Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Gold-catalyzed [4+3] and [4+2]-Annulations of 3-En-1-ynamides with Isoxazoles *via* Novel 6π Electrocyclizations of 3-Azaheptatrienyl Cations

Sovan Sundar Giri and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, 30013, ROC E-mail: *rsliu@mx.nthu.edu.tw*

Contents:

(1) Representative Synthetic Procedures:	2
(2) Standard procedures for catalytic operations:	4
(3) Synthetic procedure for chemical functionalization:	5
(4) References:	6
(5) Spectral data for key compounds:	7
(6) X-ray crystallographic data of 3b, 3l, 4a, 5a, 5i & 6m:	26
(7) ¹ H NOE map of compound 7c:	65
(8) Spectral data ¹ H, ¹³ C, NOE:	65

(1) Representative Synthetic Procedures:

(a) General procedure.

Unless otherwise noted, all reactions were performed in oven-dried glassware under nitrogen atmosphere with freshly distilled solvents. The catalytic reactions were performed under nitrogen atmosphere. Toluene and DCE were distilled from CaH₂ under nitrogen. THF were distilled from Na metal under nitrogen. All other commercial reagents were used without further purification, unless otherwise indicated. Isoxazole, **2b** (Cas no 288-14-2) and 5-methylisoxazole, **2d** (Cas no 5765-44-6) were procured from Alfa Aesar and TCI respectively. ¹H and ¹³C NMR spectra were recorded using Mercury-400 MHz, Bruker 400 MHz and Varian-600 MHz spectrometers with chloroform-*d* (CDCl₃) solvent as internal standard. All the substrate 3-En-1-ynamides and isoxazole were prepared according to the literature procedures which are described below.

(b) Synthesis of 3-methylbut-3-en-1-ynamide (1a-1f).

Synthesis of 4-bromo-2-methylbut-1-en-3-yne (II).

To a stirred solution of NBS (5.7 g, 32.1 mmol) and AgNO₃ (475 mg, 2.8 mmol) in dry acetone (30 mL), 2-methylbut-1-en-3-yne I (1.9 g, 29.1 mmol) was added dropwise at 10 \degree C under nitrogen and the resulting mixture was stirred allowing it slowly to attain room temperature over the period of 2 hrs. After completion of reaction, acetone was evaporated and pentane (40 mL) was added in to reaction mixture which was further stirred for 10 minutes at room temperature. Then it was filtered to remove brown solid and resulting reaction mixture was concentrated to afford 4-bromo-2-methylbut-1-en-3-yne, II (3.3 g, 22.7 mmol, 78%) as dark brown oil. It was used in the next step without further purification.

3-Methylbut-3-en-1-ynamide (1a-1f).

To a sealed tube was added *N*-alkyl sulfonamide (24.9 mmol), CuSO₄·5H₂O (570 mg, 2.3 mmol), 1,10-phenanthroline (800 mg, 4.4 mmol) and K₂CO₃ (6.2 g, 44.9 mmol), and this mixture was subsequently treated with toluene (40 mL) and 4-bromo-2-methylbut-1-en-3-yne, **II** (3.3 g, 22.7 mmol). The resulting mixture was heated at 70 $^{\circ}$ C for 6~9 h; the resulting solution was cooled to room temperature, filtered through a small celite bed, and concentrated. Purification of the crude residues was conducted with silica flash column chromatography to afford desired 3-methylbut-3-en-1-ynamide **1a-1f** with 61-82% yield. All the spectroscopic data matches with literature report.^{[1,2].}

(c) Synthesis of *N*-butyl-*N*-(3-methylenehept-1-yn-1-yl)methanesulfonamide (1j).^[1a]

The synthesis of 3-methylenehept-1-yne **IV** intermediate followed literature procedure.^[2] Bromination followed by the coupling of 3-methylenehept-1-yne **IV** with HN(n-Bu)Ms as described above in (b).

Other substrates **1g-1i** & **1k** were synthesized using the same reaction procedure as **1j**. Due to slow instability of **1i**, crude product of **1i** was eluted through a short silica column and used directly for the catalytic annulations.

Substrate 11 and 1m were synthesized according to the literature procedure.^[3]

(d) Synthesis of 3,5-disubstituted isoxazoles.

$$R^1$$
2f, R^1 , $R^2 = n$ -Bu**2i**, $R^1 = Ph$, $R^2 = n$ -Bu**2g**, $R^1 = Me$, $R^2 = n$ -Bu**2j**, $R^1 = Ph$, $R^2 = Ph$ **2h**, $R^1 = n$ -Bu, $R^2 = c$ -Pr**2k**, $R^1 = Me$, $R^2 = Ph$

All 3,5-disubstituted isoxazoles, **2f-2k**, were synthesized according to the procedures from our recently published literatures.^[4a-e] Unsubstitued isoxazole **2b** and 5-methylisoxazole **2d** were obtained commercially. 3-Methylisoxazole **2c** were prepared according to the known procedure.^[5]

(2) Standard procedures for catalytic operations:

(a) Typical procedure for the synthesis of *N*-(3-acetyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*-butylmethanesulfonamide (3a).

A suspension of IPrAuCl (0.029 g, 0.046 mmol) and AgNTf₂ (0.018 g, 0.046 mmol) in dry DCE (1 mL) was fitted with a N₂ balloon, and to this suspension was added a DCE (2 mL) solution of *N*-butyl-*N*-(3-methylbut-3-en-1-yn-1-yl)methanesulfonamide **1a** (0.1 g, 0.46 mmol) and 3,5-dimethylisoxazole **2a** (0.090 g, 0.93 mmol) at room temperature. The resulting mixture was stirred for 3 h at 70 °C before filtration over a short celite bed. The solvent was evaporated under reduced pressure, and eluted through a silica column with ethyl acetate/hexane (15:85) to afford *N*-(3-acetyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*-butylmethanesulfonamide **3a** (0.132 g, 0.42 mmol, 91%) as yellow oil.

(b) Typical procedure for the synthesis of *N*-(4,6-dimethyl-5-(2-oxopropyl)pyridin-2-yl)-*N*,4-dimethylbenzenesulfonamide (5a).

A single neck tube was charged with IPrAuCl (0.025 g, 0.040 mmol) and AgNTf₂ (0.015 g, 0.040 mmol), and to this mixture was added dry DCE (1 mL). The resulting mixture was stirred at room temperature for 10 min. To this mixture was added a dry DCE (2 mL) solution of *N*,4-dimethyl-*N*-(3-methylbut-3-en-1-yn-1-yl)benzenesulfonamide **1b** (0.1 g, 0.40 mmol) and 3,5-dimethylisoxazole **2a** (0.078 g, 0.0.80 mmol) dropwise. After stirring at 70 °C for 4 hours, the reaction mixture was filtered over a short celite bed. To this solution was added Zn(OTf)₂ (0.029 g, 0.081 mmol), and the mixture was refluxed for 19 hours. The resulting mixture was filtered through a short celite bed, concentrated, and eluted through a silica column (EA/hexane = 1/4) to afford the desired *N*-(4,6-dimethyl-5-(2-oxopropyl)pyridin-2-yl)-*N*,4-dimethylbenzenesulfonamide **5a** (0.101 g, 0.29 mmol, 73%) as white solid.

(3) Synthetic procedure for chemical functionalization:

(a) Synthesis of *N*-(3-(1-hydroxyethyl)-2, 5-dimethyl-4*H*-azepin-7-yl)-*N*, 4-dimethyl benzene sulfonamide (7a).

To a solution of *N*-(3-acetyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*,4-dimethylbenzenesulfonamide **3b** (0.1 g, 0.29 mmol) in MeOH (2 mL) was added NaBH₄ (0.013 g, 0.35 mmol) slowly at room temperature. After a complete consumption of starting **3a**, the reaction mixture was treated with cold water (5 ml) and extracted with dichloromethane (5 mL x 3). The organic layer was washed with brine (10 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica column (EA/Hexane = 1:4) to afford *N*-(3-(1-hydroxyethyl)-2,5-dimethyl-4*H*-azepin-7-yl)-*N*,4-dimethylbenzenesulfonamide **7a** (0.084 g, 0.24 mmol, 84%) as a white solid.

(b) Synthesis of *N*-(6-acetyl-4,7-dimethyl-4,5-dihydro-3*H*-azepin-2-yl)-*N*,4-dimethylbenzene sulfonamide (7b).

To a MeOH solution (2 mL) of *N*-(3-acetyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*,4dimethylbenzenesulfonamide **3b** (0.1 g, 0.29 mmol) was added 10% Pd/C (0.010 g); the resulting mixture was stirred at 40 °C for 15 h under a H₂ balloon. The reaction was monitored by ¹H NMR to ensure a complete conversion; the solution was filtered through a celite bed and evaporated under reduced pressure. The crude product was purified by flash chromatography on a silica column (EA/Hexane = 1:9) to afford *N*-(6-acetyl-4,7-dimethyl-4,5-dihydro-3*H*-azepin-2yl)-*N*,4-dimethylbenzenesulfonamide **7b** (0.071 g, 0.20 mmol, 71%) as a viscous oil.

(c) Synthesis of (*Z*)-*N*-(3-acetyl-2-(bromomethylene)-5-methyl -2*H*-azepin-7-yl)-*N*,4dimethylbenzenesulfonamide (7c).

To an acetone solution (2 mL) of *N*-(3-acetyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*,4dimethylbenzenesulfonamide **3b** (0.1 g, 0.29 mmol) was added NBS (0.062 g, 0.34 mmol); the mixture was stirred at room temperature for 30 minutes. The resulting mixture was filtered through a celite bed and evaporated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column (EA/Hexane = 1.5:8.5) to afford (*Z*)-*N*-(3-acetyl-2-(bromomethylene)-5-methyl-2*H*-azepin-7-yl)-*N*,4-dimethylbenzenesulfonamide **7c** (0.052 g, 0.12 mmol, 43%) as a yellow oil.

Along with 7c, rearrangement product 5a was also isolated with 41% yield.

(4) References:

[1] a) S. S. Giri, L. H. Lin, P. D. Jadhav and R. S. Liu, *Adv. Synth. Catal.* 2017, **359**, 590; b) K. Jouvin, J.Heimburger and G. Evano, *Chem. Sci.*, 2012, **3**, 756.

[2] a) A. Jadhav, V. B. Pagar, D. B. Huple and R. S. Liu, *Angew. Chem. Int. Ed.* 2015, 54, 3812;
b) R. R. Singh and R. S. Liu, *Adv. Synth. Catal.* 2016, 358, 1421.

[3] a) R. B. Dateer, K. K. Pati and R. S. Liu, *Chem. Commun.*, 2012, **48**, 7200; b) Y. Kim, R. B. Dateer and S. Chang, *Org. Lett.* 2017, **19**, 190.

[4] a) R. L. Sahani and R. S. Liu, *Angew. Chem. Int. Ed.* 2017, **56**, 1026; b) T. V. Hansen, P. Wu and V. V. fokin, *J. Org. Chem.* 2005, **70**, 7761; c) K. K.Y. Kung, V. K. Y. Lo, H. M. Ko, G. L.

Li, P. Chan, K. Leung, Z. Zhou, M. Wang, C. M. Che and M. K. Wonga, *Adv. Synth. Catal.* 2013, 355, 2055; d) J. C. Jeyaveerana, C. Praveen, Y. Arun, A. A. Prince and P. T. Perumal, *J. Chem. Sci.* 2016, 128, 73; e) C. Praveen, A. Kalyanasundaram and P. T. Perumal, *Synlett* 2010, 5, 777.

[5] A. G. Griesbeck, M. Franke, J. Neudörfl and H. Kotaka, Beilstein J. Org. Chem. 2011, 7, 127.

(5) Spectral data for key compounds:

Spectral data for *N*-cyclopropyl-4-methyl-*N*-(3-methylbut-3-en-1-yn-1-yl) benzene sulfonamide (1c).

Yellow oil (3.42 g, 12.4 mmol, 82%); ¹H NMR (400 MHz, CDCl₃): δ 7.80 (dt, J = 8.3 Hz, 1.9 Hz, 2H), 7.33 (dt, J = 7.9 Hz, 1.9 Hz, 2H), 5.13 ~ 5.11 (m, 1H), 5.10 ~ 5.08 (m, 1H), 2.78 ~ 2.72 (m, 1H), 2.43 (s, 3H), 1.84 (dd, J = 1.4 Hz, 1.1 Hz, 3H), 0.83 ~ 0.77 (m, 2H), 0.76 ~ 0.69 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.7, 133.8, 129.6, 127.9, 126.0, 119.6, 81.1, 72.1, 32.7, 23.5, 21.6, 6.3; ESI-MS calcd for C₁₅H₁₈NO₂S[M+H]: 276.1058, found: 276.1053.

Spectral data for *N*-benzyl-4-methyl-*N*-(3-methylbut-3 -en-1-yn-1-yl) benzenesulfonamide (1d).

Brown solid, mp: 60-61 °C (2.15 g, 6.61 mmol, 68%); ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.30 ~ 7.24 (m, 7H), 5.03 ~ 5.02 (m, 2H), 4.49 (s, 2H), 2.42 (s, 3H), 1.75 (t, *J* = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.5, 134.5, 134.3, 129.6, 128.8, 128.4, 128.2, 127.6, 125.9, 119.1, 82.0, 72.9, 55.5, 23.2, 21.5; ESI-MS calcd for C₁₉H₂₀NO₂S[M+H]: 326.1215, found: 326.1219.

Spectral data for N-butyl-N-(3-methylbut-3-en-1-yn-1-yl)butane-1-sulfonamide (1e).

Yellow oil (0.715 g, 2.78 mmol, 61%); ¹H NMR (400 MHz, CDCl₃): δ 5.15 ~ 5.14 (m, 1H), 5.11 ~ 5.10 (m, 1H), 3.43 (t, *J* = 7.2 Hz, 2H), 3.21 ~ 3.17 (m, 2H), 1.86 (t, *J* = 1.4 Hz, 3H), 1.85 ~ 1.77 (m, 2H), 1.71 ~ 1.60 (m, 2H), 1.50 ~ 1.42 (m, 2H), 1.41 ~ 1.33 (m, 2H), 0.95 ~ 0.90 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 126.1, 119.5, 81.4, 72.1, 51.4, 51.3, 30.5, 25.1, 23.5, 21.4, 19.4, 13.5, 13.4; ESI-MS calcd for C₁₃H₂₄NO₂S[M+H]: 258.1528, found: 258.1516.

