Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Supporting Information for:

Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metalorganic frameworks

Ashley M. Wright¹, Adam J. Rieth¹, Sungwoo Yang², Evelyn N. Wang², Mircea Dincă¹*

Affiliations:

¹ Department of Chemistry, Massachusetts Institute of Technology, 77 Mass. Ave. Cambridge, Massachusetts, 02139, United States.

² Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Ave. Cambridge, Massachusetts, 02139, United States.

* Corresponding Author: mdinca@mit.edu

Table of Contents

General Procedures	S3
Powder X-ray Diffraction Patterns	S5
Nitrogen Isotherms	S6
Water Adsorption Isotherms using Dynamic Vapor Source	S13
IR spectroscopy	S17
References	S23

General Procedures

Materials

 $CoCl_2 \cdot 6H_2O$ (99.9%, Alfa Aesar), ZnCl_2 \cdot 6H_2O (99.9%, Alfa Aesar), HCl (32-35%, BDH – VWR Analytic) methanol (99.9%, VWR), *N*,*N*-dimethylformamide (DMF, 99.8%, Millipore), ethanol (ACS grade, Mallinckrodt) were used as received. MFU-4*l* was synthesized using previously published procedures.¹ The cobalt-exchanged MOFs were also prepared by a previously reported procedure.²

Table S1 shows the materials used in this study with the Zn:Co ratios determined using inductively coupled plasma mass spectrometry (ICP-OES).

 Table S1. Comparison of the compound name and number convention with the formula

 determined from ICP.

Compound Name and Number	Formula based on ICP-OES
Zn ₅ (1)	Zn ₅ Cl ₄ (BTDD) ₃
$Zn_3Co_2(2)$	$\mathbf{Zn}_{2.9}\mathbf{Co}_{2.1}\mathbf{Cl}_4(\mathbf{BTDD})_3$
$Zn_2Co_3(3)$	Zn_{1.8}Co_{3.2}Cl₄(BTDD) ₃
ZnCo ₄ (4)	ZnCo ₄ Cl ₄ (BTDD) ₃

Powder X-ray Diffraction (PXRD) patterns were recorded with a Bruker Advance II diffractometer equipped with a $\theta/2\theta$ Bragg-Brentano geometry and Ni-filtered CuK α radiation (K $\alpha_1 = 1.5406$ Å, K $\alpha_2 = 1.5444$ Å, K $\alpha_1/K\alpha_2 = 0.5$). The tube voltage and current were 40 kV and 40 mA, respectively. Samples for PXRD were prepared by placing a thin layer of the appropriate material on a zero-background silicon crystal plate.

Nitrogen adsorption isotherms were measured by a volumetric method using a Micromeritics ASAP 2020 gas sorption analyzer. Typical samples of ca. 40 mg, preactivated at >100°C to remove all residual solvent, were transferred in an Ar-filled glovebox to a pre-weighed analysis tube. The

tube with sample inside was weighed again to determine the mass of the sample. The tube was capped with a Micromeritics TranSealTM, brought out of the glovebox, and transferred to the analysis port of the gas sorption analyzer. Free space correction measurements were performed using ultra-high purity He gas (UHP grade 5, 99.999% pure). Nitrogen isotherms were measured using UHP grade Nitrogen. All nitrogen analyses were performed using a liquid nitrogen bath at 77 K. Oil-free vacuum pumps were used to prevent contamination of sample or feed gases.

Water adsorption isotherms were measured using Surface Measurement Systems DVS Adventure dynamic gravimetric water sorption analyzer. A typical sample of ca. 5 mg of MOF, pre-activated at 180 °C, but later exposed to air, was loaded into the microbalance. The instrument was set to deliver variable vapor pressures of water corresponding to a relative humidity between 0 and 90%.

In Situ DRIFTS measurements were performed on a Bruker Tensor 37 with a mercury cadmium telluride detector cooled to 77 K. Data were collected in "MIR_DRIFTS" mode with a 6 mm aperture setting and a KBr beam splitter using a DiffusIR accessory made by Pike Technologies in an in-situ cell equipped with a ZnSe window. Data was averaged over 16 scans between 6000 and 600 cm⁻¹. Fully activated samples of MFU-4*l* (1) and Zn_2Co_3 (3) were loaded in to ceramic sample cup in an argon glove box. A dry argon flow and 'wet' argon flow was attached to mass flow controllers and a T-junction. The humidity of the gas flow was recorded using a VWR humidity detector. An initial spectrum under argon was recorded and then valve was opened to the flow of a specific humidity argon and spectra collection was immediately started and collected at regular intervals thereafter.

Powder X-ray Diffraction Patterns

Figure S1. Powder X-ray diffraction patterns of 1–4 after a single water isotherm at 298 K.

Nitrogen Isotherms

Figure S2. N₂ adsorption isotherms at 77 K of pristine $Zn_5Cl_4(BTDD)_3$ (1) (open purple circles) and after reactivation at 150 °C post a single water isotherm at 298 K (closed purple circles). BET surface areas: pristine: 3525 m²/g, post-water: 3423 m²/g.

Figure S3. N₂ adsorption isotherms at 77 K of pristine $Zn_3Co_2Cl_4(BTDD)_3$ (2) (open green circles) and after reactivation at 150 °C post a single water isotherm at 298 K (closed green circles). BET surface areas: pristine: 3037 m²/g, post-water: 2760 m²/g.

Figure S4. N₂ adsorption isotherms at 77 K of pristine $Zn_2Co_3Cl_4(BTDD)_3$ (3) (open gold circles) and after reactivation at 150 °C post a single water isotherm at 298 K (closed gold circles). BET surface areas: pristine: 3544 m²/g, post-water: 2799 m²/g.

