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S1 SP modes: additional details
Eq. (3a) and (5) in the main text correspond to Hamiltonians representing the SP modes and their coupling with excitons, respectively.
SP modes emerge at the interface of a metal (z < 0 ) and dielectric medium (z > 0) and are assumed to be infinitely delocalized in the
xy-plane (in practice, they are localized up to a coherence length, but this detail is not important for the time being). For simplicity, the
dielectric medium—which contains both donor and acceptor slabs—is taken to have the same real-valued positive dielectric constant
εd at all points within. The metal is assumed to have a Drude permittivity εm(ω) = ε∞− ω2

P
ω2+iωγ

, where ωP is the plasma frequency, ε∞ is
the high-frequency metal permittivity, and γ is the damping constant; we set γ = 0 in this formalism to get lossless modes and assume
that coupling of SPs to environments that induce their relaxation processes is caused by H(sys−B)

P (see Eq. (3c)). Here are additional
definitions for terms defined in Eqs. (3a) and (5) for each SP mode of in-plane momentum~k:S1

• The SP mode frequency is ω~k = |~k|c
√

εd+εm(ω)
εd εm(ω)

, where c is the speed of light in vacuum.

• The evanescent decay constants for the dielectric medium and metal are given by a j~k =
√
|~k|2− ε j(ω~k) (ω~k/c)2, where j = d, m.

• The ~k-dependent quantization length is L~k = −εm
|ad~k |

+ 1
2|am~k |

 d(ωεm(ω))
dω

∣∣∣∣∣
ω=ω~k

(
εm−εd

εm

)
− εm− εd

. It was previously reported in the

literatureS2 with an additional factor of 1
2 ; we believe our displayed expression here is correct (see SI inS3).

The formalism associated with Eq. (5) has been previously utilized in other contexts.S3–S6

S2 Case i

S2.1 Derivation of EET rate Eq. (7)

Here we derive Eq. (7) of the main text by following works of SumiS7 and Cao.S8 This formula describes the rate of transfer from
eigenstate |I〉 to eigenstate |F〉 of H(i)

sys due to perturbation V (i) (Section 2.1), where |I〉 and |F〉 are excitonic/polaritonic states for the
donor and acceptor, respectively.

For notational simplicity, we define for this derivation H ′D and H ′A to be the donor and acceptor Hamiltonian, respectively, such that
H ′C = HC +HP +HCP for the chromophore C that is strongly coupled to a SP mode and H ′C′ = HC′ for the other chromophore C′, which

is weakly coupled to all SP modes. We also introduce the definitions H ′(sys/B)
C = HC

(sys/B)+H(sys/B)
P and H ′(sys/B)

C′ = H(sys/B)
C′ . Then we

note for clarity that H ′(sys)
A |I〉= H ′(sys)

D |F〉= 0. In addition, H(i)
0 = H ′D +H ′A has eigenstates {|D〉} ({|A 〉}) that are also eigenstates of H ′D

(H ′A) and whose excitonic/polaritonic-system component represents only donor (acceptor) but bath component represents all of donor,
acceptor, and SPs.

Assuming excitation of donor followed by thermal equilibration occurs before EET, the initial density matrix of the system and bath
is assumed to be ρ0 = ρ

(sys−B)
D ρ

(B)
A = ∑D p0,D |D〉〈D |, where p0,D is the equilibrium occupation probability of system-bath state |D〉. The

constituent density matrices ρ
(sys−B)
D = e−H′D/kBT

tre−H′D/kBT and ρ
(B)
A = e−H′(B)A /kBT

tre−H′(B)A /kBT
respectively represent the pre-EET equilibrium distribution of

donor excited vibronic and acceptor ground vibrational states, in corresponding tensor products with photon states. Then the rate of
transfer from |I〉 to |F〉 given by Fermi’s golden rule (FGR) is

γF←I =
2π

h̄ ∑
D ,A

p0,D |〈PFA |V (i)|PID〉|2δ (h̄ωA ,D ), (S1)

The state |PID〉 (|PFA 〉) results from projection PI = |I〉〈I| (PF = |F〉〈F |) of the system component of |D〉 (|A 〉) onto |I〉 (|F〉). To
express this equation in the (purely electronic/polaritonic) eigenbasis {|D〉}∪{|A〉} of H(i)

sys, we first use the fact that the bath modes on
each type of chromophore are independent (see Eqs. (2b) and (2c)) and write the time-domain expression:

γF←I =
1
h̄2

∫
∞

−∞

dt ∑
D ,A

p0,D 〈PID |V (i)|PFA 〉〈PFA |e−iH(i)
0 t/h̄V (i)eiH(i)

0 t/h̄|PID〉

=
1
h̄2

∫
∞

−∞

dt ∑
D

p0,D 〈PID |V (i)PF e−i(H ′A+H ′(B)D )t/h̄V (i)ei(H ′D+H ′(B)A )t/h̄|PID〉, (S2)

where in the second line, we have used ∑A |PFA 〉〈PFA |e−iH(i)
0 t/h̄ =PF e−i(H ′A+H ′(B)D )t/h̄ and eiH(i)

0 t/h̄|PID〉= ei(H ′D+H ′(B)A )t/h̄|PID〉. Using
the independence of the D,A vibrational bath modes, we obtain

γF←I =
1
h̄2

∫
∞

−∞

dt ∑
D′

∑
A′

V (i)
IF V (i)∗

D′A′ trbD{e−iH ′(B)D t/h̄〈D′|eiH ′Dt/h̄PIρ
(sys−B)
D |I〉}trbA{eiH ′(B)A t/h̄

ρ
(B)
A 〈F |e

−iH ′At/h̄|A′〉} (S3)
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for V (i)
D′A′ = 〈D

′|V (i)|A′〉; here, trbC denotes a trace over the bath degrees of freedom associated with C. In the limit of weak exciton-bath

coupling, [eiH ′Dt/h̄,PI ]≈ 0, and 〈D′|eiH ′Dt/h̄ρ
(sys−B)
D |I〉 ≈ 0 (〈F |e−iH ′At/h̄|A′〉 ≈ 0) for D′ 6= I (A′ 6= F). Then

γF←I ≈
1
h̄2 |V

(i)
FI |

2
∫

∞

−∞

dt trbD{e−iH ′(B)D t/h̄〈I|eiH ′Dt/h̄
ρ
(sys−B)
D |I〉}trbA{eiH ′(B)A t/h̄

ρ
(B)
A 〈F |e

−iH ′At/h̄|F〉}. (S4)