Spectral data for *N*,4-dimethyl-*N*-(4-methyl-3-methylenepent-1-yn-1-yl)benzene sulfonamide (1g).

Yellow oil (2.08 g, 7.51 mmol, 52%); ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.11 (t, *J* = 1.6 Hz, 1H), 5.09 (d, *J* = 1.7 Hz, 1H), 3.07 (s, 3H), 2.43 (s, 3H), 2.40 ~ 2.32 (m, 1H), 1.04 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 144.7, 137.4, 133.2, 129.7, 127.7, 116.6, 84.5, 68.6, 39.3, 35.4, 21.5; ESI-MS calcd for C₁₅H₂₀NO₂S[M+H]: 278.1215, found: 278.1205.

Spectral data for *N*-(3-cyclopropylbut-3-en-1-yn-1-yl)-*N*,4-dimethyl benzene sulfonamide (1h).

Yellow oil (2.90 g, 10.5 mmol, 64%); ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 5.23 (d, J = 1.6 Hz, 1H), 5.11 (d, J = 1.7 Hz, 1H), 3.04 (s, 3H), 2.43 (s, 3H), 1.55 ~ 1.48 (m, 1H), 0.66 ~ 0.61 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 133.1,

129.8, 127.7, 117.2, 83.9, 66.4, 39.2, 21.6, 16.6, 5.7; ESI-MS calcd for C₁₅H₁₈NO₂S[M+H]: 276.1058, found: 276.1047.

Spectral data for N,4-dimethyl-N-(3-methylenehept-1-yn-1-yl)benzenesulfonamide (1k).

Yellow oil (5.72 g, 0.19 mmol, 75%); ¹H NMR for major isomer (400 MHz, CDCl₃): δ 7.79 ~ 7.75 (m, 2H), 7.33 (dd, *J* = 8.5 Hz, 0.7 Hz, 2H), 5.14 (t, *J* = 1.0 Hz, 1H), 5.09 ~ 5.08 (m, 1H), 3.06 (s, 3H), 2.43 (s, 3H), 2.12 ~ 2.08 (m, 2H), 1.47 ~ 1.39 (m, 2H), 1.36 ~ 1.23 (m, 2H), 0.90 ~ 0.85 (m, 3H), ¹H NMR for minor isomer: δ 5.57 ~ 5.52 (m, 1H), 3.07 (s, 3H), 1.78 (t, *J* = 1.1 Hz, 2H), rest of the peaks merged with others; ¹³C NMR for major isomer (100 MHz, CDCl₃): δ 144.7, 133.2, 131.0, 129.7, 127.8, 119.0, 83.8, 69.8, 39.3, 37.0, 30.2, 21.9, 21.6, 13.8, ¹³C NMR for minor isomer: δ 136.3, 117.0, 87.0, 68.6, 39.4, 32.6, 23.0, 22.4, 22.3, 13.7, rest of the peaks merged with others; ESI-MS calcd for C₁₆H₂₂NO₂S[M+H]: 292.1371, found: 292.1359.

Spectral data for 3-butyl-5-cyclopropylisoxazole (2h).

Colorless oil (2.10 g, 12.7 mmol, 44%); ¹H NMR (400 MHz, CDCl₃): δ 5.69 (s, 1H), 2.53 (t, *J* = 7.7 Hz, 2H), 1.96 ~ 1.90 (m, 1H), 1.59 ~ 1.52 (m, 2H), 1.39 ~ 1.25 (m, 2H), 0.99 ~ 0.92 (m, 2H), 0.91 ~ 0.81 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 164.0, 98.2, 30.3, 25.6, 22.2, 13.6, 8.0, 7.9; ESI-MS calcd for C₁₀H₁₆NO[M+H]: 166.1232, found: 166.1224.

Spectral data for *N*-(3-acetyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*-butyl methane sulfonamide (3a).

Yellow oil (0.132 g, 0.42 mmol, 91%); ¹H NMR (400 MHz, CDCl₃): δ 5.87 (q, *J* = 1.2 Hz, 1H), 3.77 (t, *J* = 7.5 Hz, 2H), 3.19 (s, 3H), 2.55 (br, 2H), 2.37 (s, 3H), 2.19 (s, 3H), 2.06 (d, *J* = 1.2 Hz, 3H), 1.63 ~ 1.55 (m, 2H), 1.36 ~ 1.26 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 153.3, 152.0, 150.4, 123.3, 114.6, 47.1, 42.7, 32.9, 31.4, 30.5, 23.4, 21.7, 19.8, 13.6; ESI-MS calcd for C₁₅H₂₅N₂O₃S[M+H]: 313.1586, found: 313.1593.

Spectral data for *N*-(3-acetyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (3b).

White solid, mp: 94-95 °C (0.117 g, 0.34 mmol, 84%); ¹H NMR (600 MHz, CDCl₃): δ 7.53 (d, *J* = 8.3 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.09 (d, *J* = 1.3 Hz, 1H), 3.24 (s, 3H), 2.84 (br, 1H), 2.35 (s, 3H), 2.30 (s, 3H), 2.07 (s, 3H), 2.01 (d, *J* = 1.3 Hz, 3H), 1.37 (br, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 199.1, 152.9, 150.2, 149.9, 144.3, 134.4, 129.4, 127.0, 123.7, 115.7, 34.5, 32.2, 30.7, 23.4, 22.4, 21.6; ESI-MS calcd for C₁₈H₂₃N₂O₃S[M+H]: 347.1429, found: 347.1423.

Spectral data for *N*-(3-acetyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*-cyclopropyl-4-methyl benzenesulfonamide (3c).

Yellow oil (0.116 g, 0.31 mmol, 86%); ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 5.90 (d, *J* = 1.1 Hz, 1H), 2.61 ~ 2.56 (m, 1H), 2.36 (s, 4H), 2.30 (s, 4H), 2.07 (s, 3H), 2.02 (s, 3H), 0.92 (d, *J* = 6.6 Hz, 2H), 0.78 (br, 2H); ¹³C NMR (100 MHz, CDCl₃):

δ 198.9, 154.9, 150.5, 149.8, 144.0, 136.2, 129.3, 127.8, 123.8, 117.8, 32.9, 30.4, 29.5, 23.4, 21.8, 21.5, 9.5; ESI-MS calcd for C₂₀H₂₅N₂O₃S[M+H]: 373.1586, found: 373.1575.

Spectral data for *N*-(3-acetyl -2,5-dimethyl -4*H*-azepin-7-yl)-*N*-benzyl -4-methyl benzene sulfonamide (3d).

Brown solid, (0.114 g, 0.27 mmol, 87%); ¹H NMR (600 MHz, CDCl₃, -47.15 °C): δ 7.54 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 7.5 Hz, 2H), 7.29 (t, J = 7.4 Hz, 2H), 7.24 ~ 7.21 (m, 3H), 6.03 (s, 1H), 5.10 (d, J = 14.5 Hz, 1H), 4.86 (d, J = 14.6 Hz, 1H), 2.84 (d, J = 12.9 Hz, 1H), 2.37 (s, 3H), 2.27 (s, 3H), 1.97 (s, 3H), 1.82 (s, 3H), 1.35 (d, J = 13.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃, -42.35 °C): δ 199.4, 151.1, 150.1, 144.2, 137.1, 135.4, 129.4, 128.2, 127.8, 127.1, 123.5, 116.1, 49.5, 32.2, 30.7, 23.4, 21.8, 21.6, two quaternary merged at δ 150.1 and two CH peaks merged at δ 127.1; ESI-MS calcd for C₂₄H₂₇N₂O₃S[M+H]: 423.1742, found: 423.1733.

Spectral data for *N*-(3-acetyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*-butylbutane-1-sulfonamide (3e).

Yellow oil (0.124 g, 0.35 mmol, 90%); ¹H NMR (400 MHz, CDCl₃): δ 5.90 (d, *J* = 1.4 Hz, 1H), 3.74 (t, *J* = 7.5 Hz, 2H), 3.27 (dd, *J* = 10.7 Hz, 7.9 Hz, 2H), 2.49 (br, 2H), 2.33 (s, 3H), 2.15 (s, 3H), 2.01 (d, *J* = 1.3 Hz, 3H), 1.73 ~ 1.65 (m, 2H), 1.62 ~ 1.54 (m, 2H), 1.42 ~ 1.33 (m, 2H), 1.32 ~ 1.24 (m, 2H), 0.89 ~ 0.84 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 198.5, 153.0, 151.2, 150.4, 123.1, 114.4, 54.5, 46.8, 32.8, 31.7, 30.5, 25.0, 23.3, 21.9, 21.3, 19.8, 13.6, 13.4; ESI-MS calcd for C₁₈H₃₁N₂O₃S[M+H]: 355.2055, found: 355.2047.

Spectral data for 3-(3-acetyl-2,5-dimethyl-4H-azepin-7-yl)oxazolidin-2-one (3f).

Viscous oil (0.074 g, 0.30 mmol, 64%); ¹H NMR (400 MHz, CDCl₃): δ 6.38 (s, 1H), 4.38 (t, J = 8.0 Hz, 2H), 4.06 (t, J = 8.2 Hz, 2H), 2.51 (s, 2H), 2.32 (s, 3H), 2.13 (s, 3H), 2.04 (d, J = 1.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.7, 154.3, 151.6, 150.4, 150.1, 123.1, 113.7, 62.0, 43.7, 32.9, 30.4, 23.5, 22.6; ESI-MS calcd for C₁₃H₁₇N₂O₃[M+H]: 249.1239, found:249.1234.

Spectral data for *N*-(3-acetyl-5-isopropyl-2-methyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (3g).

Yellow oil (0.100 g, 0.27 mmol, 74%); ¹H NMR (600 MHz, CDCl₃, -14.05 °C): δ 7.51 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 6.08 (s, 1H), 3.28 (s, 3H), 2.99 (d, J = 13.1 Hz, 1H), 2.45 ~ 2.39 (m, 1H), 2.34 (s, 3H), 2.30 (s, 3H), 209 (s, 3H), 1.21 (d, J = 13.2 Hz, 1H), 1.09 (d, J = 6.8 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, -14.85 °C): δ 198.8, 159.8, 153.9, 150.6, 144.3, 134.4, 129.5, 126.9, 124.1, 112.8, 34.6, 34.2, 31.0, 29.5, 22.7, 21.6, 21.3, 20.4; EI-MS calcd for C₂₀H₂₆N₂O₃S[M⁺]: 374.1664, found: 374.1665.

Spectral data for *N*-(3-acetyl-5-cyclopropyl-2-methyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzenesulfonamide (3h).

White solid, mp: 96-97 °C (0.107 g, 0.28 mmol, 79%); ¹H NMR (600 MHz, CDCl₃, -18.55 °C): δ 7.53 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 6.14 (s, 1H), 3.26 (s, 3H), 2.69 (d, *J* = 13.4 Hz,

1H), 2.34 (s, 3H), 2.31 (s, 3H), 2.10 (s, 3H), 1.59 ~ 1.55 (m, 1H), 1.09 ~ 1.05 (m, 1H), 0.98 (d, J = 13.3 Hz, 1H), 0.89 ~ 0.85 (m, 1H), 0.81 ~ 0.72 (m, 1H), 0.63 ~ 0.59 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, -11.15 °C): δ 198.6, 157.3, 153.1, 151.6, 144.3, 134.1, 129.4, 127.0, 124.0, 113.3, 34.6, 31.3, 26.5, 23.0, 21.6, 16.8, 7.9, 6.2; ESI-MS calcd for C₂₀H₂₅N₂O₃S[M+H]: 373.1586, found: 373.1574.

Spectral data for *N*-(3-acetyl-2-methyl-5-phenyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (3i).

Viscous oil (0.076 g, 0.19 mmol, 58%); ¹H NMR (600 MHz, CDCl₃): δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.43 ~ 7.37 (m, 3H), 7.21 (d, *J* = 8.2 Hz, 2H), 6.66 (s, 1H), 3.64 (d, *J* = 13.7 Hz, 1H), 3.33 (s, 3H), 2.36 (s, 3H), 2.19 (s, 3H), 2.17 (s, 3H), 1.53 (d, *J* = 13.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 198.7, 153.3, 151.4, 148.6, 144.5, 137.5, 134.3, 129.6, 129.4, 128.8, 127.1, 127.0, 124.3, 115.4, 34.7, 30.9, 29.5, 22.8, 21.7; EI-MS calcd for C₂₃H₂₄N₂O₃S[M⁺]: 408.1508, found: 408.1510.

Spectral data for *N*-(3-acetyl-5-butyl-2-methyl-4*H*-azepin-7-yl)-*N*-butyl methane sulfonamide (3j).

Yellow oil (0.076 g, 0.21mmol, 55%); ¹H NMR for major isomer (400 MHz, CDCl₃): δ 5.83 (s, 1H), 3.78 ~ 3.73 (m, 2H), 3.19 (s, 3H), 2.56 (br, 1H), 2.35 (s, 3H), 2.29 (t, *J* = 7.3 Hz, 2H), 2.19 (s, 3H), 2.07 (d, *J* = 6.0 Hz, 1H), 1.66 ~ 1.56 (m, 2H), 1.54 ~ 1.45 (m, 2H), 1.40 ~ 1.24 (m, 4H), 0.90 ~ 0.83 (m, 6H), ¹H NMR for minor isomer: δ 5.96 (s, 1H), 3.17 (s, 3H), 2.32 (s, 3H), 1.26 ~ 1.18 (m, 4H), 0.80 ~ 0.76 (m, 6H), rest of the peaks merged with others; ¹³C NMR for major

isomer (100 MHz, CDCl₃): δ 198.4, 156.6, 153.7, 150.7, 123.3, 113.6, 47.2, 42.8, 36.4, 31.5, 31.4, 30.6, 29.3, 22.2, 21.8, 19.9, 13.8, 13.6, ¹³C NMR for minor isomer: δ 202.3, 156.3, 151.9, 146.3, 127.3, 114.3, 43.7, 42.7, 30.1, 26.3, 22.6, 21.0, 20.0, 13.9, rest of the peaks merged with others; ESI-MS calcd for C₁₈H₃₁N₂O₃S[M+H]: 355.2055, found: 355.2045.