Figure S5. N₂ adsorption isotherms at 77 K of pristine $ZnCo_4Cl_4(BTDD)_3$ (4) (open red circles) and after reactivation at 150 °C post a single water isotherm at 298 K (closed red circles). BET surface areas: pristine: 3091 m²/g, post-water: 680 m²/g.

MOF	BET Surface Area Pre-Water Adsorption (m ² /g)	BET Surface Area Post-Water Adsorption (m ² /g)
Zn ₅ (1)	3525 ± 65	3423 ± 62
$Zn_3Co_2(2)$	3037 ± 37	2760 ± 26
$Zn_2Co_3(3)$	3544 ± 21	2799 ±41
$ZnCo_4(4)$	3091 ± 31	680 ± 3

Table S1. Comparison of the BET surface area pre- and post-water absorption for the MFU-4*l* and its cobalt exchanged materials.

Figure S6. Barrett-Joyner-Halenda $(BJH)^3$ pore size distribution curves using the Kruk-Jaroniec-Sayari correction. MFU-4*l* (red circles), Zn₃Co₂ (green circles), and Zn₂Co₃ (orange circles). The measured pore widths should not be over interpreted due to incorrect pore geometry considerations.¹ However, the consistent pore width between the three materials suggests cation exchange does not cause significant lattice distortions.

Figure S7. Comparison of the PXRD pattern of MFU-4*l* (1) (purple trace) and 1 exposed to steam for 1.5 hours (red trace). The crystallinity of 1 was lost upon exposure to steam.

Water Adsorption Isotherms using Dynamic Vapor Source

Figure S8. Water adsorption isotherm for Zn_5 (MFU-4*l*, 1) at 298 K. Closed symbols represent the adsorption and open symbols represent the desorption. Data are symbols and the lines are meant only as a guide for the eye.

Figure S9. Water adsorption isotherm for Zn_3Co_2 (2) at 298 K. Closed symbols represent the adsorption and open symbols represent the desorption. Data are symbols and the lines are meant only as a guide for the eye. The number of water molecules adsorbed per cobalt prior to the uptake step was calculated to be 1.5 at RH 40%.

Figure S10. Water adsorption isotherm for Zn_2Co_3 (**3**) at 298 K. Closed symbols represent the adsorption and open symbols represent the desorption. Data are symbols and the lines are meant only as a guide for the eye. The number of water molecules adsorbed per cobalt prior to the uptake step was calculated to be 1.0 at RH 38%.

Figure S11. Water adsorption isotherm for $ZnCo_4$ (4) at 298 K. Closed symbols represent the adsorption and open symbols represent the desorption. Data are symbols and the lines are meant only as a guide for the eye. The number of water molecules adsorbed per cobalt prior to the uptake step was calculated to be 1.3 at RH 36%.

IR spectroscopy

Figure S12. The difference DRIFTS spectra for the adsorption of water by MFU-4l (1). Monitoring the adsorption of water by MFU-4l (1) in 80% RH Argon flow.

Figure S13. The difference DRIFTS spectra for the adsorption of water by Zn_2Co_3 (**3**). Monitoring the adsorption of water by Zn_2Co_3 (**3**) in 60% RH argon flow.

Figure S14. The DRIFTS spectra for the adsorption of water by Zn_2Co_3 (**3**). Monitoring the adsorption of water by 50% RH in argon flow. The grey trace is the initial spectrum. The red trace is after 80 seconds and shows the water adsorbed to the cobalt at 3695 cm⁻¹ and water adsorbed within the pore. The blue trace is at saturation and the peak at 3695 cm⁻¹ is no longer observed.

Figure S15a. The difference DRIFTS spectra for the adsorption of D_2O by Zn_2Co_3 (3). Monitoring the adsorption of water by Zn_2Co_3 (3) in 35% RH Argon flow. The broad feature at 2520 cm⁻¹ is assigned to the D_2O within the framework.

Figure S15b. Stacked difference DRIFTS spectra for the adsorption of D_2O by Zn_2Co_3 (3). Monitoring the adsorption of water by Zn_2Co_3 (3) with a 35% RH Argon flow. The observed stretch at 2736 cm⁻¹ is assigned to the OD stretch of Co \leftarrow OD₂. The broad feature at 2720 cm⁻¹ is assigned to the stretching vibrations of D_2O within the pore of the framework.

Figure S16. DRIFTS spectra Zn_2Co_3 after exposure to various RH of D_2O . There is a small amount of water in the framework in the initial spectrum at 3685 cm⁻¹, which on addition of D_2O (20% RH, blue spectrum) decreases in intensity. A new signal at 2720 cm⁻¹ is observed (blue spectrum), which we have assigned to the new Co \leftarrow OD₂ stretch.

References

- Denysenko, D.; Grzywa, M.; Tonigold, M.; Streppel, B.; Krkljus, I.; Hirscher, M.; Mugnaioli, E.; Kolb, U.; Hanss, J.; Volkmer, D. Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes. *Chem. Eur. J.* 2011, *17* (6), 1837–1848 DOI: 10.1002/chem.201001872.
- Dubey, R.; Comito, R. J.; Wu, Z.; Zhang, G.; Rieth, A. J.; Hendon, C. H.; Miller, J. T.; Dincă, M. Highly Stereoselective Heterogeneous Diene Polymerization by Co-MFU-41: A Single-Site Catalyst Prepared by Cation Exchange. *J. Am. Chem. Soc.* 2017, jacs.7b06841 DOI: 10.1021/jacs.7b06841.
- Barrett, E. P.; Joyner, L. G.; Halenda, P. P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. *J. Am. Chem. Soc.* 1951, 73 (1), 373–380 DOI: 10.1021/ja01145a126.