To proceed further, let us define the quantities

IF (ω) =
1

2π

∫
∞

−∞

dt eiωt trbA{eiH ′(B)A t/h̄
ρ
(B)
A 〈F |e

−iH ′At/h̄|F〉}, (S5)

EI(ω) =
1

2π

∫
∞

−∞

dt e−iωt trbD{e−iH ′(B)D t/h̄〈I|eiH ′Dt/h̄
ρ
(sys−B)
D |I〉}, (S6)

representing the spectra for absorption of acceptor state F and emission of donor state I, respectively. Also, denote the corresponding
spectral overlap as

JF,I =
1
h̄

∫
∞

−∞

dω EI(ω)IF (ω). (S7)

Eq. (S4) then yields,

γF←I ≈
2π

h̄
|V (i)

FI |
2JF,I , (S8)

which is Eq. (7) of the main text; in other words, the spectral overlap JF,I takes on the role of a density of final states for a FGR rate.
We note that for our simulations where the donors and acceptors are reversed (see Sections 3 and S2.9), Eq. (S8) still applies except
D, I (A,F) now refer to acceptors (donors).

S2.2 Estimation of spectral overlaps

As an illustration of the application of our theory, in this subsection, we develop a simplified Lorentzian overlap model to compute JF,I

at temperature T = 0. To write Eqs. (S5) and (S6) as Lorentzian lineshapes, we follow a Feshbach projection operator approach.S9–S12

While we proceed with the specific case of only donors strongly coupled to a SP (i.e., H ′A = HA and H ′D = HD +HP +HDP), the derivation
can be readily extended to the case of acceptors strongly coupled to a SP.

Define the projectors

PA = ∑
l,m
|Alm〉〈Alm|⊗ |0B〉〈0B|, (S9)

PD = ∑
i, j
|Di j〉〈Di j|⊗ |0B〉〈0B|+ ∑

~k∈FBZ

|~k〉〈~k|⊗ |0B〉〈0B| (S10)

(|0B〉 is the vacuum state for chromophores and SP bath modes, and |~k〉= a†
~k
|0〉), which map vibronic (possibly including photonic com-

ponent) states onto electronic/photonic—i.e., “bathless”—states. Let the identity on the entire set of degrees of freedom be 1sys−B and
define the projectors QA = 1sys−B−PA and QD = 1sys−B−PD. Then the time-dependent Schrödinger equation d

dt |ψ(t)〉=− i
h̄ H ′C|ψ(t)〉

for C = D,A can be rewritten as the coupled equations

− i
h̄
PCH

′

CPC|PCψ(t)〉− i
h̄
PCH

′

CQC|QCψ(t)〉= d
dt
|PCψ(t)〉, (S11a)

− i
h̄
QCH

′

CPC|PCψ(t)〉− i
h̄
QCH

′

CQC|QCψ(t)〉= d
dt
|QCψ(t)〉. (S11b)

After the initial condition |QCψ(0)〉 = 0 (which holds at T = 0), multiplying both sides of Eq. (S11) by Θ(t), and plugging the formal
solution of Eq. (S11b) into Eq. (S11a), we obtain the Green functions GC(t) = Θ(t)e−iH ′Ct/h̄ which can be Fourier transformed as,S11

GA(h̄ω) =−i
∫

∞

−∞

dt eiωtGA(t) = limε→0+
1

h̄ω−H(sys)
A ⊗|0B〉〈0B|−RA(h̄ω)+ iε

, (S12a)

GD(h̄ω) =−i
∫

∞

−∞

dt eiωtGD(t) = limε→0+
1

h̄ω− (H(sys)
D +H(sys)

P +HDP)⊗|0B〉〈0B|−RDP(h̄ω)+ iε
, (S12b)

where
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RA(h̄ω) = PAH(sys−B)
A QA

1
h̄ω−QAH ′AQA + iε

QAH(sys−B)
A PA, (S13a)

RD(h̄ω) = PD[H
(sys−B)
D +H(sys−B)

P ]QD
1

h̄ω−QDH ′DQD + iε
QD[H

(sys−B)
D +H(sys−B)

P ]PD, (S13b)

are the so-called self-energy terms. We next make the partition RC(h̄ω) = ReRC(h̄ω)− i
2 ΓC(h̄ω) with ΓC(h̄ω) = −2ImRC(h̄ω) and

assume that the Lamb shifts ReRC(h̄ω) contribute insignificantly when compared to the exciton/SP energies and can thus be neglected.
In addition, we take the wide-band approximation that all (diagonal) matrix elements of ΓC(h̄ω) are constant as a function of ω:
〈Alm,0B|ΓA(h̄ω)|Alm,0B〉 ≈ ΓA, 〈Di j,0B|ΓD(h̄ω)|Di j,0B〉 ≈ ΓD, and 〈1~k,0B|ΓD(h̄ω)|1~k,0B〉 ≈ ΓP,~k. Then explicitly writing out the respective
Hamiltonians in Eq. (S12), we arrive at

GA(h̄ω) = limε→0+
1

h̄ω− (h̄ωA− i
2 ΓA)∑l,m |Alm〉〈Alm|⊗ |0B〉〈0B|+ iε

(S14a)

GD(h̄ω) = limε→0+
1

h̄ω− [(h̄ωD− i
2 ΓD)∑i, j |Di j〉〈Di j|+∑~k∈FBZ(h̄ω~k−

i
2 ΓP,~k)a

†
~k

a~k +HDP]⊗|0B〉〈0B|+ iε
(S14b)

= limε→0+
1

h̄ω− [(h̄ωD− i
2 ΓD)∑~k∈FBZ ∑d |d~k〉〈d~k|+∑~k∈FBZ ∑α (h̄ωαD,~k

− i
2 ΓαD,~k

)|αD,~k〉〈αD,~k|]⊗|0B〉〈0B|+ iε
. (S14c)

It is intuitively clear that the terms in brackets in the denominators of Eqs. (S14b) and (S14c) correspond to effective Hamiltonians of
the donor-SP coupled system. In fact, h̄ωαD,~k

and ΓαD,~k
are the resulting (real-valued) energy and linewidth of |αD,~k〉 (defined just after

Eq. (6) in the main text) for α = UP,LP. Comparing those two equations shows that not only can the polariton energies and linewidths
be obtained from the diagonalization of a non-Hermitian Hamiltonian for the donors and SP modes, but all dark states have the same
energy and linewidth as the bare chromophores.