Spectral data for *N*-(3-acetyl-5-butyl-2-methyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (3k).

viscous oil (0.090 g, 0.23 mmol, 68%); ¹H NMR for major isomer (600 MHz, CDCl₃, -16.25 °C): δ 7.52 (d, *J* = 8.3 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.06 (s, 1H), 3.24 (s, 3H), 2.92 (d, *J* = 14.0 Hz, 1H), 2.35 (s, 3H), 2.27 (s, 3H), 2.23 (t, *J* = 7.9 Hz, 2H), 2.08 (s, 3H), 1.52 ~ 1.49 (m, 1H), 1.43 ~ 1.40 (m, 1H), 1.36 ~ 1.28 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H), ¹H NMR for minor isomer: δ 7.62 (d, *J* = 8.3 Hz, 2H), 6.24 (d, *J* = 1.2 Hz, 1H), 3.29 (s, 3H), 2.24 (s, 3H), 2.02 (s, 3H), 1.95 (s, 3H), 0.59 (t, *J* = 7.2 Hz, 3H), rest of the peaks merged with others; ¹³C NMR for major isomer (150 MHz, CDCl₃, -13.65 °C): δ 198.9, 154.1, 153.3, 150.4, 144.3, 134.3, 129.5, 126.9, 123.8, 114.4, 36.2, 34.6, 31.0, 30.8, 29.1, 22.6, 22.4, 21.6, 14.0, ¹³C NMR for minor isomer: δ 203.4, 155.0, 152.1, 151.4, 146.1, 135.5, 129.3, 128.9, 128.8, 127.4, 43.6, 30.1, 28.0, 26.1, 23.3, 21.1, rest of the peaks merged with others; EI-MS calcd for C₂₁H₂₈N₂O₃S[M⁺]: 388.1821, found: 388.1824.

Spectral data for *N*-(3-acetyl-2,5-dimethyl-4-phenyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (3l).

White solid, mp: 156-157 °C (0.061 g, 0.15 mmol, 48%); ¹H NMR (400 MHz, CDCl₃): δ 7.14 ~ 7.09 (m, 4H), 7.08 ~ 7.00 (m, 3H), 6.89 (dd, J = 6.9 Hz, 1.2 Hz, 2H), 6.27 (t, J = 1.4 Hz, 1H),

4.63 (s, 1H), 2.76 (s, 3H), 2.42 (s, 3H), 2.38 (s, 3H), 2.31 (s, 3H), 2.18 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ 200.5, 154.2, 152.1, 149.2, 143.4, 138.3, 135.9, 129.3, 127.7, 127.4, 126.3, 126.2, 126.1, 116.0, 46.8, 34.3, 30.3, 26.4, 22.9, 21.5; ESI-MS calcd for C₂₄H₂₇N₂O₃S[M+H]: 423.1742, found: 423.1734.

Spectral data for *N*-(5-acetyl-4-methyl-5a,7,8,9-tetrahydro-6*H*-benzo[*d*]azepin-2-yl)-*N*,4-dimethylbenzenesulfonamide (3m).

Viscous oil (0.021 g, 0.06 mmol, 16%); ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.05 (s, 1H), 3.30 (s, 3H), 2.51 ~ 2.40 (m, 1H), 2.37 (s, 3H), 2.31 (s, 4H), 1.87 ~ 1.80 (m, 4H), 1.77 ~ 1.69 (m, 1H), 1.61 ~ 1.48 (m, 3H), 1.46 ~ 1.37 (m, 1H), 1.35 ~ 1.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 204.6, 153.2, 151.8, 144.0, 138.9, 135.7, 129.4, 128.4, 127.3, 113.3, 37.9, 34.3, 32.6, 28.5, 23.7, 23.1, 21.5, 21.2, 20.5; ESI-MS calcd for C₂₁H₂₇N₂O₃S[M+H]: 387.1742, found: 387.1744.

Spectral data for *N*-(3-formyl-5-methyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (4a).

White solid, mp: 107-108 °C (0.106 g, 0.33 mmol, 84%); ¹H NMR (400 MHz, CDCl₃): δ 9.34 (s, 1H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 3H), 6.20 (s, 1H), 3.32 (s, 3H), 2.37 (s, 3H), 2.27 (s, 2H), 1.94 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.8, 157.8, 151.5, 149.6, 144.5, 135.4, 129.5, 127.2, 116.7, 34.5, 26.6, 24.1, 21.5, one quaternary peak merged with others; EI-MS calcd for C₁₆H₁₈N₂O₃S[M⁺]: 318.1038, found: 318.1035.

Spectral data for *N*-(3-acetyl-5-methyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (4b).

White solid, mp: 108-109 °C (0.099 g, 0.30 mmol, 75%); ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.3 Hz, 2H), 7.51 (s, 1H), 7.23 (d, J = 8.4 Hz, 2H), 6.18 (t, J = 1.1 Hz, 1H), 3.29 (s, 3H), 2.36 (s, 3H), 2.27 (s, 5H), 1.94 (d, J = 1.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.7, 157.4, 149.7, 144.4, 143.7, 135.4, 129.5, 127.3, 126.2, 116.4, 34.5, 28.3, 25.7, 23.7, 21.5; EI-MS calcd for C₁₇H₂₀N₂O₃S[M⁺]: 332.1195, found: 332.1196.

Spectral data for *N*-(3-formyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (4c).

White solid, mp: 103-104 °C (0.116 g, 0.34 mmol, 87%); ¹H NMR (600 MHz, CDCl₃, -20.85 °C): δ 9.62 (s, 1H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 6.01 (s, 1H), 3.19 (s, 3H), 2.97 (d, *J* = 12.7 Hz, 1H), 2.27 (s, 3H), 2.06 (s, 3H), 1.83 (s, 3H), 1.06 (d, *J* = 12.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃, -15.05 °C): δ 189.0, 158.2, 154.9, 151.2, 144.5, 134.2, 129.4, 126.9, 122.7, 115.5, 34.5, 26.9, 23.7, 21.6, 18.1; ESI-MS calcd for C₁₇H₂₁N₂O₃S[M+H]: 333.1273, found: 333.1269.

Spectral data for *N*-(2-ethyl-5-methyl-3-propionyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (4d).

Colorless oil (0.128 g, 0.34 mmol, 85%); ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.12 (d, *J* = 1.4 Hz, 1H), 3.26 (s, 3H), 2.56 (q, *J* = 7.4 Hz, 2H), 2.40 ~ 2.33 (m, 5H), 2.12 (br, 2H), 2.02 (d, J = 1.2 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.8, 153.6, 153.2, 149.1, 144.1, 135.5, 129.4, 127.2, 122.8, 116.2, 34.9, 34.3, 32.9, 27.6, 23.3, 21.5, 12.6, 8.6; EI-MS calcd for C₂₀H₂₆N₂O₃S[M⁺]: 374.1664, found: 374.1660.

Spectral data for *N*-(2-butyl-5-methyl-3-pentanoyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (4e).

White solid, mp: 65-66 °C (0.139 g, 0.32 mmol, 81%); ¹H NMR (400 MHz, CDCl₃): δ 7.55 (dd, J = 6.6 Hz, 1.6 Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 6.11 (d, J = 1.3 Hz, 1H), 3.25 (s, 3H), 2.54 (t, J = 7.3 Hz, 2H), 2.38 ~ 2.32 (m, 5H), 2.13 (br, 2H), 2.03 (d, J = 1.3 Hz, 3H), 1.59 ~ 1.51 (m, 2H), 1.39 ~ 1.26 (m, 4H), 1.22 ~ 1.11 (m, 2H), 0.87 (t, J = 7.3 Hz, 3H), 0.80 (t, J = 9.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.8, 153.5, 151.8, 149.1, 144.0, 135.5, 129.4, 127.1, 123.7, 116.1, 41.6, 34.3, 33.8, 32.9, 30.4, 26.7, 23.2, 22.4, 22.3, 21.5, 13.9, 13.8; ESI-MS calcd for C₂₄H₃₅N₂O₃S[M+H]: 431.2368, found: 431.2395.

Spectral data for *N*-(2,5-dimethyl-3-pentanoyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (4f).

Yellow oil (0.127 g, 0.32 mmol, 82%); ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 8.3 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 6.09 (d, *J* = 1.0 Hz, 1H), 3.24 (s, 3H), 2.54 (t, *J* = 7.3 Hz, 2H), 2.35 (s, 3H), 2.21 (br, 2H), 2.03 (s, 3H), 2.00 (s, 3H), 1.58 ~ 1.50 (m, 2H), 1.36 ~ 1.15 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 153.2, 149.2, 148.6, 144.1, 135.5, 129.4, 127.2, 123.4, 116.1, 41.6, 34.4, 32.6, 26.6, 23.2, 22.4, 21.9, 21.4, 13.8; ESI-MS calcd for C₂₁H₂₉N₂O₃S[M+H]: 389.1899, found: 389.1891.

Spectral data for *N*-(2-butyl-3-(cyclopropanecarbonyl)-5-methyl-4*H*-azepin-7-yl)-*N*,4dimethylbenzenesulfonamide (4g).

White solid, mp: 87-88 °C (0.128 g, 0.31 mmol, 77%); ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.3 Hz, 2H), 6.09 (d, *J* = 1.3 Hz, 1H), 3.27 (s, 3H), 2.45 (t, *J* = 7.5 Hz, 2H), 2.36 (s, 3H), 2.20 ~ 2.08 (m, 3H), 2.03 (d, *J* = 1.2 Hz, 3H), 1.39 ~ 1.31 (m, 2H), 1.18 ~ 1.11 (m, 2H), 1.09 ~ 1.05 (m, 2H), 0.91 ~ 0.86 (m, 2H), 0.79 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 203.5, 153.6, 150.8, 149.7, 144.0, 135.5, 129.4, 127.2, 125.0, 115.8, 34.3, 33.6, 33.4, 30.3, 23.1, 22.4, 21.5, 21.1, 13.8, 11.8; ESI-MS calcd for C₂₃H₃₁N₂O₃S[M+H]: 415.2055, found: 415.2045.

Spectral data for *N*,4-dimethyl-*N*-(5-methyl-3-pentanoyl-2-phenyl-4*H*-azepin-7-yl)benzene sulfonamide (4h).

Yellow oil (0.125 g, 0.27 mmol, 69%); ¹H NMR (400 MHz, CDCl₃): δ 7.59 (dd, J = 8.5 Hz, 1.9 Hz, 2H), 7.30 ~ 7.22 (m, 7H), 6.12 (d, J = 1.3 Hz, 1H), 3.27 (s, 3H), 2.37 (s, 3H), 2.26 (br, 2H), 2.10 (d, J = 1.3 Hz, 3H), 1.91 (t, J = 7.3 Hz, 2H), 1.33 ~ 1.23 (m, 2H), 1.00 ~ 0.91 (m, 2H), 0.64 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 206.4, 152.9, 149.8, 149.2, 144.1, 138.9, 135.5, 129.5, 128.7, 128.6, 128.3, 127.2, 126.8, 115.5, 41.8, 34.3, 34.1, 27.4, 23.1, 22.1, 21.5, 13.6; ESI-MS calcd for C₂₆H₃₁N₂O₃S[M+H]: 451.2055, found: 451.2048.

Spectral data for *N*-(3-benzoyl-5-methyl-2-phenyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (4i).

Yellowish white solid, mp: 67-68 °C (0.115 g, 0.24 mmol, 61%); ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 7.2 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 7.15 ~ 7.13 (m, 2H), 7.07 (t, J = 7.7 Hz, 2H), 6.95 (t, J = 3.2 Hz, 3H), 6.23 (d, J = 0.9 Hz, 1H), 3.35 (s, 3H), 2.45 (br, 2H), 2.41 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.2, 153.5, 149.4, 149.0, 144.2, 138.2, 137.3, 135.5, 131.9, 129.5, 129.2, 128.9, 128.1, 127.7, 127.6, 127.2, 123.3, 115.8, 35.3, 34.4, 23.3, 21.5; ESI-MS calcd for C₂₈H₂₇N₂O₃S[M+H]: 471.1742, found: 471.1743.

Spectral data for *N*-(3-benzoyl-2,5-dimethyl-4*H*-azepin-7-yl)-*N*,4-dimethyl benzene sulfonamide (4j).

White solid, mp: 149-150 °C (0.116 g, 0.28 mmol, 71%); ¹H NMR (400 MHz, CDCl₃): δ 7.74 (dd, J = 7.8 Hz, 1.0 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.52 ~ 7.48 (m, 1H), 7.40 (t, J = 7.8 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H), 6.15 (d, J = 1.3 Hz, 1H), 3.28 (s, 3H), 2.38 (s, 3H), 2.25 (s, 2H), 2.05 (d, J = 1.2 Hz, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.8, 153.8, 149.7, 146.4, 144.1, 138.5, 135.5, 132.6, 129.5, 128.9, 128.6, 127.3, 122.1, 115.9, 34.3, 34.2, 23.3, 22.0, 21.5; ESI-MS calcd for C₂₃H₂₅N₂O₃S[M+H]: 409.1586, found: 409.1580.

Spectral data for *N*-(4,6-dimethyl-5-(2-oxopropyl)pyridin-2-yl)-*N*,4-dimethyl benzene sulfonamide (5a).

White solid, mp: 141-142 °C (0.101 g, 0.29 mmol, 73%); ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 8.1 Hz, 2H), 7.26 (s, 1H), 7.19 (d, J = 8.0 Hz, 2H), 3.71 (s, 2H), 3.20 (s, 3H), 2.35 (s, 3H), 2.23 (s, 3H), 2.19 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 204.7, 155.4, 151.4, 147.7, 143.4, 134.9, 129.2, 127.6, 124.9, 118.9, 43.8, 35.4, 29.6, 22.4, 21.4, 19.9; EI-MS calcd for C₁₈H₂₂N₂O₃S[M⁺]: 346.1351, found: 346.1352.

Spectral data for *N*-(4-butyl-6-methyl-5-(2-oxopropyl)pyridin-2-yl)-*N*,4-dimethyl benzene sulfonamide (5b).

Yellow oil (0.085 g, 0.22 mmol, 64%); ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 8.3 Hz, 2H), 7.28 (s, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 3.73 (s, 2H), 3.23 (s, 3H), 2.48 (t, *J* = 7.7 Hz, 2H), 2.37 (s, 3H), 2.23 (s, 3H), 2.19 (s, 3H), 1.53 ~ 1.46 (m, 2H), 1.40 ~ 1.30 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 204.9, 155.9, 151.9, 151.5, 143.4, 135.0, 129.3, 127.7, 124.3, 117.8, 43.4, 35.4, 32.8, 31.9, 29.7, 22.6, 22.5, 21.5, 13.9; ESI-MS calcd for C₂₁H₂₉N₂O₃S[M+H]: 389.1899, found: 389.1900.

