M.; Vepřek, N. A.; Zoller, F.; Rendenbach, B.;

Hoffmann, A.; Sievers, H.; Schuster, M.; Knochel, P.; Herres-Pawlis, S., *Eur. J. Org. Chem.* 2015, 2015, 7475.

S33

mdd ł -0 27.7 —— 4.64 - 9 50 39 4 20 67.89 -----09 2 80 - 6 99.16 -----100 94.901 -----110 116.31 120 130 74.921 -----140 150 160 170 180 TES 190 MeO. 200 210

856.4	·			-10 ppm
0007				- 0
				- 6
026.71		_		50
				30
				- 64
				- 0
964.85 55.034				2
				19
,				122
				80
				06
				100
920.411				110
016.021				120
924.151				130
0/01441				140
525 771				150
6/2:291				160
020 001	TBSO			02
421.771				80
				1 00
007.101	MeO			0 15
				20
				21(
		SEO	1	Ł

			10 ppm
			- 0
54.7 <u></u> 3.34			- 6
re.os ——			50
			30
			40
			50
92.28			- 00
			26
			80
			06
			100
			10
			0
125.79			12
130.30			130
135.64			140
00:701			150
75295			- 09
			0
	TESO		17
482.94	Me		180
ZZ.101			190
			200
			10
		SE 4	

Rh₂(*S*-TCPTTL)₄: 90% ee, 25 °C

Rh₂(S-TCPTTL)₄: 80% ee, 40 °C

Rh₂(S-TCPTTL)₄: 72% ee, 90 °C

Rh₂(S-TFPTTL)₄: 64% ee, 90 °C

Rh₂(*R*-DOSP)₄: 16% ee, 90 °C

Rh₂(S-NTTL)₄: 70% ee, 90 °C

Racemic, flow rate = 1.0 uL/min

Rh₂(*R*-BTCP)₄: 28% ee, 90 °C

Racemic

Rh₂(S-TCPTTL)₄: 90% ee, 25 °C

Rh₂(S-TCPTTL)₄: >99% ee After recrystallization

Rh₂(S-TCPTTL)₄: 92% ee

Rh₂(S-TCPTTL)₄: 90% ee

Rh₂(S-TCPTTL)₄: 90% ee

Rh₂(S-TCPTTL)₄: 86% ee

Rh₂(S-TCPTTL)₄: 84% ee

Rh₂(S-TCPTTL)₄: 80% ee

Rh₂(S-TCPTTL)₄: 75% ee

Rh₂(S-TCPTTL)₄: 64% ee

Rh₂(S-TCPTTL)₄: 88% ee

Rh₂(S-TCPTTL)₄: 90% ee

Rh₂(S-TCPTTL)₄: 79% ee

Rh₂(S-TCPTTL)₄: 88% ee

Rh₂(S-TCPTTL)₄: 90% ee

Rh₂(S-TCPTTL)₄: 90% ee

Rh₂(S-TCPTTL)₄: 77% ee

Rh₂(S-TCPTTL)₄: 84% ee

Rh₂(S-TCPTTL)₄: 86% ee

		mdd
89.0- —— -		-0
		10
		20
60.05		30
		40
61.94		50
91.92		0
72.63		9 0
		80
		06
		100
27.211		110
72.221		120
128.47		130
73.261		140
69.241		150
		160
		170
80.271	TMS \Ph	180
185.33		190
		200
202.54	Me OMe 3t	210

Rh₂(S-TCPTTL)₄: 88% ee

Rh₂(S-TCPTTL)₄: 95% ee

Rh₂(S-TCPTTL)₄: 54% ee

Rh₂(S-TCPTTL)₄: 52% ee

Rh₂(S-TCPTTL)₄: 82% ee

bpm

10

20

30

- 6

50

09

70

- 8

6

100

110

120

130

140

150

160

170

180

190

200

210

- **o**

14.94 -----

£9·T9 _____

LT. T.L _____

02.521 25.321 25.321 25.251 25

E9.631 -----

06.281 -----

81.805-78

Rh₂(S-TCPTTL)₄: 86% ee

C80.0				udd o
			- Angeles and a feature of the	- 0-
				- 02
29.762				30-
911.75	—			- 9
43.317				~
£2.15				50
667.49		_	a konstant A konstant	- 09
				- 62
			as for the day of	- 8
				- 06
			a A in A man a	100
747.801				110
996.721				120
20.1821 128.367				130
268'66L			allowards and a second a se	140
				150
				160
	'n			170
				180
				190
∽ N Me	9			200
809.112				210

Rh₂(S-TCPTTL)₄: 99% ee

Rh₂(S-TCPTTL)₄: 99% ee