More precisely, applying the assumption of weak system-bath coupling that was used to derive Eq. (7) and setting ρ
(B)
C = |0B〉〈0B|

(T = 0), we can readily relate the expressions for absorption and emission spectra (Eqs. (S5) and (S6), respectively) to matrix elements
of the Green’s functions (see Eq. (S12)),

IF (ω)≈ 1
2π

trbA{ρ
(B)
A 〈F |−2ImGA(h̄ω)|F〉}

=
1
π

1
2 ΓF

(h̄ω− h̄ωF )2 +( 1
2 ΓF )2

, (S15a)

EI(ω)≈ 1
2π

trbD{ρ
(B)
D 〈I|−2ImGD(h̄ω)|I〉}

=
1
π

1
2 ΓI

(h̄ω− h̄ωI)2 +( 1
2 ΓI)2

, (S15b)

with F = A (I = αD,~k,D) representing any state of type |Alm〉 (|α~k,D〉, |d~k〉), and we thus obtain the Lorentzian spectral overlap JF,I =

1
π

ΓI+ΓF
2

(
ΓI+ΓF

2 )2+(h̄ωFI)2
.

Although we made several approximations to achieve this form, Lorentzian behavior is usually characteristic of lineshapes near their
peaks,S13 leading to overlaps and thus EET rates that are especially relevant when initial and final states are near resonance. In
passing, we mention that a different physical mechanism to obtain Lorentzian lineshapes occurs when electronic states are coupled to
overdamped Brownian oscillators in the limits of high temperature and fast nuclear dynamicsS11.

S2.3 Lack of supertransfer enhancement

Here, we demonstrate that even though the donor polariton state is coherently delocalized, the superradiance enhancement of EET to
bare acceptors that one could expectS14,S15 is negligible when taking into account the distance dependence and orientational correlation
of the involved dipolar interactions. The essence of supertransfer is that a constructive interference of individual donor dipoles in an
aggregate can lead to FRET rates that scale as N times a bare FRET rate. However, for this to happen, it is important to have a geometric
arrangement where all donors are equally coupled to, i.e., equidistantly spaced and identically oriented with respect to, all acceptors;

S4



this is not the case in our problem.

To show this point explicitly, we first evaluate the FRET rate associated with the delocalized donor |D~k=0〉 transferring energy to bare
acceptors,

γ
FRET
A←D~k=0

≡ 2π

h̄ ∑
l,m
|〈Alm|HDA|D~k=~0〉|

2JA,D~k=~0

≈ 2π

h̄
µ

2
Dµ

2
A ∑

l,m

1
ND

(
∑
i, j

κi jlm

r3
i jlm

)2

JA,D~k=~0
, (S16)

where we have approximated |D~k=0〉 as a totally symmetric state across all chromophores, |cDi′ j′D~k=0
|2 =

|κ~kDi′ j′
|2

∑i, j |κ~kDi j
|2 ≈

1
ND

(see definition

of |C~k〉 for C = D,A in main text right after Eq. (6)).

Compare Eq. (S16) to the corresponding supertransfer rate

γsupertransfer =
2π

h̄
µ

2
Dµ

2
A

1
ND

∑
l,m

∣∣∣∣∣∑i, j Vlm

∣∣∣∣∣
2

JA,D

=
2π

h̄
µ

2
Dµ

2
A ∑

l,m
NDV 2

lmJA,D, (S17)

where Vlm is the identical coupling between acceptor Alm and any donor Di j for all i, j and may take on any nonzero real value. Since
the separations between the donors and any given acceptor are clearly different in the slab geometry of this work, the resulting rate is
much less than that of Eq. (S17).

We next show this more precisely. Consider S(lm)
> (ε) =

{
(i, j)

∣∣∣∣ 4
r6

i jlm
≥ ε2V 2

lm

}
for positive ε → 0, where this set has N(lm)

> elements.

Then

1
ND

(
∑
i, j

κ2
i jlm

r3
i jlm

)2

≤ 1
ND

 ∑
(i, j)∈S(lm)

> (ε)

4
r3

i jlm

2

+
2

ND

 ∑
(i, j)∈S(lm)

> (ε)

2
r3
i jlm

 ∑
(i, j)/∈S(lm)

> (ε)

2
r3

i jlm

+
1

ND

 ∑
(i, j)/∈S(lm)

> (ε)

4
r3

i jlm

2

.

We have used the fact that the squared FRET orientation factor κ2
i jlm ranges from 0 to 4.S16 Since S(lm)

> (ε) is a finite set, the first term
on the righthand side vanishes for sufficiently large ND. Thus,

1
ND

(
∑
i, j

κ2
i jlm

r3
i jlm

)2

≤ 2(ND−N(lm)
> )ε|Vlm|

ND
∑

(i, j)∈S(lm)
> (ε)

2
r3

i jlm
+

(ND−N(lm)
> )2ε2V 2

lm
ND

,

and so

γFRET
A←D~k=0

γsupertransfer
≤

JA,D~k=~0
∑l,m

[
2(ND−N(lm)

> )ε|Vlm|
ND

∑
(i, j)∈S(lm)

> (ε)
2

r3
i jlm

+
(ND−N(lm)

> )2ε2V 2
lm

ND

]
JA,DND ∑l,m V 2

lm
.

In the limit ND→ ∞, we find
γFRET

A←D~k=0

γsupertransfer
→

JA,D~k=~0
ε2

JA,D
→ 0.

Therefore, we conclude that the decay of dipolar interactions with respect to distance precludes a supertransfer enhancementS14,S15 in
our problem.