Spectral data for *N*-(4-cyclopropyl-6-methyl-5-(2-oxopropyl)pyridin-2-yl)-*N*,4-dimethyl benzenesulfonamide (5c).

Viscous oil (0.075 g, 0.20 mmol, 56%); ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.03 (s, 1H), 3.90 (s, 2H), 3.21 (s, 3H), 2.37 (s, 3H), 2.26 (s, 3H), 2.19 (s, 3H), 1.75 ~ 1.68 (m, 1H), 0.99 ~ 0.94 (m, 2H), 0.69 (dd, *J* = 10.4 Hz, 5.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 205.2, 155.4, 152.6, 151.9, 143.4, 134.9, 129.3, 127.7, 125.9, 114.6, 43.9, 35.4, 29.7, 22.5, 21.5, 13.4, 7.9; ESI-MS calcd for C₂₀H₂₅N₂O₃S[M+H]: 373.1586, found: 373.1567.

Spectral data for *N*-(4-isopropyl-6-methyl-5-(2-oxopropyl)pyridin-2-yl)-*N*,4-dimethyl benzenesulfonamide (5d).

Yellow oil (0.068 g, 0.18 mmol, 51%); ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 8.3 Hz, 2H), 7.35 (s, 1H), 7.19 (d, *J* = 8.3 Hz, 2H), 3.76 (s, 2H), 3.24 (s, 3H), 2.89 ~ 2.79 (m, 1H), 2.36 (s, 3H), 2.24 (s, 3H), 2.20 (s, 3H), 1.18 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 205.0, 157.8, 155.8, 151.9, 143.4, 135.0, 129.3, 127.7, 123.2, 114.3, 43.2, 35.4, 29.8, 29.7, 22.9, 22.8, 21.5; ESI-MS calcd for C₂₀H₂₇N₂O₃S[M+H]: 375.1742, found: 375.1747.

Spectral data for *N*-butyl-*N*-(4,6-dimethyl-5-(2-oxopropyl)pyridin-2-yl) methane sulfonamide (5e).

Yellow oil (0.091 g, 0.29 mmol, 63%); ¹H NMR (400 MHz, CDCl₃): δ 6.99 (s, 1H), 3.75 (t, *J* = 7.2 Hz, 2H), 3.74 (s, 2H), 2.98 (s, 3H), 2.36 (s, 3H), 2.21 (s, 3H), 2.18 (s, 3H), 1.50 ~ 1.41 (m, 2H), 1.36 ~ 1.25 (m, 2H), 0.85 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 204.4, 156.3, 150.5, 148.4, 126.1, 121.2, 48.4, 43.8, 38.2, 30.8, 29.8, 22.8, 19.9, 19.7, 13.5; ESI-MS calcd for C₁₅H₂₅N₂O₃S[M+H]: 313.1586, found: 313.1576.

Spectral data for *N*-(6-butyl-4-methyl-5-(2-oxohexyl)pyridin-2-yl)-*N*,4-dimethylbenzene sulfonamide (5f).

Yellow oil (0.134 g, 0.31 mmol, 78%); ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 8.2 Hz, 2H), 7.25 (s, 1H), 7.16 (d, *J* = 8.4 Hz, 2H), 3.70 (s, 2H), 3.18 (s, 3H), 2.45 (t, *J* = 7.6 Hz, 4H), 2.34 (s,

3H), 2.17 (s, 3H), 1.60 ~ 1.52 (m, 2H), 1.40 ~ 1.33 (m, 2H), 1.32 ~ 1.24 (m, 2H), 1.22 ~ 1.11 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H), 0.79 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 207.1, 158.8, 151.3, 147.9, 143.2, 134.6, 129.2, 127.6, 124.8, 119.3, 42.5, 42.2, 35.4, 34.4, 30.6, 25.9, 22.3, 22.2, 21.4, 20.1, 13.9, 13.7; ESI-MS calcd for C₂₄H₃₅N₂O₃S[M+H]: 431.2368, found: 431.2363.

Spectral data for *N*-(6-ethyl-4-methyl-5-(2-oxobutyl)pyridin-2-yl)-*N*,4-dimethylbenzene sulfonamide (5g).

White solid, mp: 95-96 °C (0.104 g, 0.27 mmol, 69%); ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 8.2 Hz, 2H), 7.25 (s, 1H), 7.17 (d, *J* = 8.2 Hz, 2H), 3.71 (s, 2H), 3.19 (s, 3H), 2.52 ~ 2.45 (m, 4H), 2.35 (s, 3H), 2.19 (s, 3H), 1.06 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 207.6, 159.7, 151.5, 147.8, 143.3, 134.6, 129.2, 127.6, 124.6, 119.4, 42.0, 35.7, 35.5, 27.9, 21.4, 20.1, 12.7, 7.8; ESI-MS calcd for C₂₀H₂₇N₂O₃S[M+H]: 375.1742, found: 375.1743.

Spectral data for *N*-(6-butyl-5-(2-cyclopropyl-2-oxoethyl)-4-methylpyridin-2-yl)-*N*,4dimethylbenzenesulfonamide (5h).

White solid, mp: 72-73 °C (0.124 g, 0.30 mmol, 75%); ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 8.1 Hz, 2H), 7.25 (s, 1H), 7.16 (d, J = 8.3 Hz, 2H), 3.84 (s, 2H), 3.18 (s, 3H), 2.49 (t, J = 7.5 Hz, 2H), 2.34 (s, 3H), 2.20 (s, 3H), 1.96 ~ 1.90 (m, 1H), 1.42 ~ 1.35 (m, 2H), 1.22 ~ 1.12 (m, 2H), 1.05 ~ 1.00 (m, 2H), 0.89 ~ 0.85 (m, 2H), 0.79 (dd, J = 7.6 Hz, 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 207.0, 158.9, 151.4, 148.0, 143.2, 134.6, 129.2, 127.6, 124.9, 119.3, 43.1, 35.5, 34.5, 30.6, 22.3, 21.4, 20.1, 13.9, 11.2; ESI-MS calcd for C₂₃H₃₁N₂O₃S[M+H]: 415.2055, found: 415.2047.

Spectral data for *N*,4-dimethyl-*N* -(4-methyl-5-(2-oxo-2-phenylethyl) -6-phenyl pyridin -2-yl)benzenesulfonamide (5i).

White solid, mp: 135-137 °C (0.149 g, 0.32 mmol, 80%); ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 8.3 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 8.2 Hz, 3H), 7.45 (t, J = 7.8 Hz, 2H), 7.27 ~ 7.23 (m, 3H), 7.22 (s, 1H), 7.20 ~ 7.17 (m, 3H), 4.29 (s, 2H), 3.25 (s, 3H), 2.38 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.1, 157.7, 151.8, 149.4, 143.5, 140.1, 136.4, 134.7, 133.4, 129.3, 128.7, 128.6, 128.0, 127.7, 125.1, 120.3, 4.2, 35.6, 21.5, 20.2, two C-H peaks mixed with others; ESI-MS calcd for C₂₈H₂₇N₂O₃S[M+H]: 471.1742, found: 471.1741.

Spectral data for *N*-(4,6-dimethyl-5-(2-oxo-2-phenylethyl)pyridin-2-yl)-*N*,4-dimethyl benzenesulfonamide (5j).

Brown semi-solid (0.120 g, 0.30 mmol, 75%); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, *J* = 8.5 Hz, 2H), 7.64 ~ 7.60 (m, 1H), 7.54 ~ 7.49 (m, 4H), 7.31 (s, 1H), 7.22 (d, *J* = 8.1 Hz, 2H), 4.32 (s, 2H), 3.23 (s, 3H), 2.38 (s, 3H), 2.24 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.9, 155.7, 151.5, 148.0, 143.4, 136.7, 135.0, 133.5, 129.3, 128.8, 128.1, 127.8, 125.4, 119.1, 38.6, 35.5, 22.5, 21.5, 20.1; ESI-MS calcd for C₂₃H₂₅N₂O₃S[M+H]: 409.1586, found: 409.1579.

Spectral data for *N*-(4-acetyl-5-methyl-3-(1-phenylprop-1-en-2-yl)-1*H*-pyrrol-2-yl)-*N*,4dimethylbenzenesulfonamide (61).

White solid, mp: 171-173 °C (0.055 g, 0.13 mmol, 43%); ¹H NMR for major isomer (400 MHz, CDCl₃): δ 8.99 (s, 1H), 7.58 (d, J = 8.2 Hz, 2H), 7.31 ~ 7.27 (m, 2H), 7.19 ~ 7.16 (m, 1H), 7.12 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 7.4 Hz, 2H), 5.55 (s, 1H), 3.22 (s, 3H), 2.46 (s, 3H), 2.27 (s, 6H), 1.82 (d, J = 1.3 Hz, 3H), ¹H NMR for minor isomer: δ 9.12 (s, 1H), 7.43 (d, J = 8.3 Hz, 2H), 7.22 ~ 7.19 (m, 1H), 7.04 (t, J = 7.7 Hz, 1H), 6.56 (d, J = 6.9 Hz, 1H), 2.89 (s, 3H), 2.49 (s, 3H), 2.44 (s, 3H), 1.72 (s, 3H), rest of the peaks merged with others; ¹³C NMR for major isomer (100 MHz, CDCl₃): δ 195.4, 144.0, 137.3, 134.6, 133.1, 131.0, 130.8, 129.7, 128.5, 127.9, 127.5, 126.4, 124.3, 122.3, 119.8, 38.4, 29.7, 21.4, 20.6, 14.3, ¹³C NMR for minor isomer: δ 196.1, 143.9, 134.4, 134.3, 130.0, 129.7, 127.7, 127.6, 127.0, 122.9, 120.7, 120.6, 38.6, 30.5, 21.5, 14.2, rest of the peaks merged with others; EI-MS calcd for C₂₄H₂₆N₂O₃S[M⁺]: 422.1664, found: 422.1670.

Spectral data for *N*-(4-acetyl-3-(cyclohex-1-en-1-yl)-5-methyl-1*H*-pyrrol-2-yl)-*N*,4-dimethyl benzenesulfonamide (6m).

White solid, mp: 175-176 °C (0.097 g, 0.25 mmol, 73%); ¹H NMR (400 MHz, CDCl₃): δ 8.65 (s, 1H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 7.9 Hz, 2H), 4.58 (t, *J* = 1.7 Hz, 1H), 3.17 (s, 3H), 2.41 (s, 3H), 2.40 (s, 3H), 2.22 (s, 3H), 1.74 ~ 1.73 (m, 4H), 1.51 ~ 1.40 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 195.6, 143.9, 134.6, 132.8, 131.1, 129.5, 128.3, 127.7, 123.1, 122.0, 119.9, 38.2, 30.8, 29.4, 25.4, 22.9, 21.6, 21.5, 14.4; ESI-MS calcd for C₂₁H₂₇N₂O₃S[M+H]: 387.1742, found: 387.1744.

Spectral data for *N*-(3-(1-hydroxyethyl)-2,5-dimethyl-4*H*-azepin-7-yl)-*N*,4-dimethylbenzene sulfonamide (7a).

White solid, mp: 165-166 °C (0.084 g, 0.24 mmol, 84%); ¹H NMR (600 MHz, CDCl₃): δ 7.59 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 6.07 (s, 1H), 4.65 (q, J = 6.4 Hz, 1H), 3.22 (s, 3H), 2.36 (s, 3H), 2.16 (d, J = 12.9 Hz, 1H), 2.07 (d, J = 12.7 Hz, 1H), 2.00 (s, 3H), 1.82 (s, 3H), 1.37 (br, 1H), 1.23 (d, J = 6.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 153.5, 147.8, 143.6, 137.5, 136.2, 129.4, 127.5, 124.7, 117.0, 66.9, 34.4, 30.1, 22.8, 21.6, 21.4, 18.5; ESI-MS calcd for C₁₈H₂₅N₂O₃S[M+H]: 349.1586, found: 349.1573.

Spectral data for *N*-(4-formyl-3-(prop-1-en-2-yl)-1*H*-pyrrol-2-yl)-*N*,4-dimethyl benzene sulfonamide (7a').

Viscous oil (0.010 g, 0.03 mmol, 8%); ¹H NMR (600 MHz, CDCl₃): δ 9.64 (s, 1H), 9.14 (s, 1H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.26 (s, 1H), 7.25 (d, *J* = 7.8 Hz, 2H), 4.81 (d, *J* = 1.4 Hz, 1H), 3.88 (d, *J* = 0.8 Hz, 1H), 3.20 (s, 3H), 2.39 (s, 3H), 1.72 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 185.5, 144.4, 136.5, 134.0, 129.7, 127.6, 125.9, 124.3, 123.5, 120.7, 117.1, 37.7, 23.9, 21.5; EI-MS calcd for C₁₆H₁₈N₂O₃S[M⁺]: 318.1038, found: 318.1036.

Spectral data for *N*-(6-acetyl-4,7-dimethyl-4,5-dihydro-3*H*-azepin-2-yl)-*N*,4-dimethyl benzenesulfonamide (7b).

Viscous oil (0.071 g, 0.20 mmol, 71%); ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 3.25 (s, 3H), 2.82 (dd, *J* = 12.8 Hz, 6.5 Hz, 1H), 2.71 ~ 2.57 (m, 1H), 2.41 (s, 3H), 2.26 (s, 3H), 2.16 ~ 2.05 (m, 5H), 1.98 (dd, *J* = 14.0 Hz, 5.0 Hz, 1H), 0.92 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.5, 160.6, 155.3, 144.4, 136.0, 129.8, 127.2, 121.5, 43.9, 37.9, 35.3, 33.1, 30.5, 21.6, 21.5, 20.1; ESI-MS calcd for C₁₈H₂₅N₂O₃S[M+H]: 349.1586, found: 349.1572.

Spectral data for (*Z*)-*N*-(3-acetyl-2-(bromomethylene)-5-methyl-2*H*-azepin-7-yl)-*N*,4-dimethylbenzenesulfonamide (7c).

