Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Folding mechanisms steer amyloid fibrils formation propensity of highly homologous proteins

Gaetano Malgieri¹, Gianluca D'Abrosca¹, Luciano Pirone², Angelo Toto³, Maddalena Palmieri^{1#}, Luigi Russo¹, Michele Francesco Maria Sciacca⁴, Rosarita Tatè⁵, Valeria Sivo¹, Ilaria Baglivo¹, Roksana Majewska^{1§}, Massimo Coletta⁶, Paolo Vincenzo Pedone¹, Carla Isernia¹, Mario De Stefano¹, Stefano Gianni³, Emilia Maria Pedone², Danilo Milardi^{4*} and Roberto Fattorusso^{1*}

- 1: Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta (Italy).
- 2: Institute of Biostructures and Bioimaging CNR, Via Mezzocannone 16, 80134 Naples (Italy).
- 3: Department of Biochemical Sciences "Alessandro Rossi Fanelli" University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma (Italy).
- 4: Institute of Biostructures and Bioimaging CNR, Viale A. Doria 6, 95125 Catania (Italy).
- 5: Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" CNR, Via P. Castellino 111, 80131 Napoli (Italy).
- 6: Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Roma (Italy).
- *Correspondence: roberto.fattorusso@unicampania.it, dmilardi@unict.it.

Present Addresses:

[#] Patheon via Morolense 5, 03013 Ferentino (Fr) - Italy.

[§] Unit for Environmental Sciences and Management- School of Biological Sciences- North-West University - Private Bag X6001- Potchefstroom- South Africa AND South African Institute for Aquatic Biodiversity (SAIAB) - Private Bag 1015 - Grahamstown 6140- South Africa.

Supplementary Information

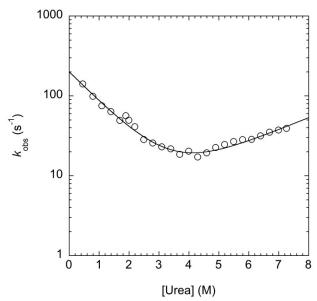
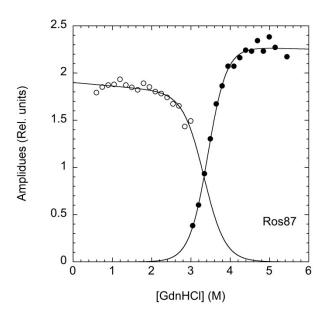



FIGURE SI1 – Chevron plot of Ml4_{52–151} in Urea

FIGURE S12 – Folding and unfolding kinetic transitions of Ros87. Open and filled circles refer to the amplitudes of the kinetic traces observed in the kinetic refolding and unfolding experiments respectively.

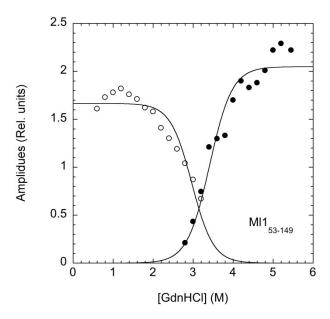
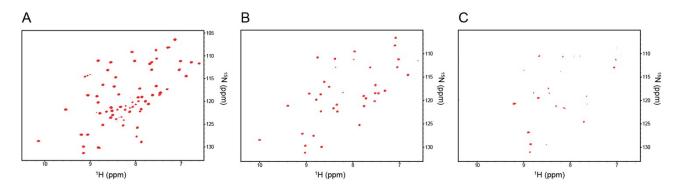
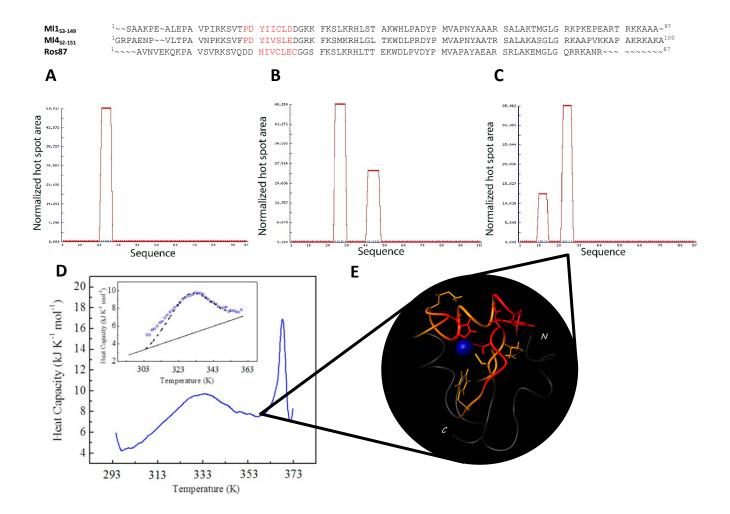




FIGURE SI3 – Folding and unfolding kinetic transitions of Ml1₅₃₋₁₄₉

FIGURE S14 – Unfolding of MI1₅₃₋₁₄₉ by NMR: 1 H- 15 N-HSQCs of the protein at 298K (A), 323K (B) and at 353K (C). NMR samples contained 0.8 mM 15 N- MI1₅₃₋₁₄₉, 20 mM phosphate buffer, 0.2 M NaCl, 4 mM TCEP, pH 6.8, and 90% H₂O/10% 2 H₂O. The experiments were acquired on a Varian Unity INOVA 500 MHz spectrometer. Temperature-induced chemical shift perturbations have been monitored in a series of 1 H- 15 N HSQC spectra acquired in a range from 278 to 353 K at regular intervals of temperature. The resonances exhibit a continuous chemical shift variation indicating a fast protein folding process and some of them still preserved a good spectral dispersion at 353 K. The presence of visible cross-peaks up to 353 K is in agreement with the mechanism of folding described by the other techniques.