By noticing that
∣∣∣∣∑i, j

κi jlm

r3
i jlm

∣∣∣∣2 > ∑i, j
κ2

i jlm

r6
i jlm

(at least when all κi jlm ≥ 0), and for JA,D ≈ JA,D~k=~0
, we still expect a coherence enhancement of

EET: γFRET
A←D~k=0

> 2π

h̄ µ2
Dµ2

A ∑l,m
1

ND
∑i, j

κ2
i jlm

r6
i jlm

JA,D, the corresponding bare FRET rate. However, this enhancement is quite modest compared

to all other effects that we consider in our problem (e.g., PRET contributions).
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S2.4 Derivation of rate Eq. (12a) from donor polaritons to acceptors

Here, we derive expressions for EET rates between a multi-layer slab of ND � Nxy,D donor molecules strongly coupled to a SP and a
monolayer of acceptor molecules at z = z0,A > z j,D for all j. The polariton states α = UP,LP are of the form |αD,~k〉= cD~kαD,~k

|D~k〉+c~kαD,~k
|~k〉,

where |~k〉= a†
~k
|0〉 and

|D~k〉=
1√

∑i, j |κ~kDi j
|2e−2ad~kz j,D

∑
i, j

κ~kDi j
e−ad~kz j,D ei~k·~Ri,D |Di j〉. (S18)

Plugging Eq. (S18) into Eq. (8a), the rate of transfer from donor polariton state |αD,~k〉 (α = UP,LP) to acceptors is

γA←αD,~k
=

2π

h̄ ∑
l

∣∣∣〈Al0|HDA +HAP|αD,~k〉
∣∣∣2 JAαD,~k

=
2π

h̄ ∑
l

∣∣∣∣∣∣〈Al0|HDA +HAP|

cD~kαD,~k ∑
i, j

κ~kDi j
e−ad~kz j,D ei~k·~Ri,D√

∑i, j |κ~kDi j
|2e−2ad~kz j,D

|Di j〉+ c~kαD,~k
|~k〉

∣∣∣∣∣∣
2

JA,αD,~k
. (S19)

For simplicity, we next assume the chromophores lie in an infinitely extended and translationally invariant slab along the xy plane and
their TDMs are isotropically distributed and orientationally uncorrelated:

γA←αD,~k
= |cD~kαD,~k

|2 2π

h̄
NA ∑

i, j

(
e−2ad~kz j

Nxy,D ∑ j e−2ad~kz j,D

)
µ2

Dµ2
A〈κ2

FRET 〉
r6

i j
JAαD,~k

+ |c~kαD,~k
|2 2π

h̄
ρ
(2D)
A µ

2
A〈|κLM,~k|

2〉
h̄ω~k

2ε0L~k
e−2ad~kz0,A JAαD,~k

, (S20a)

where ri j is distance between acceptor at (0,0,z0,A) and donor i j, ρ
(2D)
A =

Nxy,A
S is the concentration of acceptors per unit area, the

isotropically averaged orientation factors for FRET and light-matter interaction are 〈κ2
FRET 〉= 〈κ2

i jl0〉=
2
3

S16, and 〈|κLM,~k|
2〉= 〈|κ~kDi j

|2〉=
2
3 +

1
3
|~k|2
a2

d~k

S4. Eq. (S20a) shows that the isotropic distribution of dipoles and the lack of correlations amongst their orientations yields an

incoherently averaged rate over the populations of exciton (first term) and SP (second term). Furthermore, Eq. (13b) of the main text

is a less explicit form of Eq. (S20a) that follows from using the approximation e−2a
d~k

z j,D

Nxy,D ∑ j e−2a
d~k

z j,D
≈ |cDi jD~k

|2 =
|κ~kDi j

|2e−2a
d~k

z j,D

∑i, j |κ~kDi j
|2e−2a

d~k
z j,D

(i.e., ignoring

the orientational dependence of the exciton populations).
In obtaining Eq. (S20a), we have utilized the following approximations which are valid for large ND:

〈
κ~kDi j

κi jl0κ∗~kDi′ j′
κi′ j′l0

∑i, j |κ~kDi j
|2e−2ad~kz j,D

〉
≈
〈κ~kDi j

κi jl0κ∗~kDi′ j′
κi′ j′l0〉

∑i, j〈|κ~kDi j
|2〉e−2ad~kz j,D

=
〈κ~kDi j

κi jl0κ∗~kDi′ j′
κi′ j′l0〉

〈|κLM |2〉Nxy,D ∑ j e−2ad~kz j,D
, (S21a)

〈
κ~kDi j

κi jlmκ∗~kAl0√
∑i, j |κ~kDi j

|2e−2ad~kz j,D

〉
≈

〈κ~kDi j
κi jlmκ∗~kAl0

〉

〈
√

∑i, j |κ~kDi j
|2e−2ad~kz j,D〉

. (S21b)

In addition, we have applied a mean-field approach to the orientational factors,

〈κ~kDi j
κi jl0κ

∗
~kD′ i′ j

κi′ j′l0〉 ≈ 〈κ~kDi j
κ
∗
~kD′ i′ j

〉〈κi jl0κi′ j′l0〉= 〈|κLM,~k|
2〉〈κ2

FRET 〉δ(i, j),(i′ j′), (S22a)

〈κ~kDi j
κi jl0κ

∗
~kAl0
〉 ≈ 〈κ~kDi j

κ
∗
~kAl0
〉〈κi jl0〉= 0. (S22b)

In the continuum limit, Eq. (S20a) reads,

γA←αD,~k
=

2π

h̄
ρ
(2D)
A

|cD~kaD,~k
|2µ

2
Dµ

2
A〈κ2

FRET 〉

∫ s+W
s dze−2ad~kz π

2(z0,A−z)4

e−2a
d~k

(s+W )−e−2a
d~k

s

−2ad~k

+ |c~kαD,~k
|2µ

2
A〈|κLM,~k|

2〉
h̄ω~k

2ε0L~k
e−2ad~kz0,A

JAαD,~k
, (S23)

where the base of the donor slab is located at z = s and its thickness is W (while the integral over z has an analytical solution, it is
complicated and does not shed much insight into the problem).
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S2.5 Derivation of rate Eq. (12b) from donor dark states to acceptors
Here, we show that the rate (Eq. (8b)) of EET from donor dark states to a spatially separated monolayer of bare acceptors at z = z0,A

converges to the bare FRET rate γbare FRET in Eq. (12b) assuming that ND � Nxy,D and all donor and acceptor TDMs are isotropically
oriented and uncorrelated. The steps applied in this subsection can be extended in a straightforward manner to establish this result for
multiple layers in the acceptor slab. This result is intuitively expected given that the dark states are purely excitonic and centered at
the original transition frequency ωD; furthermore, the density of dark states is close to the original density of bare donor states. Our
derivation here relies on Lorentzian lineshapes for the dark donor and acceptor states (see Section S2.2); however, we anticipate the
conclusions to hold for more general lineshapes under certain limits.