Yellow oil (0.052 g, 0.12 mmol, 43%); ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 6.89 (d, *J* = 1.2 Hz, 1H), 6.87 (t, *J* = 1.5 Hz, 1H), 5.45 (s, 1H), 3.21 (s, 3H), 2.36 (s, 3H), 2.31 (s, 3H), 2.13 (d, *J* = 1.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.7, 154.4, 146.0, 144.4, 139.8, 138.2, 135.8, 134.1, 129.6, 128.5, 127.3, 96.9, 36.7, 27.3, 24.1, 21.5; ESI-MS calcd for C₁₈H₁₉BrN₂O₃SNa[M+Na]: 445.0197, found: 445.0195.

(6) X-ray:

X-ray crystallographic data of compound (3b).

d19102

Table 1. Crystal data and structure refinem	ent for d19102.	
Identification code	d19102	
Empirical formula	C18 H22 N2 O3 S	
Formula weight	346.44	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 17.4170(10) Å	$\square = 90^{\circ}.$
	$b = 7.3299(4) Å_{a}$	$\Box = 95.370(2)^{\circ}.$
	c = 13.5997(7) Å	$\Box = 90^{\circ}.$
Volume	1728.58(16) Å ³	
Z	4	
Density (calculated)	1.331 Mg/m ³	
Absorption coefficient	0.206 mm ⁻¹	
F(000)	736	
Crystal size	0.42 x 0.29 x 0.06 mm ³	
Theta range for data collection	3.01 to 25.06°.	
Index ranges	-20<=h<=20, -8<=k<=8, -	16<=l<=15
Reflections collected	24394	
Independent reflections	3043 [R(int) = 0.0551]	
Completeness to theta = 25.06°	99.1 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9878 and 0.9185	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	3043 / 0 / 223	
Goodness-of-fit on F ²	1.061	
Final R indices [I>2sigma(I)]	R1 = 0.0752, wR2 = 0.189	95
-		

R indices (all data)	R1 = 0.0866, wR2 = 0.1966
Extinction coefficient	0.016(2)
Largest diff. peak and hole	0.700 and -0.373 e.Å ⁻³

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3)

	Х	У	Z	U(eq)	
C(1)	6108(2)	3097(6)	3229(3)	29(1)	
C(2)	5433(3)	3936(7)	2821(3)	35(1)	
C(3)	4788(3)	3895(7)	3339(4)	36(1)	
C(4)	4802(3)	3049(7)	4256(4)	37(1)	
C(5)	4101(3)	3019(9)	4826(4)	55(2)	
C(6)	5479(3)	2236(8)	4632(4)	43(1)	
C(7)	6135(3)	2261(7)	4136(4)	38(1)	
C(8)	6962(3)	6784(7)	2599(4)	43(1)	
C(9)	7852(2)	5245(6)	3859(3)	28(1)	
C(10)	8533(2)	4112(6)	3984(3)	31(1)	
C(11)	8828(3)	3582(6)	4886(4)	32(1)	
C(12)	9595(3)	2631(7)	5064(4)	45(1)	
C(13)	8392(3)	4002(7)	5758(3)	35(1)	
C(14)	8460(3)	6031(7)	5943(3)	32(1)	
C(15)	8911(3)	6728(8)	6852(4)	40(1)	
C(16)	9147(4)	5452(11)	7667(5)	78(2)	
C(17)	8107(2)	7179(6)	5260(3)	30(1)	
C(18)	8081(3)	9214(7)	5309(4)	49(1)	
N(1)	7386(2)	5116(6)	2927(3)	32(1)	
N(2)	7660(2)	6540(5)	4420(3)	30(1)	
O(1)	6710(2)	3350(6)	1561(2)	50(1)	
O(2)	7439(2)	1723(5)	2941(3)	42(1)	
O(3)	9097(3)	8320(7)	6944(4)	86(2)	
S (1)	6948(1)	3177(2)	2595(1)	34(1)	

for d19102. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles $[\circ]$ for d19102.

C(1)-C(7)	1.374(6)	
C(1)-C(2)	1.395(6)	
C(1)-S(1)	1.766(4)	
C(2)-C(3)	1.381(7)	
C(2)-H(2)	0.9500	
C(3)-C(4)	1.390(7)	
C(3)-H(3)	0.9500	
C(4)-C(6)	1.376(7)	
C(4)-C(5)	1.506(7)	
C(5)-H(5A)	0.9800	

C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.381(7)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-N(1)	1.475(6)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-N(2)	1.282(6)
C(9)-N(1)	1.443(6)
C(9)-C(10)	1.445(6)
C(10)-C(11)	1.341(7)
C(10)-H(10)	0.9500
C(11)-C(13)	1.500(7)
C(11) - C(12)	1.506(6)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(12) - C(14)	1.511(7)
C(13) - H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-C(17)	1.357(7)
C(14)-C(15)	1.491(7)
C(15)-O(3)	1.191(7) 1.215(7)
C(15) - C(16)	1.479(8)
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16) - H(16C)	0.9800
C(17)-N(2)	1.402(6)
C(17)-C(18)	1.494(7)
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
N(1)-S(1)	1 656(4)
O(1)-S(1)	1.433(3)
O(2)-S(1)	1.420(4)
C(7)- $C(1)$ - $C(2)$	120.6(4)
C(7)-C(1)-S(1)	119.5(4)
C(2)-C(1)-S(1)	119.8(3)
C(3)-C(2)-C(1)	118.9(4)
C(3)-C(2)-H(2)	120.5
C(1)-C(2)-H(2)	120.5
C(2)-C(3)-C(4)	120.5
C(2)- $C(3)$ - $H(3)$	1193
C(4)-C(3)-H(3)	119.3
C(6)-C(4)-C(3)	118 0(4)
C(6)-C(4)-C(5)	120 6(5)
C(3)-C(4)-C(5)	120.0(3) 121.4(5)
C(4)- $C(5)$ - $H(5A)$	109 5
\sim $(1) \sim$ $(3) m (3m)$	107.5

C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)-C(6)-C(4)	122.1(5)
C(7)-C(6)-H(6)	118.9
C(4)- $C(6)$ - $H(6)$	118.9
C(1) - C(7) - C(6)	119.0(5)
C(1) - C(7) - H(7)	120.5
C(6)-C(7)-H(7)	120.5
N(1)-C(8)-H(8A)	109.5
N(1) - C(8) - H(8R)	109.5
H(8A) - C(8) - H(8B)	109.5
N(1) C(2) U(2C)	109.5
U(2A) C(2) U(2C)	109.5
H(0A) - C(0) - H(0C)	109.5
$\Pi(0D) - C(0) - \Pi(0C)$	109.3
N(2)-C(9)-N(1) N(2)-C(0)-C(10)	114.5(4)
N(2)-C(9)-C(10)	127.7(4)
N(1)-C(9)-C(10)	117.0(4)
C(11)-C(10)-C(9)	121.0(4)
C(11)-C(10)-H(10)	119.5
C(9)-C(10)-H(10)	119.5
C(10)-C(11)-C(13)	119.0(4)
C(10)-C(11)-C(12)	122.6(4)
C(13)-C(11)-C(12)	118.4(4)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(11)-C(13)-C(14)	107.2(4)
C(11)-C(13)-H(13A)	110.3
C(14)-C(13)-H(13A)	110.3
C(11)-C(13)-H(13B)	110.3
C(14)-C(13)-H(13B)	110.3
H(13A)-C(13)-H(13B)	108.5
C(17)-C(14)-C(15)	121.6(5)
C(17)-C(14)-C(13)	118.2(4)
C(15)-C(14)-C(13)	120.2(4)
O(3)-C(15)-C(16)	118.5(5)
O(3)-C(15)-C(14)	122.0(5)
C(16)-C(15)-C(14)	119.5(5)
C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5

C(14)-C(17)-N(2)	122.2(4)
C(14)-C(17)-C(18)	127.0(5)
N(2)-C(17)-C(18)	110.7(4)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(9)-N(1)-C(8)	115.8(4)
C(9)-N(1)-S(1)	120.2(3)
C(8)-N(1)-S(1)	115.1(3)
C(9)-N(2)-C(17)	125.2(4)
O(2)-S(1)-O(1)	120.1(2)
O(2)-S(1)-N(1)	107.80(19)
O(1)-S(1)-N(1)	106.0(2)
O(2)-S(1)-C(1)	108.3(2)
O(1)-S(1)-C(1)	107.8(2)
N(1)-S(1)-C(1)	106.1(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³)for d19102. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U33	U ²³	U13	U ¹²	
C(1)	27(2)	35(3)	26(2)	-3(2)	0(2)	-5(2)	
C(2)	34(2)	38(3)	32(2)	2(2)	-2(2)	-5(2)	
C(3)	28(2)	39(3)	43(3)	-5(2)	4(2)	-6(2)	
C(4)	35(3)	43(3)	35(3)	-13(2)	7(2)	-16(2)	
C(5)	42(3)	73(4)	53(3)	-20(3)	22(3)	-23(3)	
C(6)	43(3)	59(4)	26(2)	5(2)	-2(2)	-15(3)	
C(7)	34(2)	44(3)	33(3)	6(2)	-5(2)	-5(2)	
C(8)	40(3)	47(3)	39(3)	13(2)	-5(2)	4(2)	
C(9)	24(2)	30(2)	29(2)	6(2)	4(2)	-5(2)	
C(10)	25(2)	28(2)	39(3)	-5(2)	2(2)	0(2)	
C(11)	29(2)	26(2)	41(3)	-2(2)	0(2)	-2(2)	
C(12)	37(3)	42(3)	52(3)	1(3)	-14(2)	6(2)	
C(13)	38(3)	34(3)	33(2)	5(2)	1(2)	-2(2)	
C(14)	29(2)	37(3)	32(2)	-4(2)	6(2)	-3(2)	
C(15)	35(3)	50(3)	36(3)	-11(2)	5(2)	-5(2)	
C(16)	84(5)	97(6)	46(4)	16(4)	-31(3)	-44(4)	
C(17)	27(2)	34(3)	31(2)	-4(2)	6(2)	-2(2)	
C(18)	61(4)	31(3)	56(3)	-4(3)	5(3)	-1(3)	
N(1)	27(2)	41(2)	28(2)	7(2)	-1(2)	0(2)	
N(2)	27(2)	32(2)	31(2)	1(2)	5(2)	0(2)	
O(1)	38(2)	85(3)	26(2)	-10(2)	4(1)	-7(2)	
O(2)	35(2)	38(2)	52(2)	-10(2)	2(2)	4(2)	

O(3)	117(4)	56(3)	78(3)	-22(3)	-37(3)	-5(3)
S (1)	27(1)	46(1)	27(1)	-8(1)	2(1)	-1(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for d19102.

	Х	У	Z	U(eq)	
H(2)	5417	4525	2198	42	
H(3)	4326	4457	3064	44	
H(5A)	3711	3858	4519	82	
H(5B)	4247	3399	5509	82	
H(5C)	3889	1780	4822	82	
H(6)	5495	1638	5253	51	
H(7)	6598	1708	4417	45	
H(8A)	7308	7838	2680	64	
H(8B)	6527	6961	2998	64	
H(8C)	6768	6662	1902	64	
H(10)	8776	3738	3421	37	
H(12A)	9790	2341	4428	67	
H(12B)	9532	1502	5434	67	
H(12C)	9963	3432	5444	67	
H(13A)	8613	3318	6345	42	
H(13B)	7844	3652	5619	42	
H(16A)	8714	4647	7779	117	
H(16B)	9299	6145	8270	117	
H(16C)	9584	4717	7491	117	
H(18A)	8237	9727	4693	74	
H(18B)	8435	9640	5865	74	
H(18C)	7556	9610	5403	74	

X-ray crystallographic data of compound (31).

Table 1. Crystal data and structure refinement for d19423. Identification code d19423 Empirical formula C24 H26 N2 O3 S 422.53 Formula weight 200(2) K Temperature 0.71073 Å Wavelength Monoclinic Crystal system Space group P 21/c Unit cell dimensions a = 9.8261(4) Åa= 90°. b = 13.6201(5) Åb=96.8680(10)°. c = 16.2063(5) Å $g = 90^{\circ}$. 2153.37(14) Å³ Volume 4 Ζ 1.303 Mg/m³ Density (calculated) 0.178 mm⁻¹ Absorption coefficient 896 F(000) 0.56 x 0.49 x 0.13 mm³ Crystal size Theta range for data collection 2.57 to 25.04°. Index ranges -11<=h<=11, -16<=k<=16, -18<=l<=19 Reflections collected 31582 Independent reflections 3775 [R(int) = 0.0333]Completeness to theta = 25.04° 99.3 % Absorption correction multi-scan Max. and min. transmission 0.9772 and 0.9066 Full-matrix least-squares on F² Refinement method

Data / restraints / parameters	3775 / 0 / 276
Goodness-of-fit on F ²	1.020
Final R indices [I>2sigma(I)]	R1 = 0.0377, wR2 = 0.0905
R indices (all data)	R1 = 0.0461, wR2 = 0.0989
Largest diff. peak and hole	0.287 and -0.367 e.Å ⁻³

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3)

	Х	У	Z	U(eq)	
C(1)	3416(2)	7705(1)	6821(1)	29(1)	
C(2)	4340(2)	7025(1)	7190(1)	38(1)	
C(3)	3936(2)	6376(1)	7766(1)	39(1)	
C(4)	2610(2)	6385(1)	7981(1)	34(1)	
C(5)	2162(2)	5654(2)	8590(1)	47(1)	
C(6)	1706(2)	7074(2)	7604(1)	44(1)	
C(7)	2091(2)	7731(2)	7025(1)	41(1)	
C(8)	2978(2)	7207(2)	4972(1)	38(1)	
C(9)	5475(2)	7536(1)	5072(1)	28(1)	
C(10)	6530(2)	8278(1)	5056(1)	28(1)	
C(11)	7868(2)	8061(1)	5177(1)	27(1)	
C(12)	8961(2)	8803(1)	5073(1)	35(1)	
C(13)	8351(2)	7033(1)	5418(1)	27(1)	
C(14)	7968(2)	6674(1)	6253(1)	28(1)	
C(15)	8060(2)	7318(1)	6923(1)	35(1)	
C(16)	7883(2)	6987(2)	7712(1)	42(1)	
C(17)	7603(2)	6014(2)	7844(1)	43(1)	
C(18)	7483(2)	5375(2)	7184(1)	45(1)	
C(19)	7668(2)	5701(1)	6392(1)	38(1)	
C(20)	7916(2)	6373(1)	4676(1)	29(1)	
C(21)	9071(2)	5960(1)	4270(1)	38(1)	
C(22)	8887(3)	5201(3)	3610(2)	103(1)	
C(23)	6565(2)	6240(1)	4417(1)	34(1)	
C(24)	5931(2)	5623(2)	3696(2)	74(1)	
N(1)	4166(1)	7831(1)	5272(1)	31(1)	
N(2)	5515(2)	6644(1)	4813(1)	32(1)	
O(1)	5225(1)	8952(1)	6386(1)	42(1)	
O(2)	2792(1)	9156(1)	5827(1)	45(1)	
O(3)	10220(2)	6231(2)	4485(1)	90(1)	
S(1)	3934(1)	8528(1)	6080(1)	32(1)	

10)				
for d19423.	U(eq) is defined as on	e third of the trace	of the orthogonalized	U ^{ij} tensor.

