Supporting Information

On the Role of Ce towards CO₂ Adsorption and Activation over Lanthanum Species

Xinyu Li,^{ab1} Zhi-Jian Zhao,^{ab1} Liang Zeng,^{ab} Jiubing Zhao,^{ab} Hao Tian,^{ab}

Sai Chen,^{ab} Kang Li,^{ab} Sier Sang,^{ab} and Jinlong Gong*^{ab}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.

* Corresponding author. Fax: +86-22-87401818; Email address: jlgong@tju.edu.cn.

¹ These authors contributed equally to this work.

Table of Contents

Figure S1. HR-TEM images of the series of Ce-La mixed oxide after CO ₂ adsorption for 30 min3
Figure S2. Plots of $(ahv)^2$ vs photon energy for the series of Ce-La mixed oxide
Figure S3. Contour graphs of DRIFTS spectra for the series of Ce-La mixed oxide during CH ₄ adsorption for 30 min
Figure S4. The intensity of peaks in DRIFTS spectra as a function of time on stream
Figure S5. Activity test of the catalysts
Figure S6. Possible models for 1Ce-doping and corresponding calculated CO ₂ adsorption energies
Figure S7. Possible models for 2Ce- doping and corresponding calculated CO ₂ adsorption energies
Figure S8. Possible models for 3Ce- doping and corresponding calculated CO ₂ adsorption energies
Figure S9. Possible models for 4Ce- doping and corresponding calculated CO ₂ adsorption energies
Table S1. Calculated CO_2 adsorption energies with randomly distributed Ce structures

Figure S1. HR-TEM images of the series of Ce-La mixed oxide after CO₂ adsorption for 30 min. (a, b) $La_2O_2CO_3$, (c, d) 0.05Ce-LOC, (e, f) 0.10Ce-LOC, (g, h) 0.15Ce-LOC, (i, j) 0.20Ce-LOC.

Figure S2. Plots of $(ahv)^2$ vs photon energy for the series of Ce-La mixed oxides.

Figure S3. Contour graphs of DRIFTS spectra for the series of Ce-La mixed oxide during CH₄ adsorption for 30 min. (a) 0Ce-LOC, (b) 0.05Ce-LOC, (c) 0.10Ce-LOC, (d) 0.15Ce-LOC, (e) 0.20Ce-LOC and (f) CeO₂.

Figure S4. The intensity of peaks in DRIFTS spectra as a function of time on stream. (a) Bidentate carbonate, (b) Monodentate carbonate.

Figure S5. Activity test of the catalysts. CH₄ and CO₂ conversions as a function of time on stream over the catalysts including relevant H₂/CO ratio. (a) 5Ni/0Ce-LOC, (b) 5Ni/0.05Ce-LOC, (c) 5Ni/0.10Ce-LOC, (d) 5Ni/0.15Ce-LOC, and (e) 5Ni/0.20Ce-LOC.Reaction conditions: CH₄/CO₂/N₂ = 20/20/60, GHSV = 60,000 mL·h⁻¹·g_{cat}⁻¹, 650 °C, 1 atm.

 E_{ads} = -1.43 eV

E_{ads} = <u>-1.50 eV</u>

 $E_{ads} = -1.36 \text{ eV}$

 E_{ads} = -1.17 eV

 E_{ads} = -0.96 eV

 E_{ads} = -1.28 eV

Figure S6. Possible models for 1Ce-doping and corresponding calculated CO_2 adsorption energies.

 E_{ads} = -1.33 eV

 E_{ads} = -1.08 eV

*E*_{ads} = <u>-2.12 eV</u>

 E_{ads} = -1.73 eV

 E_{ads} = -1.59 eV

Figure S7. Possible models for 2Ce-doping and corresponding calculated CO_2 adsorption energies.

 E_{ads} = -0.91 eV

 E_{ads} = -1.96 eV

 E_{ads} = -1.27 eV

 E_{ads} = -1.42 eV

 $E_{ads} = -1.90 \text{ eV}$

 E_{ads} = -1.96 eV

 E_{ads} = -2.07 eV

Figure S8. Possible models for 3Ce-doping and corresponding calculated CO2 adsorption energies.

 $E_{ads} = -1.77 \text{ eV}$

 E_{ads} = -1.78 eV

Figure S9. Possible models for 4Ce-doping and corresponding calculated CO2 adsorption energies.

2Ce-doping		3Ce-doping		4Ce-doping	
Ce position ^{<i>a</i>}	$E_{\rm ads}$ / eV	Ce position	$E_{\rm ads}$ / eV	Ce positio	n $E_{\rm ads}$ / eV
3 and 8	-1.29	4, 6 and 7	-1.66	3, 4, 7, and	8 -1.28
3 and 5	-1.66	1, 4 and 7	-2.05	2, 3, 5, and	8 -1.78
5 and 8	-1.60	1, 3 and 5	-2.36	1, 3, 5, and	7 -1.74
6 and 7	-1.62			1, 2, 3, and	6 -1.69
1 and 7	-2.06			2, 4, 5, and	7 -1.31
7 and 8	-1.35			1, 2, 4, and	5 -1.92
1 and 5	-1.55			1, 2, 5, and	6 -1.36
5 and 6	-1.63			1, 3, 4, and	5 -2.04
2 and 3	-1.16				

Table S1. Calculated CO_2 adsorption energies with randomly distributed Ce structures.

^{*a*} See definition in Figure 11.