As suggested by Section S2.2 and the main text, we assume that the lineshape of each dark state |dD,~k〉 can be expressed as a
Lorentzian with peak energy and linewidth identical to that of bare donors, leading to JA,dD,~k

= JA,D. Connecting this finding to the
relevant rate expression, we can rewrite Eq. (8b) of the main text for an acceptor monolayer as

γA←darkD =
2π

h̄
1

ND−Nxy,D
∑
l

[
∑
i, j
|〈Al0|HDA|Di j〉|2− ∑

~k∈FBZ

|〈Al0|HDA|D~k〉|
2

]
JA,D. (S24)

We have used the relation ∑~k∈FBZ ∑d |d~k〉〈d~k|= 1(sys)
D −∑~k∈FBZ |D~k〉〈D~k| for donor (electronic) identity 1(sys)

D . Assuming Nz,D� 1 (equiva-
lent to ND� Nxy,D ), we have

γA←darkD =
2π

h̄
1

ND
∑
l

∑
i, j
|〈Al0|HDA|Di j〉|2JA,D−

2π

h̄
1

ND
∑
l

∑
~k∈FBZ

|〈Al0|HDA|D~k〉|
2JA,D. (S25)

We note that the first term is exactly γbare FRET. Applying the arguments from the derivation (Section S2.4, including the orientational
averaging approximations of Eqs. (S21) and (S22)) of the rate of EET from donor polaritons to acceptors, as well as the continuum
approximation, we obtain

γA←darkD =
2π

h̄
ρ
(2D)
A µ

2
Dµ

2
A〈κ2

FRET 〉

 ∫ s+W
s dz π

2(z0,A−z)4

W
− 1

ND
∑

~k∈FBZ

∫ s+W
s dze−2ad~kz π

2(z0,A−z)4∫ s+W
s dze−2ad~kz

JAD. (S26)

Using ∑~k∈FBZ = Nxy,D and Nz,D� 1, we arrive at

1
ND

∑
~k∈FBZ

∫ s+W
s dze−2ad~kz π

2(z0,A−z)4∫ s+W
s dze−2ad~kz

≤ 1
Nz,D

max
~k∈FBZ

∫ s+W
s dze−2ad~kz π

2(z0,A−z)4∫ s+W
s dze−2ad~kz

�

∫ s+W
s dz π

2(z0,A−z)4

W
, (S27)

which yields

γA←darkD ≈
2π

h̄
ρ
(2D)
A µ

2
Dµ

2
A〈κ2

FRET 〉
π

6

[
1

(z0,A−s−W )3 − 1
(z0,A−s)3

]
W

JAD. (S28)

This expression is exactly the bare FRET rate γbare FRET of Eq. (13b) under the aforementioned assumptions of infinitely extended slab
along the xy plane, translational symmetry, orientational averaging, and the continuum limit.

S2.6 Additional simulation notes/data for donors SC
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Fig. S1 SC of SPs to donors. Lorentzian spectra for the donor polariton and dark states (formed with donor-resonant SP mode), as well as the bare
donors and acceptors.

S8



S2.7 Derivation of simulated rates for acceptors SC
The simulated rates for EET from a monolayer of bare donor at z = z0,D > zm,A for all m to acceptor polariton/dark states asssuming a
thick acceptor slab (NA� Nxy,A), orientational averaging and no correlations for the TDMs ~µAlm are given by

γαA←D =
1
h̄

∫
π/a

0
dk k

|cA~kαA,~k
|2µ

2
Dµ

2
A〈κ2

FRET 〉

∫ s+W
s dze−2ad~kz π

2(z0,D−z)4

e−2a
d~k

(s+W )−e−2a
d~k

s

−2αd~k

+ |c~kαA,~k
|2µ

2
D〈|κLM,~k|

2〉
h̄ω~k

2ε0L~k
e−2ad~kz0,D

JαA,~kD (S29a)

γdarkA←D =
2π

h̄
ρAµ

2
Dµ

2
A〈κ2

FRET 〉
π

6

[
1

(z0,D− s−W )3 −
1

(z0,D− s)3

]
JAD = γ

′
bare FRET, (S29b)

where γ ′bare FRET is the bare FRET rate. Here, the thickness of the acceptor slab is W , its base is located at z = s, and its (three-
dimensional) concentration is ρA = NA

SW . The derivation of Eq. (S29) starts with the preliminary rate expression in Eq. (9) of the main
text and proceeds analogously to those in Sections S2.4 and S2.5, respectively. In contrast to Eq. (S23), Eq. (S29a) also sums over the
final polariton~k modes, yielding a integral rate upon invoking the continuum-limit transformation ∑~k∈FBZ →

S
(2π)2

∫ 2π

0 dφ
∫ π/a

0 dk k for
acceptor lattice spacing a. Eq. (S29) is a more explicit form of Eq. 13 in the main text.

We now consider the case when

1
Nxy,A

∑
~k∈FBZ

|〈~k|HDP|Di0〉|2 <
1

NA
∑
l,m
|〈Alm|HDA|Di0〉|2, (S30)

in other words, the average PRET coupling intensity is smaller than that of FRET; this can happen when the donor-acceptor separation
lies within the typical FRET range (1-10 nm). As we next show, the EET rate from a monolayer of bare donors to acceptor polariton
band αA is consequently much smaller than the bare FRET rate (γ ′bare FRET in Eq. (13b)) as NA� Nxy,A (i.e., Nz,A� 1), for isotropic and
uncorrelated orientational distribution of TDMs ~µAlm ,~µDi0 . The steps taken here resemble those employed in Section S2.5. Starting from
Eq. (13a), we utilize |cAlmA~k |

2 ≈ 1
NA

to obtain

γαA←D ≈
2π

h̄ND
∑

~k∈FBZ
∑

i

[
|cA~kαA,~k

|2 ∑
l,m

1
NA
|〈Alm|HDA|Di0〉|2 + |c~kαA,~k

|2|〈~k|HDP|Di0〉|2
]

JαA,~k ,D

≤ 2π

h̄ND
∑

i
∑
l,m
|〈Alm|HDA|Di0〉|2

1
Nz,A

max
~k∈FBZ

JαA,~k ,D

+
2π

h̄ND
∑

i
∑

~k∈FBZ

|〈~k|HDP|Di0〉|2 max
~k∈FBZ

JαA,~k ,D

� 2π

h̄ND
∑

i
∑
l,m
|〈Alm|HDA|Di0〉|2JA,D

= γ
′
bare FRET, (S31)

where the second inequality holds for sufficiently large Nz,A such that 2
Nz,A

max~k∈FBZ JαA,~k ,D� JA,D. This result can be physically interpreted

as follows: γ ′bare FRET and γFRET
αA←D scale as the number of final states NA and Nxy,A� NA, respectively.