Table 3. Bond lengths [Å] and angles [°] for d19423.

C(1)-C(7)	1.381(3)	
C(1)-C(2)	1.382(2)	

C(1)-S(1)	1.7617(18)
C(1)-S(1) C(2) C(3)	1.7017(10) 1.370(3)
C(2) - C(3)	1.379(3)
$C(2)-\Pi(2)$ C(3) C(4)	1.320(3)
C(3) - C(4) C(3) - U(3)	1.369(3)
$C(3)-\Pi(3)$ C(4) C(6)	1.39300
C(4) - C(0)	1.362(3) 1.504(3)
C(4)-C(5)	1.304(3)
$C(3)$ - $\Pi(3A)$	0.9800
C(5)-H(5B)	0.9800
C(3)-H(3C)	0.9800
C(0)- $C(7)$	1.382(3)
C(6)-H(6)	0.9500
C(/)-H(/)	0.9500
C(8)-N(1)	1.4/8(2)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-N(2)	1.288(2)
C(9)-N(1)	1.421(2)
C(9)-C(10)	1.451(2)
C(10)-C(11)	1.340(2)
C(10)-H(10)	0.9500
C(11)-C(12)	1.498(2)
C(11)-C(13)	1.515(2)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-C(20)	1.520(2)
C(13)-C(14)	1.527(2)
C(13)-H(13)	1.0000
C(14)-C(19)	1.382(3)
C(14)-C(15)	1.390(2)
C(15)-C(16)	1.386(3)
C(15)-H(15)	0.9500
C(16)-C(17)	1.375(3)
C(16)-H(16)	0.9500
C(17)-C(18)	1.373(3)
C(17)-H(17)	0.9500
C(18)-C(19)	1.391(3)
C(18)-H(18)	0.9500
C(19)-H(19)	0.9500
C(20)-C(23)	1.356(2)
C(20)-C(21)	1.489(2)
C(21)-O(3)	1.199(2)
C(21)-C(22)	1.483(3)
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-N(2)	1.392(2)
C(23)-C(24)	1.511(3)
	• •

$C(24) \amalg (24 \Lambda)$	0.0800
$C(24) - \Pi(24R)$	0.9800
C(24) - H(24B)	0.9800
C(24)-H(24C)	0.9800
N(1)-S(1)	1.6542(15)
O(1)-S(1)	1.4278(14)
O(2)-S(1)	1.4313(14)
C(7)-C(1)-C(2)	120.18(17)
C(7)-C(1)-S(1)	120.29(14)
C(2)-C(1)-S(1)	119.52(13)
C(3)-C(2)-C(1)	119.70(17)
C(3)-C(2)-H(2)	120.2
C(1)-C(2)-H(2)	120.2
C(2)-C(3)-C(4)	121.25(17)
C(2)-C(3)-H(3)	119.4
C(4)-C(3)-H(3)	119.4
C(6)-C(4)-C(3)	117.91(17)
C(6)-C(4)-C(5)	121.07(17)
C(3)-C(4)-C(5)	121.07(17) 121.01(17)
C(4) - C(5) - H(5A)	109 5
C(4) - C(5) - H(5R)	109.5
H(5A) C(5) H(5B)	109.5
$\Gamma(3A) - C(3) - \Pi(3B)$	109.5
$U(4) - U(3) - \Pi(3U)$	109.5
H(3A)-C(3)-H(3C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)-C(6)-C(4)	121.72(18)
C(7)-C(6)-H(6)	119.1
C(4)-C(6)-H(6)	119.1
C(1)-C(7)-C(6)	119.24(17)
C(1)-C(7)-H(7)	120.4
C(6)-C(7)-H(7)	120.4
N(1)-C(8)-H(8A)	109.5
N(1)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
N(1)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
N(2)-C(9)-N(1)	113.89(15)
N(2)-C(9)-C(10)	126.98(16)
N(1)-C(9)-C(10)	118.40(15)
C(11)-C(10)-C(9)	122.34(16)
C(11)- $C(10)$ - $H(10)$	118.8
C(9)-C(10)-H(10)	118.8
C(10) - C(11) - C(12)	122 60(16)
C(10) - C(11) - C(12)	122.00(10) 120.00(15)
C(10)-C(11)-C(13)	120.90(13) 116.40(15)
C(12)- $C(11)$ - $C(13)C(11)$ $C(12)$ $U(12A)$	110.49(13)
$C(11)-C(12)-\Pi(12A)$ $C(11)-C(12)-\Pi(12D)$	109.3
U(11)-U(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
--	----------------------------
C(11)-C(13)-C(20)	107.01(13)
C(11)-C(13)-C(14)	114.90(14)
C(20)-C(13)-C(14)	115.87(14)
C(11)-C(13)-H(13)	106.1
C(20)-C(13)-H(13)	106.1
C(14)-C(13)-H(13)	106.1
C(19)-C(14)-C(15)	118.25(16)
C(19)-C(14)-C(13)	122.02(16)
C(15)-C(14)-C(13)	119.39(15)
C(16)-C(15)-C(14)	120.79(18)
C(16)-C(15)-H(15)	119.6
C(14)- $C(15)$ - $H(15)$	119.6
C(17)- $C(16)$ - $C(15)$	120 39(19)
C(17) - C(16) - H(16)	119.8
C(15)-C(16)-H(16)	119.8
C(18) - C(17) - C(16)	119.34(18)
C(18)-C(17)-H(17)	120.3
C(16)-C(17)-H(17)	120.3
$C(10)-C(17)-\Pi(17)$ C(17)-C(18)-C(19)	120.5 120.56(19)
C(17)-C(18)-H(18)	119 7
C(19)-C(18)-H(18)	119.7
C(14)-C(19)-C(18)	120 66(18)
C(14)-C(19)-H(19)	119 7
C(14)-C(19)-H(19)	110.7
$C(13)-C(17)-\Pi(17)$ C(23)-C(20)-C(21)	125 62(16)
C(23)-C(20)-C(21) C(23)-C(20)-C(13)	129.02(10) 119 74(15)
C(23) - C(20) - C(13)	117.7 + (15) 114.57(15)
O(3)-C(21)-C(22)	114.97(19) 116.08(10)
O(3)-C(21)-C(22)	110.70(17) 110.75(17)
C(22)-C(21)-C(20)	117.75(17) 173.77(18)
C(22)- $C(21)$ - $C(20)$	123.27(10)
$C(21)$ - $C(22)$ - $\Pi(22R)$ C(21) $C(22)$ $H(22R)$	109.5
H(22A) C(22) H(22B)	109.5
$\Gamma(22A)$ - $C(22)$ - $\Pi(22D)$	109.5
H(22A) C(22) H(22C)	109.5
H(22R) - C(22) - H(22C)	109.5
C(20) C(22) N(2)	109.5
C(20) - C(23) - N(2) C(20) - C(23) - C(24)	123.82(10) 127.60(17)
V(2) = C(23) = C(24)	127.09(17) 108 46(16)
$\Gamma(2) - C(23) - C(24)$ $\Gamma(23) - C(24) - U(24A)$	100.40(10)
$C(23)-C(24)-\Pi(24A)$ $C(23)-C(24)-\Pi(24B)$	109.5
$U(23)-U(24)-\Pi(24D)$	109.5
$\Pi(24A)$ - $C(24)$ - $\Pi(24D)$	109.5
$U(23)-U(24)-\Pi(24U)$	109.5
H(24A)-C(24)-H(24C)	109.5
$\Pi(24D) - U(24) - \Pi(24U)$ C(0) N(1) C(9)	109.3
C(3) - N(1) - C(0) C(0) N(1) S(1)	117.39(14) 172.84(11)
C(9) - N(1) - S(1)	123.04(11) 114.21(12)
C(0) - N(1) - S(1)	114.31(12) 125.26(15)
C(9)-IN(2)-C(23)	123.26(13)

O(1)-S(1)-O(2)	119.36(9)
O(1)-S(1)-N(1)	107.83(8)
O(2)-S(1)-N(1)	107.13(8)
O(1)-S(1)-C(1)	109.72(8)
O(2)-S(1)-C(1)	107.17(8)
N(1)-S(1)-C(1)	104.65(8)

Table 4. Anisotropic displacement parameters (Å²x 10³)for d19423. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [$h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U13	U12
C(1)	31(1)	28(1)	29(1)	-2(1)	4(1)	2(1)
C(2)	29(1)	42(1)	44(1)	6(1)	7(1)	5(1)
C(3)	38(1)	39(1)	40(1)	7(1)	5(1)	9(1)
C(4)	39(1)	35(1)	27(1)	-4(1)	7(1)	-2(1)
C(5)	57(1)	47(1)	39(1)	4(1)	16(1)	-2(1)
C(6)	32(1)	55(1)	47(1)	7(1)	13(1)	5(1)
C(7)	31(1)	46(1)	45(1)	8(1)	6(1)	10(1)
C(8)	30(1)	43(1)	41(1)	-3(1)	0(1)	-6(1)
C(9)	28(1)	31(1)	23(1)	2(1)	1(1)	-1(1)
C(10)	34(1)	26(1)	26(1)	1(1)	4(1)	-2(1)
C(11)	33(1)	27(1)	21(1)	-2(1)	4(1)	-3(1)
C(12)	34(1)	34(1)	38(1)	1(1)	4(1)	-6(1)
C(13)	28(1)	29(1)	26(1)	-2(1)	3(1)	-1(1)
C(14)	24(1)	32(1)	26(1)	3(1)	1(1)	2(1)
C(15)	36(1)	38(1)	29(1)	-2(1)	2(1)	-3(1)
C(16)	41(1)	59(1)	26(1)	-3(1)	2(1)	-3(1)
C(17)	37(1)	63(1)	28(1)	13(1)	1(1)	0(1)
C(18)	50(1)	41(1)	44(1)	15(1)	5(1)	0(1)
C(19)	47(1)	33(1)	35(1)	2(1)	5(1)	2(1)
C(20)	36(1)	24(1)	26(1)	0(1)	6(1)	0(1)
C(21)	39(1)	39(1)	37(1)	-5(1)	7(1)	3(1)
C(22)	50(2)	153(3)	104(2)	-91(2)	-7(2)	31(2)
C(23)	38(1)	31(1)	33(1)	-7(1)	7(1)	-5(1)
C(24)	46(1)	97(2)	81(2)	-61(2)	11(1)	-16(1)
N(1)	28(1)	33(1)	31(1)	-2(1)	3(1)	-2(1)
N(2)	30(1)	32(1)	32(1)	-5(1)	4(1)	-4(1)
O(1)	46(1)	38(1)	42(1)	-10(1)	10(1)	-12(1)
O(2)	50(1)	37(1)	51(1)	10(1)	12(1)	16(1)
O(3)	41(1)	113(2)	121(2)	-77(1)	33(1)	-20(1)
S (1)	36(1)	27(1)	35(1)	1(1)	7(1)	2(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for d19423.

	Х	У	Ζ	U(eq)	
H(2)	5250	7006	7047	45	
H(3)	4577	5913	8021	47	
H(5A)	1159	5612	8521	70	
H(5B)	2487	5866	9157	70	
H(5C)	2549	5009	8488	70	
H(6)	797	7095	7747	53	
H(7)	1452	8195	6770	49	
H(8A)	2975	7081	4377	57	
H(8B)	2128	7544	5066	57	
H(8C)	3041	6583	5275	57	
H(10)	6262	8942	4956	34	
H(12A)	9516	8576	4647	53	
H(12B)	9547	8885	5602	53	
H(12C)	8533	9433	4903	53	
H(13)	9375	7055	5477	33	
H(15)	8246	7993	6839	42	
H(16)	7956	7435	8165	50	
H(17)	7494	5786	8386	52	
H(18)	7271	4705	7269	54	
H(19)	7588	5250	5941	46	
H(22A)	8493	5503	3087	155	
H(22B)	8268	4688	3769	155	
H(22C)	9778	4910	3539	155	
H(24A)	6324	5812	3191	111	
H(24B)	4938	5730	3615	111	
H(24C)	6121	4928	3816	111	

X-ray crystallographic data of compound (4a).

ch19381 C16 H18 N2 O3 S	
C16 H18 N2 O3 S	
0101110112 05 5	
318.38	
200(2) K	
0.71073 Å	
Monoclinic	
C 2/c	
a = 10.9900(11) Å	$\square = 90^{\circ}.$
b = 9.6096(9) Å	$\Box = 94.047(7)^{\circ}.$
c = 29.660(3) Å	$\Box = 90^{\circ}.$
3124.5(5) Å ³	
8	
1.354 Mg/m ³	
0.221 mm ⁻¹	
1344	
0.10 x 0.09 x 0.04 mm ³	
1.38 to 25.24°.	
-12<=h<=13, -7<=k<=11,	-35<=l<=27
8336	
2790 [R(int) = 0.0562]	
98.2 %	
multi-scan	
0.9912 and 0.9782	
Full-matrix least-squares of	on F ²
2790 / 0 / 199	
1.011	
R1 = 0.0592, wR2 = 0.139	93
R1 = 0.1146, wR2 = 0.162	23
0.355 and -0.395 e.Å ⁻³	
	C16 H18 N2 O5 S 318.38 200(2) K 0.71073 Å Monoclinic C 2/c a = 10.9900(11) Å b = 9.6096(9) Å c = 29.660(3) Å 3124.5(5) Å ³ 8 1.354 Mg/m ³ 0.221 mm ⁻¹ 1344 0.10 x 0.09 x 0.04 mm ³ 1.38 to 25.24°. -12<=h<=13, -7<=k<=11, 8336 2790 [R(int) = 0.0562] 98.2 % multi-scan 0.9912 and 0.9782 Full-matrix least-squares of 2790 / 0 / 199 1.011 R1 = 0.0592, wR2 = 0.139 R1 = 0.1146, wR2 = 0.162 0.355 and -0.395 e.Å ⁻³

	х	У	Z	U(eq)	
C(1)	5071(3)	4504(4)	5728(1)	31(1)	
C(2)	5405(3)	5786(4)	5566(1)	36(1)	
C(3)	6510(4)	5926(4)	5374(1)	39(1)	
C(4)	7279(3)	4792(5)	5346(1)	40(1)	
C(5)	8525(3)	4973(5)	5158(2)	55(1)	
C(6)	6922(3)	3509(4)	5497(1)	41(1)	
C(7)	5821(3)	3352(4)	5690(1)	37(1)	
C(8)	4779(4)	3409(4)	6786(2)	55(1)	
C(9)	4660(3)	5961(4)	6686(1)	31(1)	
C(10)	3873(3)	7159(4)	6594(1)	31(1)	
C(11)	4284(3)	8439(4)	6524(1)	33(1)	
C(12)	3467(4)	9692(4)	6497(1)	46(1)	
C(13)	5630(3)	8682(4)	6490(1)	37(1)	
C(14)	6215(3)	8404(4)	6952(1)	36(1)	
C(15)	6735(3)	9536(5)	7232(2)	45(1)	
C(16)	6191(3)	7132(4)	7132(1)	38(1)	
N(1)	4197(3)	4619(3)	6558(1)	35(1)	
N(2)	5677(3)	5941(3)	6939(1)	37(1)	
O(1)	2931(2)	5463(3)	5876(1)	42(1)	
O(2)	3316(2)	2949(3)	5987(1)	47(1)	
O(3)	6628(3)	10767(3)	7135(1)	56(1)	
S (1)	3736(1)	4357(1)	6018(1)	35(1)	

for ch19381. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles [°] for ch19381.