FIGURE SI5 - Alignment of the three proteins: the amino acid stretches with high propensity to aggregate are in red; AGGRESCAN results for Ros87 (C), MI4₅₂₋₁₅₁ (B) and MI1₅₃₋₁₄₉ (A); thermal unfolding of Ros87 followed by DSC (D); Ros87 zinc containing intermediate present at 353K (Palmieri *et al.*, JACS 2013).

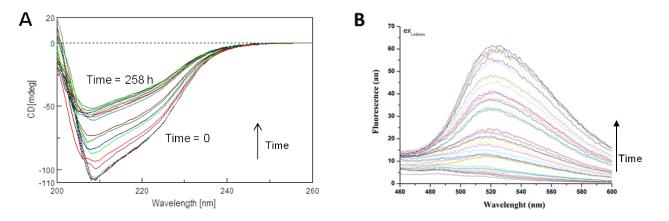
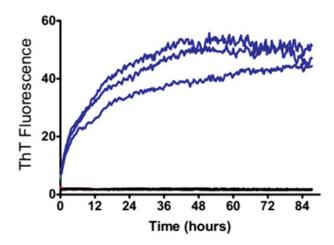
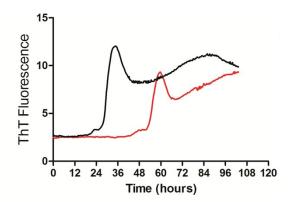
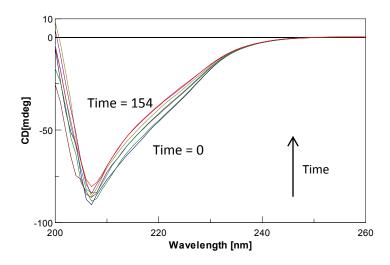
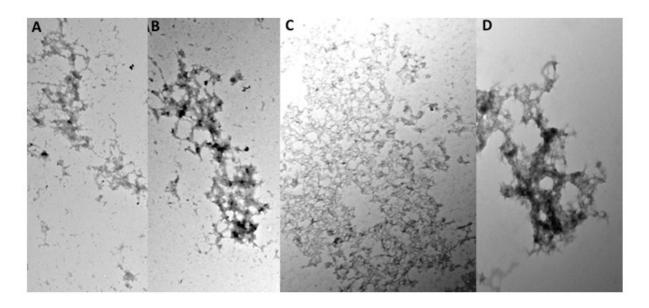
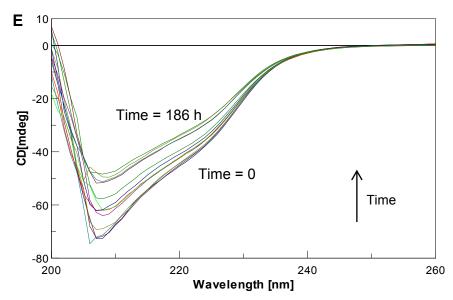


Figure SI6 - (A) CD spectra of Ros87 incubated at 298K recorded every 12 hours for 10 days. (B) ThT florescence assay of Ros87 incubated at 298K: spectra were recorded every 12 hours.


FIGURE SI7 – Aggregation behavior of unfolded Ros87 in acidic conditions (pH=3) at 298K followed by Thioflavin T fluorescence, recorded as a triplicate.



 $\textbf{FIGURE SI8} - Aggregation \ behavior \ of \ Ros 87 \ (black) \ and \ Ml4_{52-151} \ (red) \ at \ 300 \ \mu M \ and \ 298K \ followed \ by \ Thioflavin \ T \ fluorescence.$

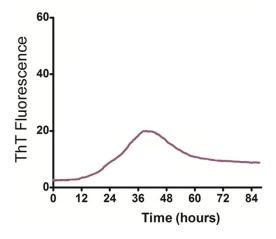


FIGURE SI9 - CD spectra of $Ml4_{52-151}$ incubated at 288K recorded every 24 hours for 154 hours.

Figure SI10 - Aged Ml1₅₃₋₁₄₉: amorphous aggregates (panels A-D) - CD spectra of Ml1₅₃₋₁₄₉ incubated at 298K recorded every 12 hours for 186 days (panel E).

 $\textbf{FIGURE SI11} \textbf{-} Aggregation behavior of Ml1_{53-149} \text{ at } 300 \ \mu\text{M} \ \text{and } 298K \ \text{followed by Thioflavin T fluorescence}.$