S2.8 Additional simulation notes/data for acceptors SC
We note that the rates from donors to polariton bands (Eq. S29a) were calculated numerically. In particular, the integrals over k were
calculated via the trapezoidal rule using 2000 intervals.
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Fig. S2 SC of SPs to acceptors. Contributions of EET rates from donors to acceptor UP and LP due to donor-acceptor (FRET) and SP-donor (PRET)
interactions.
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Fig. S3 SC of SPs to acceptors.(a) Dispersion curve in the FBZ. The value a = 1× 10−9 m is the inter-chromophoric lattice spacing for the acceptor
slab. (b) Expanded view of dispersion curve at region of anticrossing characteristic of SC; the SP dispersion has been added to help visualize the
anticrossing.
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S2.9 Simulations for the “carnival effect”
For this simulation, the coupling is strong enough such that the UP is higher in energy than the bare donors. Thus, the acceptor UP
becomes a donor and the donors turn into acceptors. We use the rate Eq. (S23) derived for the case of exclusive donor SC for transfer
from a polariton state with the labels D and A interchanged.

Fig. S4 Carnival effect of EET role-reversal. Lorentzian spectra for the acceptor polariton and dark states (formed with acceptor-resonant SP mode),
as well as the bare donors and acceptors.
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S3 Case ii

S3.1 Derivation: EET rates Eq. (11)

In this section, we show how to derive the EET rates in Eq. (11) of the main text between polariton/dark states when both donors and
acceptors are strongly coupled to SP modes. While we only derive rate Eq. (11a) in significant detail, Eqs. (11b) and (11c) can be
analogously obtained in essentially the same manner.

Excitons coupled to the~k-th SP mode produce polariton states of the form |α~k〉 = cD~kα~k
|D~k〉+ cA~kα~k

|A~k〉+ c~kα~k
|~k〉. As discussed in the

main text, for sufficiently large separation between donor and acceptor slabs, the perturbation V (ii) due to the chromophore and photon
baths induces transitions between the UP, MP, LP and dark states of donors and acceptors:

V (ii) = ∑
C

∑
i, j
|Ci j〉〈Ci j|∑

q
λq,Ch̄ωq,C(b

†
q,Ci j

+h.c.)+∑
~k

∑
q

gq,~k(b
†
q,Pa~k +h.c.), (S32)

where C = D,A. Neglect of HDA in V (ii) is justified by FRET decaying with increasing interslab distance and occurring slower than
vibrational relaxation in typical organic molecules.S17 Given the locality of vibronic coupling, the first term only couples two states that
share the same chromophores. On the other hand, the second term does not couple different polariton/dark states because it represents
radiative and Ohmic losses from the SP modes. The EET rate from a single polariton state |α~k〉 to the polariton band β can then be
calculated by invoking FGR,

γβ←α~k
= ∑

~k′∈FBZ
∑
C
|cC~k′β~k′

|2|cC~kα~k
|2 ∑

i, j
|cCi jC~k′ |

2|cCi jC~k |
2

× 2π

h̄2 ∑
L′

∑
L

pLCi j
|〈L′Ci j

|∑
q

λq,Ch̄ωq,C(b
†
q,Ci j

+bq,Ci j )|LCi j 〉|
2
δ (ωβ~k′α~k

+ωL′Ci j
LCi j

). (S33)

|LCi j 〉 refers to a local bath state of molecule Ci j and pLCi j
is the thermal probability to populate it. Assuming that all molecules of the

same type C (donor or acceptor) feature the same bath modes, we can associate the single-molecule rate

2π

h̄2 ∑
L′

∑
L

pLCi j
|〈L′Ci j

|∑
q

λq,Ch̄ωq,C(b
†
q,Ci j

+bq,Ci j )|LCi j 〉|
2
δ (ω +ωL′Ci j

LCi j
) = RC(ω) (S34)

which can be readily related to a spectral density, as explained in the main text. Then we arrive at the compact expression,

γβ←α~k
= ∑

~k′∈FBZ
∑
C
|cC~k′β~k′

|2|cC~kα~k
|2 ∑

i, j
|cCi jC~k′ |

2|cCi jC~k |
2RC(ωβ~k′α~k

), (S35)

which is exactly Eq. (11a) of the main text.

To derive the average rate Eq. (11b) from dark states of chromophore C to the polariton band α, we begin with

γα←darkC =
2π

h̄2 ∑
~k′∈FBZ

1
NC−Nxy,C

∑
~k∈FBZ

∑
d

∑
i′ j′

∑
L′

∑
i′′ j′′

∑
L

pLCi′′ j′′
|〈α~k′ ,L

′
Ci′ j′
|V (ii)|dC,~k,LCi′′ j′′ 〉|

2
δ (ωα~k′C +ωL′Ci′ j′

LCi′′ j′′
). (S36)

Similarly, the derivation of rate Eq. (11c) from polariton state |α~k〉 to the same dark states starts at

γdarkC←α~k
=

2π

h̄2 ∑
~k∈FBZ

∑
d

∑
i′ j′

∑
L′

∑
i′′ j′′

∑
L

pLCi′′ j′′
|〈dC,~k′ ,L

′
Ci′ j′
|V (ii)|α~k,LCi′′ j′′ 〉|

2
δ (ωCα~k

+ωL′Ci′ j′
LCi′′ j′′

). (S37)

We note that the presence of the prefactor 1
NC−Nxy,C

in Eq. (S36) and lack thereof in Eq. (S37) is due to the asymmetry of FGR: in the
former equation, dark states serve as the initial state and thus the term for each state is weighted by its occupation probability, which
we have assumed to be uniform at 1

NC−Nxy,C
given their degeneracy.

S3.2 Simulated rates

In this section, we present the rates used in our simulations for both donors and acceptors strongly coupled to SPs assuming (as
discussed in the main text) orientationally averaged TDMs ~µCi j , Nxy,D = Nxy,A = Nxy, and Nz,C� 1 for C = D,A.