C(1)-C(2)	1.381(5)
C(1)-C(7)	1.390(5)
C(1)-S(1)	1.757(4)
C(2)-C(3)	1.384(5)
C(2)-H(2)	0.9500
C(3)-C(4)	1.386(6)
C(3)-H(3)	0.9500
C(4)-C(6)	1.379(5)
C(4)-C(5)	1.524(5)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.384(5)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500

C(8)-N(1)	1.468(5)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-N(2)	1.301(4)
C(9)-N(1)	1.428(5)
C(9)-C(10)	1.454(5)
C(10)-C(11)	1.331(5)
C(10)-H(10)	0.9500
C(11)-C(12)	1.501(5)
C(11)-C(13)	1.507(5)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-C(14)	1.496(5)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-C(16)	1.335(5)
C(14)-C(15)	1.460(5)
C(15)-O(3)	1.221(5)
C(15)-H(15)	1.0482
C(16)-N(2)	1.383(5)
C(16)-H(16)	0.9500
N(1)-S(1)	1.667(3)
O(1)-S(1)	1.427(3)
O(2)-S(1)	1.430(3)
C(2)-C(1)-C(7)	120.6(4)
C(2)-C(1)-S(1)	119.6(3)
C(7)-C(1)-S(1)	119.7(3)
C(3)-C(2)-C(1)	119.5(4)
C(3)-C(2)-H(2)	120.2
C(1)-C(2)-H(2)	120.2
C(2)-C(3)-C(4)	120.4(4)
C(2)-C(3)-H(3)	119.8
C(4)-C(3)-H(3)	119.8
C(6)-C(4)-C(3)	119.7(4)
C(6)-C(4)-C(5)	120.3(4)
C(3)-C(4)-C(5)	120.0(4)
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(4)-C(6)-C(7)	120.6(4)
C(4)-C(6)-H(6)	119.7
C(7)-C(6)-H(6)	119.7
C(6)-C(7)-C(1)	119.2(4)
C(6)-C(7)-H(7)	120.4
C(1)-C(7)-H(7)	120.4

N(1)-C(8)-H(8A)	109.5
N(1)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
N(1)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
N(2)-C(9)-N(1)	114.5(3)
N(2)-C(9)-C(10)	126.6(3)
N(1)-C(9)-C(10)	118.0(3)
C(11)-C(10)-C(9)	123.8(3)
C(11)-C(10)-H(10)	118.1
C(9)-C(10)-H(10)	118.1
C(10)-C(11)-C(12)	122.7(3)
C(10)-C(11)-C(13)	119.9(3)
C(12)-C(11)-C(13)	117.3(3)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(14)-C(13)-C(11)	105.8(3)
C(14)-C(13)-H(13A)	110.6
C(11)-C(13)-H(13A)	110.6
C(14)-C(13)-H(13B)	110.6
C(11)-C(13)-H(13B)	110.6
H(13A)-C(13)-H(13B)	108.7
C(16)-C(14)-C(15)	118.3(4)
C(16)-C(14)-C(13)	120.7(4)
C(15)-C(14)-C(13)	120.8(4)
O(3)-C(15)-C(14)	124.1(4)
O(3)-C(15)-H(15)	123.4
C(14)-C(15)-H(15)	112.5
C(14)-C(16)-N(2)	127.7(4)
C(14)-C(16)-H(16)	116.2
N(2)-C(16)-H(16)	116.2
C(9)-N(1)-C(8)	117.2(3)
C(9)-N(1)-S(1)	118.1(2)
C(8)-N(1)-S(1)	114.6(3)
C(9)-N(2)-C(16)	122.4(3)
O(1)-S(1)-O(2)	119.70(16)
O(1)-S(1)-N(1)	108.12(16)
O(2)-S(1)-N(1)	106.19(17)
O(1)-S(1)-C(1)	108.52(18)
O(2)-S(1)-C(1)	108.80(17)
N(1)-S(1)-C(1)	104.47(16)

	U ¹¹	U ²²	U33	U23	U13	U ¹²
C(1)	30(2)	33(2)	30(2)	-6(2)	-4(2)	-5(2)
C(2)	39(2)	32(2)	35(2)	-3(2)	-3(2)	1(2)
C(3)	45(2)	40(3)	31(2)	2(2)	0(2)	-8(2)
C(4)	32(2)	55(3)	33(2)	-4(2)	-4(2)	-4(2)
C(5)	39(2)	74(3)	51(3)	-6(3)	10(2)	-10(2)
C(6)	41(2)	43(3)	37(2)	-5(2)	1(2)	8(2)
C(7)	45(2)	30(2)	36(2)	0(2)	0(2)	-2(2)
C(8)	79(3)	35(3)	50(3)	10(2)	-5(2)	-2(2)
C(9)	31(2)	31(2)	31(2)	-1(2)	6(2)	-2(2)
C(10)	24(2)	32(2)	36(2)	-5(2)	2(2)	-2(2)
C(11)	34(2)	35(2)	28(2)	2(2)	-3(2)	-4(2)
C(12)	53(3)	34(3)	49(3)	0(2)	-5(2)	3(2)
C(13)	34(2)	42(2)	35(2)	0(2)	2(2)	-13(2)
C(14)	27(2)	45(3)	36(2)	-5(2)	0(2)	-10(2)
C(15)	35(2)	52(3)	49(3)	-4(2)	0(2)	-6(2)
C(16)	33(2)	43(3)	37(2)	-7(2)	-5(2)	3(2)
N(1)	41(2)	29(2)	35(2)	1(2)	1(2)	-4(2)
N(2)	37(2)	36(2)	36(2)	0(2)	-3(2)	3(2)
O(1)	32(1)	45(2)	49(2)	-3(2)	-5(1)	5(1)
O(2)	44(2)	31(2)	65(2)	-7(2)	7(1)	-15(1)
O(3)	62(2)	47(2)	58(2)	-7(2)	-6(2)	-16(2)
S (1)	33(1)	31(1)	41(1)	-4(1)	-1(1)	-6(1)

Table 4. Anisotropic displacement parameters (Å²x 10³)for ch19381. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for ch19381.

	X	У	Z	U(eq)
H(2)	4880	6565	5586	43
H(3)	6743	6805	5261	47
H(5A)	8630	5946	5069	82
H(5B)	8582	4370	4894	82
H(5C)	9165	4721	5391	82
H(6)	7437	2724	5468	49
H(7)	5580	2466	5795	44
H(8A)	4378	2555	6672	83
H(8B)	4704	3482	7112	83
H(8C)	5644	3382	6725	83
H(10)	3016	7020	6582	37
H(12A)	3954	10527	6450	69
H(12B)	3061	9784	6779	69
H(12C)	2852	9582	6244	69
H(13A)	5956	8044	6266	44

H(13B)	5784	9653	6398	44
H(15)	7213	9176	7527	55
H(16)	6573	7033	7428	46

X-ray crystallographic data of compound (5a).

d19315

Table 1. Crystal data and structure refinement for d19315.

Identification code	d19315	
Empirical formula	C18 H22 N2 O3 S	
Formula weight	346.44	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 12.3308(12) Å	a= 90°.
	b = 16.1714(13) Å	$b = 94.241(4)^{\circ}$.
	c = 8.8646(8) Å	$g = 90^{\circ}$.
Volume	1762.8(3) Å ³	
Z	4	
Density (calculated)	1.305 Mg/m ³	
Absorption coefficient	0.202 mm ⁻¹	

F(000)	736
Crystal size	0.60 x 0.03 x 0.01 mm ³
Theta range for data collection	2.52 to 25.02°.
Index ranges	-14<=h<=14, -19<=k<=19, -10<=l<=10
Reflections collected	14290
Independent reflections	3096 [R(int) = 0.1020]
Completeness to theta = 25.02°	99.5 %
Absorption correction	multi-scan
Max. and min. transmission	0.9980 and 0.8885
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3096 / 0 / 222
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0579, wR2 = 0.1300
R indices (all data)	R1 = 0.1059, wR2 = 0.1630
Largest diff. peak and hole	0.399 and -0.535 e.Å ⁻³

	Х	У	Z	U(eq)	
C(1)	1885(3)	4274(2)	6765(4)	38(1)	
C(2)	816(3)	4008(3)	6610(5)	61(1)	
C(3)	269(3)	3866(3)	7879(5)	66(1)	
C(4)	740(3)	3985(2)	9314(5)	47(1)	
C(5)	146(4)	3819(3)	10706(5)	65(1)	
C(6)	1813(3)	4262(2)	9454(5)	48(1)	
C(7)	2378(3)	4406(2)	8197(4)	45(1)	
C(8)	2453(3)	2912(2)	3996(5)	53(1)	
C(9)	4053(3)	3202(2)	5781(4)	34(1)	
C(10)	4864(3)	3697(2)	6487(4)	36(1)	
C(11)	5671(3)	3327(2)	7427(4)	35(1)	
C(12)	6562(3)	3858(2)	8180(4)	48(1)	
C(13)	5663(3)	2466(2)	7599(4)	34(1)	
C(14)	4857(3)	2017(2)	6770(4)	36(1)	
C(15)	4817(3)	1088(2)	6783(5)	49(1)	
C(16)	6521(3)	2042(2)	8640(4)	38(1)	
C(17)	7599(3)	1905(2)	7999(4)	45(1)	
C(18)	8508(3)	1630(3)	9069(4)	53(1)	
N(1)	3178(2)	3528(2)	4790(3)	39(1)	
N(2)	4050(2)	2384(2)	5904(3)	36(1)	
O(1)	3438(2)	5018(1)	5500(3)	47(1)	
O(2)	1829(2)	4573(2)	3883(3)	53(1)	
O(3)	7826(4)	2193(4)	6752(6)	46(1)	
O(3')	7613(4)	1832(3)	6601(6)	42(1)	
S (1)	2597(1)	4422(1)	5138(1)	41(1)	

for d19315. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

$\overline{\mathbf{C}(1)}$ - $\mathbf{C}(7)$	1 383(5)
C(1) C(2)	1.303(3) 1.204(5)
C(1)-C(2)	1.384(5)
C(1)-S(1)	1.759(4)
C(2)-C(3)	1.373(6)
C(2) = U(2)	0.0500
$C(2)$ - $\Pi(2)$	0.9300
C(3)-C(4)	1.372(5)
C(3)-H(3)	0.9500
C(4)- $C(6)$	1.394(5)
C(4) C(5)	1.591(5) 1.505(6)
C(4) - C(3)	1.303(0)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0 9800
C(6) C(7)	1.277(5)
C(0)-C(7)	1.377(5)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8) - N(1)	1.480(4)
C(0)- $N(1)$	1.400(4)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(0) N(2)	1.327(4)
C(0) - R(2)	1.327(4)
C(9)-C(10)	1.392(4)
C(9)-N(1)	1.441(4)
C(10)-C(11)	1.386(4)
C(10)-H(10)	0.9500
$C(10) \Pi(10)$	1.400(5)
C(11)- $C(15)$	1.400(3)
C(11)-C(12)	1.510(5)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12) H(12C)	0.0800
$C(12) - \Pi(12C)$	0.9800
C(13)-C(14)	1.395(4)
C(13)-C(16)	1.515(4)
C(14)-N(2)	1.349(4)
C(14)-C(15)	1 503(5)
C(15) $U(15)$	0.0000
С(15)-П(15А)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-C(17)	1,500(5)
C(16) U(16A)	0.0000
C(10)-H(10A)	0.9900
C(16)-H(16B)	0.9900
C(17)-O(3')	1.246(6)
C(17)-O(3)	1.250(6)
C(17) - C(18)	1 483(5)
C(10) $H(10A)$	1.703(3)
$C(1\delta)$ - $\Pi(1\delta A)$	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
N(1)-S(1)	1.652(3)
O(1) S(1)	1.052(5)
O(1)-S(1)	1.433(2)

Table 3. Bond lengths [Å] and angles [°] for d19315.