The overlap between |Ci j〉 and the collective mode |C~k〉 can be written as |cCi jC~k | =
κ~kCi j

e−a
d~k

z j,C√
∑i, j |κ~kCi j

|2e−2a
d~k

z j,C
and plugged into Eq. (11a) to
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obtain the rate for EET from polariton state |α~k〉 to band β :

γβ←α~k
=

1
2π

∑
C

|cC~kα |2

ρC
e−2a

d~k
(sC+WC )−e−2a

d~k
sC

−2ad~k

∫
π/a

0
dk′ k′|cC~kβ |2

e−2(a
d~k

+a
d~k′ )(sD+WD)−e−2(a

d~k
+a

d~k′ )sD

−4ad~k′

e−2a
d~k′ (sD+WD)−e−2a

d~k′ sD

−2ad~k′

RD(ωβ~k′α~k
), (S38)

where we have applied orientational averaging of the TDMs under the approximation 〈|cCi jC~k |
2〉 ≈ e−2a

d~k
z j,C

Nxy ∑ j e−2a
d~k

z j,C
(Section S2.4) and the

~k-space continuum-limit transformation (Section S2.7).

The derivation of the EET rate from polariton |α~k〉 to dark states is quite alike that of Section S2.5. We can write Eq. (11c) as

γdarkC←α~k
= |cC~kα~k

|2RC(ωCα~k
)∑

i, j
|cCi jC~k |

2
∑

~k′∈FBZ
∑
d
|〈Ci j|dC,~k′〉|

2. (S39)

Inserting the relation ∑~k∈FBZ ∑d |dC,~k〉〈dC,~k|= 1(sys)
C −∑~k∈FBZ |C~k〉〈C~k|, we obtain

γdarkC←α~k
= |cC~kα~k

|2RC(ωCα~k
)∑

i, j
|cCi jC~k |

2

(
1− ∑

~k′∈FBZ

|cCi jC~k′ |
2

)
. (S40)

Noting that |cCi jC~k′ |
2 ∼ 1

NxyNz,C
and ∑~k∈FBZ sums over Nxy terms, we utilize Nz,C� 1 and ∑i, j |cCi jC~k |

2 = 1 to write

γdarkC←α~k
= |cC~kα~k

|2RC(ωCα~k
). (S41)

This same logic can be applied to arrive at

γα←darkC =
1

2πρCWC

∫
π/a

0
dk′ k′|cC~k′α~k′ |

2RC(ωα~k′C) (S42)

for a continuum of~k states.

In summary, the simulated equations for the case where both donors and acceptors are strongly coupled are

γβ←α~k
=

1
2π

∑
C

|cC~kα |2

ρC
e−2a

d~k
(sC+WC )−e−2a

d~k
sC

−2ad~k

∫
π/a

0
dk′ k′|cC~kβ |2

e−2(a
d~k

+a
d~k′ )(sD+WD)−e−2(a

d~k
+a

d~k′ )sD

−4ad~k′

e−2a
d~k′ (sD+WD)−e−2a

d~k′ sD

−2ad~k′

RD(ωβ~k′α~k
), (S43a)

γα←darkC =
1

2πρCWC

∫
π/a

0
dk′ k′|cC~k′α~k′ |

2RC(ωα~k′C), (S43b)

γdarkC←α~k
= |cC~kα~k

|2RC(ωCα~k
). (S43c)

From these expressions, it can be seen that the rates to polariton bands (Eqs. (S43a) and (S43b)) scale as ∼ 1
Nz,C

relative to the rate
to dark states (Eq. (S43c)), which scales as a single-molecule rate RC. This is because there are Nxy states in each polariton band as
opposed to NC−Nxy in the band of dark states.

As discussed in the main text (Section 3), the spectral density that governs RC(ω) depends on the energies h̄ωq and coupling strengths
λqh̄ωq of representative localized vibrational modes BTDBC, reproduced below from literature:S18

h̄ωq (meV) 40 80 120 150 185 197
λqh̄ωq (meV) 14 18 25 43 42 67

S3.3 Rate parameters for comparison to experiments

Here, we present closed-form expressions for certain rate parameters characterizing downhill vibrational-relaxation transitions between
polariton and dark states. Specifically, these rate parameters were first introduced as empirical constants fitted to the data of Coles et
al.S19 For spatially separated slabs of donors and acceptors—the setup studied in our work—such experimental values are not available
in the literature. Instead, we compare to those of Coles et al. for a blend of donors and acceptors. This comparison is supported by
qualitatively similar photoluminescence for both setups, as reported by the same authors.S19

Based on their fitting model (Eqs. (3)-(5) of Ref.S19), we express their rate parameters {C UPB
5 = (34 fs)−1,C2 = (603 ps)−1,C MPB

5 =

(8.5 fs)−1,C1 = (228 ps)−1} (Table 1 of Ref.S19) in terms of our theoretical framework as follows (throughout this section we use the
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convention ca,b = 〈a|b〉 and ω f ,i = ω f −ωi):

C UPB
5 ≡max

~k
{γdarkD←UP~k}, (S44a)

C2 ≡ NdarkD

〈
2πJD(−ωMP~k ,D)

πk2

(2π)2/S
1

ND

〉
~k

(S44b)

=
NdarkD

2ρDWD

∫ kmax
kmin

dk′ (k′)3JD(−ωMP~k′ ,D)

1
2 (k

2
max− k2

min)
, (S44c)

C MPB
5 ≡max

~k
{γdarkA←MP~k}, (S44d)

C1 ≡ NdarkA

〈
2πJA(ω−LP~k ,A)

πk2

(2π)2/S
1

NA

〉
~k

(S44e)

=
NdarkA

2ρAWA

∫ kmax
kmin

dk′ (k′)3JA(−ωLP~k′ ,A)

1
2 (k

2
max− k2

min)
, (S44f)

where the relations in Eqs. (S44b) and (S44e) were obtained by comparing the first terms on the right-hand sides of Eqs. (4) and (3)
of Ref.S19, respectively, with Eq. (15) of the theoretical work by Michetti and La Rocca.S20 The particular kmin,kmax used in calculation
of C2 and C1 in Table 2 of the main text are given in the next section. JC(ω) is the spectral density (defined after Eq. (11) of the main
text) for chromophore C = D,A. NdarkC is a fitting constant proportional to the steady-state population—assumed to be independent
of the wavevector by Coles et al. Notice that C UPB

5 and C MPB
5 can be numerically evaluated using theory presented above (Eq. S43c).

However, numerical computation of C2 and C1 requires the values of NdarkC , which are not actually defined by Coles et al.S19 Given that
Coles et al. determined C2 and C1 partly by using the work of Michetti and La RoccaS20 (see first four sentences of footnotes of Table 1
in Ref.S19), we next estimate NdarkC using experimental results from Ref.S19 and the theoretical results fromS20.

The first step is to relate C2 and C1 to FGR rates γMP~k←darkD and γLP~k←darkA (Eq. (S43b)) using Eqs. (4) and (3), respectively, of
Ref.S19:S21

NdarkD ≈
(603 ps)−1 〈|cD,MPθ

|2[n(−ωMPθ ,D)+1]
〉

θ

〈γMPθ←darkD〉θ
, (S45a)

NdarkA ≈
(228 ps)−1

〈
|cA,LPθ

|2[n(−ωLPθ ,A)+1]
( |ωLPθ ,A|

75 meV/h̄

)1.93
〉

θ

〈γLPθ←darkA〉θ
, (S45b)

where |cC,αθ
|2 is the fraction of exciton C in polariton state αθ for (C,α) = (D,MP),(A,LP) and n(ω) = 1

eh̄ω/kBT−1
is the Bose-Einstein

distribution function. We have replaced~k with θ to indicate quantities that are either experimentally determined for a polariton state
excited by a laser with this incident angle (see Coles et al.S19 for further experimental details) or estimated from Michetti and La
RoccaS20. We carry out the averages 〈·〉θ above over the θ -interval [θmin = 17◦,θmax = 56◦] by approximate fitting of the data of Coles
et al.S19 as follows:

•

|cD,MPθ
|2 =

{
0 θ ∈ [θmin,27◦]

0.8
θmax−27◦ (θ −θmax)+0.8 θ ∈ [27◦,θmax]

(S46)

(Fig. 3d of Coles et al.S19)

• n(−ωMPθ ,D)≈ 0 because |ωMPθ ,D| � kBT (Figs. 4a-4c of Coles et al.S19)

•

|cA,LPθ
|2 =

{
0.9

47◦−θmin
(θ −47◦)+0.9 θ ∈ [θmin,47◦]

0.9 θ ∈ [47◦,θmax]
(S47)

(Fig. 3e of Coles et al.S19),

•
ωLPθ ,A(nm−1) =

1
−30 nm

θmax−θmin
(θ −θmax)+640 nm

− 1
636.4 nm

(S48)
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(Figs. 4a-4c of Coles et al.S19),

• 〈γMPθ←darkD〉θ ≈ 〈γLPθ←darkA〉θ ≈ 107 s−1 (roughly the average rate of scattering from the dark states to states in the LP close to the
anticrossing for microcavity with a single strongly coupled J-aggregate cyanine dye, Fig. 6 of Michetti and La RoccaS20).

Then we arrive at NdarkD ≈ 49 and NdarkA ≈ 112.
Using these quantities, numerical values for Eq. (S44) can be calculated, as discussed in the next section. Comparison of the values

to the rate parameters of Coles et al. is summarized in Table 2 of the main text.

S3.4 Additional simulation notes/data
We note that the rates in Eqs. (S43a) and (S43b) from polariton and dark states, respectively, to polariton bands were calculated
numerically: as for the case of exclusive SC of acceptors to SPs (Section S2.8), the k-integrals were computed with the trapezoidal rule
using 2000 intervals.

For the downhill energy transfer processes between polariton and dark states, we also compared (Table 2 of the main text) rate
parameters C that were experimentally determined by Coles et al.S19 to analogous theoretical rate parameters that we presented in the
previous Section S3.3. The latter values, shown in the second column of Table 2, were calculated by computing the C in Eq. (S44))
with the same simulation conditions as for Fig. 4b, except considering T = 300 K and polariton k-interval [kmin = 0.8kA,kmax = 1.1kD]

(instead of T = 0 K and the entire FBZ, respectively; see next paragraph for justification). kA = 9.8×106 m−1 and kD = 1.1×107 m−1 are
the anticrossing wavevectors for acceptors and donors, respectively. Given the reduced k-interval, the numerical integrals (Eqs. (S44c)
and S44f) were evaluated using only 200 intervals (instead of 2000). The results are plotted in Fig. S7.

The above changes in temperature and k-interval were chosen to allow for a more direct comparison with the experiments of Coles
et al. Their experiments were carried out at room temperature and only probed polariton states near the anticrossings. Our choice of
[kmin,kmax] comes from the paper of Hakala et al.S22 To the best of our knowledge, this is the only work that studies a system with
SPs strongly coupled to two organic-exciton bands and reports the concentration of the chromophore after it has been deposited on the
metal and becomes strongly coupled to SPs. Specifically, the three polariton bands formed from hybridization of SPs and two exciton
bands of Rhodamine 6G dye afforded absorption signal detectable in the window∼ [1.2×107 m−1,1.8×107 m−1], or between ∼ 0.8 of
the smaller anticrossing wavevector and ∼ 1.1 of the bigger. This result stayed essentially the same for a wide range of concentrations,
ranging from 0.1-10% of that used in this work for strongly coupled chromophores. So we employed [kmin,kmax] for our calculation of
C (without changing the concentration we assumed for Fig.4b).

It should be noted that between the systems of our work and Coles et al., there are differences in setup (physically separated slabs vs.
blend) and electromagnetic modes (SP vs. microcavity). We argue that these differences do not preclude good agreement with respect
to order of magnitude:

• The validity of comparing physically separated slabs and a blend of donors and acceptors has been explained in Section S3.3, as
well as Section 3 of the main text.

• Energy-transfer rates (Eq. (11)) are dictated by energy gaps between polariton and dark states, exciton fractions of polariton
states, and the spectral densities, regardless of the nature of the electromagnetic modes.
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Fig. S5 SC of SPs to both donors and acceptors. EET rates (that are not shown in Fig. 4 of the main text) as a function of donor-acceptor separation
∆z for downhill transtions among polariton and dark states. The SP mode is resonant with the donor transition, and the donor slab lies 1 nm from the
metal and has fixed position while the acceptor slab is moved in the +z-direction to vary ∆z.
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Fig. S6 SC of SPs to both donors and acceptors. (a) Dispersion curve in the FBZ. Donor-acceptor separation is 205 nm. The dispersion curves at
all other donor-acceptor separations (10-400 nm) have the same qualitative form. The value a = 1× 10−9 m is the inter-chromophoric lattice spacing
for both donor and acceptor slabs. (b) Expanded view of dispersion curve at region of anticrossings characteristic of SC; the SP dispersion has been
added to help visualize the anticrossings.
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Fig. S7 SC of SPs to both donors and acceptors. Rate parameters C as a function of donor-acceptor separation ∆z for downhill transitions. The donor
slab lies 1 nm from the metal and has fixed position while the acceptor slab is moved in the +z-direction to vary ∆z.
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