$O(2) \mathcal{O}(1)$	1 407(0)
U(2)-S(1) C(7) C(1) C(2)	1.427(2)
C(7) - C(1) - C(2)	119.3(4)
C(7)-C(1)-S(1)	121.3(3)
C(2)-C(1)-S(1)	119.4(3)
C(3)-C(2)-C(1)	119.5(4)
C(3)-C(2)-H(2)	120.2
C(1)-C(2)-H(2)	120.2
C(4)-C(3)-C(2)	122.4(4)
C(4)-C(3)-H(3)	118.8
C(2)-C(3)-H(3)	118.8
C(3)-C(4)-C(6)	117.5(4)
C(3)-C(4)-C(5)	122.5(4)
C(6)-C(4)-C(5)	120.0(4)
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5R) - C(5) - H(5C)	109.5
C(7) - C(6) - C(4)	107.5 121 0(4)
C(7)-C(6)-H(6)	121.0(+)
C(4) C(6) H(6)	110.5
$C(4) - C(0) - \Pi(0)$ C(6) C(7) C(1)	119.3 120.2(3)
C(0)-C(7)-C(1)	120.2(3)
$C(0)-C(7)-\Pi(7)$	119.9
U(1)-U(7)-H(7)	119.9
N(1)-C(8)-H(8A)	109.5
N(1)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
N(1)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
N(2)-C(9)-C(10)	122.8(3)
N(2)-C(9)-N(1)	114.1(3)
C(10)-C(9)-N(1)	123.0(3)
C(11)-C(10)-C(9)	118.8(3)
C(11)-C(10)-H(10)	120.6
C(9)-C(10)-H(10)	120.6
C(10)-C(11)-C(13)	119.0(3)
C(10)-C(11)-C(12)	119.1(3)
C(13)-C(11)-C(12)	121.8(3)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A) - C(12) - H(12C)	109.5
H(12R) - C(12) - H(12C)	109.5
C(14) = C(12) = C(11)	118 0(3)
C(14) - C(13) - C(11)	171.0(3)
C(14) - C(13) - C(10) C(11) - C(12) - C(16)	121.0(3) 120 $4(2)$
U(11)-U(13)-U(10)	120.4(3)
N(2)-C(14)-C(13)	122.5(3)

N(2)-C(14)-C(15)	114.9(3)
C(13)-C(14)-C(15)	122.6(3)
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(17)-C(16)-C(13)	115.7(3)
C(17)-C(16)-H(16A)	108.3
C(13)-C(16)-H(16A)	108.3
C(17)-C(16)-H(16B)	108.3
C(13)-C(16)-H(16B)	108.3
H(16A)-C(16)-H(16B)	107.4
O(3')-C(17)-O(3)	30.2(3)
O(3')-C(17)-C(18)	122.8(4)
O(3)-C(17)-C(18)	118.0(4)
O(3')-C(17)-C(16)	117.9(4)
O(3)-C(17)-C(16)	122.9(4)
C(18)-C(17)-C(16)	116.8(3)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(9)-N(1)-C(8)	116.3(3)
C(9)-N(1)-S(1)	121.4(2)
C(8)-N(1)-S(1)	115.0(2)
C(9)-N(2)-C(14)	118.6(3)
O(2)-S(1)-O(1)	119.06(15)
O(2)-S(1)-N(1)	106.02(15)
O(1)-S(1)-N(1)	108.27(15)
O(2)-S(1)-C(1)	108.63(17)
O(1)-S(1)-C(1)	107.72(16)
N(1)-S(1)-C(1)	106.50(16)

Table 4. Anisotropic displacement parameters (Å²x 10³)for d19315. The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	U11	U ²²	U ³³	U ²³	U13	U12	
$\overline{\mathrm{C}(1)}$	31(2)	37(2)	46(2)	2(2)	1(2)	0(2)	
C(2)	36(2)	96(3)	51(3)	-6(2)	-7(2)	-17(2)	
C(3)	36(2)	104(4)	58(3)	-7(3)	1(2)	-18(2)	
C(4)	38(2)	49(2)	55(3)	0(2)	7(2)	0(2)	
C(5)	54(3)	74(3)	67(3)	0(2)	17(2)	-4(2)	

C(6)	42(2)	57(2)	45(2)	-1(2)	-3(2)	-2(2)
C(7)	31(2)	51(2)	51(2)	-2(2)	-3(2)	-4(2)
C(8)	49(2)	50(2)	57(3)	-5(2)	-12(2)	-4(2)
C(9)	32(2)	38(2)	33(2)	2(2)	6(2)	0(2)
C(10)	36(2)	35(2)	38(2)	0(2)	5(2)	-3(2)
C(11)	33(2)	42(2)	32(2)	-1(2)	8(2)	-1(2)
C(12)	48(2)	44(2)	51(2)	-1(2)	-4(2)	-6(2)
C(13)	34(2)	38(2)	30(2)	2(2)	9(2)	1(2)
C(14)	34(2)	39(2)	37(2)	1(2)	6(2)	-1(2)
C(15)	51(2)	35(2)	60(3)	0(2)	-2(2)	2(2)
C(16)	39(2)	41(2)	34(2)	5(2)	3(2)	0(2)
C(17)	48(2)	53(2)	33(2)	3(2)	5(2)	10(2)
C(18)	44(2)	65(3)	49(3)	8(2)	-7(2)	7(2)
N(1)	40(2)	32(2)	44(2)	1(1)	-5(1)	-1(1)
N(2)	35(2)	34(2)	40(2)	1(1)	5(1)	-1(1)
O(1)	40(1)	35(1)	66(2)	4(1)	-1(1)	-7(1)
O(2)	55(2)	55(2)	47(2)	13(1)	-12(1)	4(1)
S (1)	38(1)	36(1)	49(1)	7(1)	-1(1)	-1(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for d19315.

	Х	У	Z	U(eq)	
H(2)	464	3923	5633	74	
H(3)	-463	3679	7759	79	
H(5A)	-634	3912	10478	97	
H(5B)	418	4192	11520	97	
H(5C)	268	3244	11026	97	
H(6)	2160	4354	10433	58	
H(7)	3108	4595	8314	53	
H(8A)	2003	3186	3187	79	
H(8B)	1984	2662	4716	79	
H(8C)	2894	2481	3561	79	
H(10)	4864	4278	6327	43	
H(12A)	7254	3725	7761	72	
H(12B)	6620	3751	9271	72	
H(12C)	6389	4442	7997	72	
H(15A)	4329	894	5934	73	
H(15B)	4548	898	7736	73	
H(15C)	5548	867	6686	73	
H(16A)	6641	2378	9572	46	
H(16B)	6233	1499	8937	46	
H(18A)	9064	1358	8507	80	
H(18B)	8235	1239	9797	80	
H(18C)	8828	2109	9611	80	

X-ray crystallographic data of compound (5i).

d19363

Table 1. Crystal data and structure refinem	ent for d19363.	
Identification code	d19363	
Empirical formula	C28 H26 N2 O3 S	
Formula weight	470.57	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 13.9904(6) Å	a= 90°.
	b = 8.4064(3) Å	b= 104.4910(10)°.
	c = 21.3600(9) Å	$g = 90^{\circ}$.
Volume	2432.21(17) Å ³	
Z	4	
Density (calculated)	1.285 Mg/m ³	
Absorption coefficient	0.166 mm ⁻¹	
F(000)	992	

Crystal size	0.62 x 0.14 x 0.07 mm ³
Theta range for data collection	2.62 to 25.03°.
Index ranges	-16<=h<=16, -10<=k<=10, -25<=l<=25
Reflections collected	39822
Independent reflections	4281 [R(int) = 0.0544]
Completeness to theta = 25.03°	99.7 %
Absorption correction	multi-scan
Max. and min. transmission	0.9885 and 0.9043
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4281 / 0 / 310
Goodness-of-fit on F ²	1.064
Final R indices [I>2sigma(I)]	R1 = 0.0398, $wR2 = 0.0960$
R indices (all data)	R1 = 0.0610, wR2 = 0.1141
Largest diff. peak and hole	0.138 and -0.330 e.Å ⁻³

	Х	У	Z	U(eq)	
C(1)	1588(1)	7592(2)	5280(1)	43(1)	
C(2)	621(1)	8075(3)	5057(1)	51(1)	
C(3)	-103(2)	7374(3)	5304(1)	53(1)	
C(4)	113(2)	6197(2)	5764(1)	48(1)	
C(5)	-688(2)	5477(3)	6035(1)	67(1)	
C(6)	1088(2)	5713(3)	5978(1)	58(1)	
C(7)	1823(2)	6401(3)	5741(1)	56(1)	
C(8)	2661(2)	10843(3)	5774(1)	57(1)	
C(9)	4057(1)	8924(2)	5958(1)	37(1)	
C(10)	4856(1)	8526(2)	5720(1)	40(1)	
C(11)	5675(1)	7847(2)	6129(1)	38(1)	
C(12)	6533(2)	7332(3)	5868(1)	53(1)	
C(13)	5671(1)	7639(2)	6779(1)	33(1)	
C(14)	6488(1)	6707(2)	7218(1)	38(1)	
C(15)	7463(1)	7557(2)	7449(1)	39(1)	
C(16)	8359(1)	6570(2)	7712(1)	39(1)	
C(17)	9272(1)	7306(3)	7892(1)	50(1)	
C(18)	10120(2)	6430(3)	8145(1)	61(1)	
C(19)	10058(2)	4820(3)	8222(1)	66(1)	
C(20)	9165(2)	4070(3)	8038(1)	68(1)	
C(21)	8312(2)	4935(3)	7786(1)	54(1)	
C(22)	4858(1)	8189(2)	6984(1)	32(1)	
C(23)	4814(1)	8142(2)	7677(1)	33(1)	
C(24)	5520(1)	8920(2)	8149(1)	38(1)	
C(25)	5434(2)	8982(2)	8781(1)	45(1)	
C(26)	4654(2)	8235(3)	8949(1)	50(1)	
C(27)	3964(2)	7417(2)	8485(1)	47(1)	

for d19363. U((eq) is defined as on	e third of the trace of the	orthogonalized U ^{1J} tensor.

C(28)	4034(1)	7380(2)	7852(1)	39(1)
N(1)	3189(1)	9574(2)	5525(1)	45(1)
N(2)	4042(1)	8796(2)	6576(1)	34(1)
O(1)	2028(1)	9475(3)	4448(1)	82(1)
O(2)	3133(1)	7179(2)	4840(1)	71(1)
O(3)	7522(1)	9001(2)	7434(1)	58(1)
S (1)	2511(1)	8439(1)	4960(1)	54(1)

Table 3. Bond lengths [Å] and angles [°] for d19363.

C(1)-C(2)	1.378(3)
C(1)-C(7)	1.385(3)
C(1)-S(1)	1.756(2)
C(2)-C(3)	1.385(3)
C(2)-H(2)	0.9500
C(3)-C(4)	1.374(3)
C(3)-H(3)	0.9500
C(4)-C(6)	1.387(3)
C(4)-C(5)	1.510(3)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.381(3)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-N(1)	1.470(3)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-N(2)	1.329(2)
C(9)-C(10)	1.380(3)
C(9)-N(1)	1.440(2)
C(10)-C(11)	1.379(3)
C(10)-H(10)	0.9500
C(11)-C(13)	1.403(2)
C(11)-C(12)	1.508(2)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-C(22)	1.395(2)
C(13)-C(14)	1.504(2)
C(14)-C(15)	1.509(2)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-O(3)	1.217(2)
C(15)-C(16)	1.492(2)
C(16)-C(17)	1.384(3)
C(16)-C(21)	1.387(3)
C(17)-C(18)	1.387(3)

C(17)-H(17)	0.9500
C(18)-C(19)	1.369(4)
C(18)-H(18)	0.9500
C(19)-C(20)	1.367(4)
C(19)-H(19)	0.9500
C(20)- $C(21)$	1 386(3)
C(20) + C(21) C(20) + U(20)	0.0500
$C(20)$ - $\Pi(20)$ $C(21)$ $\Pi(21)$	0.9500
C(21)-H(21)	0.9300
C(22)-N(2)	1.351(2)
C(22)-C(23)	1.496(2)
C(23)-C(24)	1.388(2)
C(23)-C(28)	1.394(2)
C(24)-C(25)	1.386(3)
C(24)-H(24)	0.9500
C(25)-C(26)	1.381(3)
C(25)-H(25)	0.9500
C(26)-C(27)	1.381(3)
C(26)-H(26)	0.9500
C(27)-C(28)	1.380(3)
C(27)-H(27)	0.9500
C(28)-H(28)	0.9500
N(1)-S(1)	1.6410(17)
O(1)-S(1)	1.0110(17) 1.4288(17)
O(2)-S(1)	1.1200(17) 1.4330(18)
C(2) - S(1) C(2) - C(1) - C(7)	1.4330(10) 110 7(2)
C(2) - C(1) - C(7) C(2) - C(1) - C(7)	119.7(2) 120.01(16)
C(2)-C(1)-S(1)	120.01(10) 120.27(15)
C(7)-C(1)-S(1)	120.27(13)
C(1)-C(2)-C(3)	119.5(2)
C(1)-C(2)-H(2)	120.3
C(3)-C(2)-H(2)	120.3
C(4)-C(3)-C(2)	121.80(19)
C(4)-C(3)-H(3)	119.1
C(2)-C(3)-H(3)	119.1
C(3)-C(4)-C(6)	118.0(2)
C(3)-C(4)-C(5)	120.77(19)
C(6)-C(4)-C(5)	121.2(2)
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)- $C(6)$ - $C(4)$	121 1(2)
C(7) - C(6) - H(6)	121.1(2)
$C(1) - C(0) - \Pi(0)$ $C(1) - C(6) - \Pi(6)$	117.4
$C(4)$ - $C(0)$ - $\Pi(0)$ C(6) $C(7)$ $C(1)$	119.4
C(0) - C(7) - C(1)	117.07(17)
C(0)-C(/)-H(/)	120.1
C(1)-C(7)-H(7)	120.1
N(1)-C(8)-H(8A)	109.5
N(1)-C(8)-H(8B)	109.5

H(8A)-C(8)-H(8B)	109.5
N(1)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
N(2)-C(9)-C(10)	124.20(16)
N(2)-C(9)-N(1)	116.67(15)
C(10)-C(9)-N(1)	119.08(16)
C(11)-C(10)-C(9)	119.23(17)
C(11)-C(10)-H(10)	120.4
C(9)-C(10)-H(10)	120.4
C(10)-C(11)-C(13)	118.04(16)
C(10)-C(11)-C(12)	119.85(17)
C(13)-C(11)-C(12)	122.11(17)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12R) - C(12) - H(12C)	109.5
C(22)-C(13)-C(11)	118 38(16)
C(22) - C(13) - C(14)	121 98(16)
C(11)-C(13)-C(14)	121.90(10) 119.39(15)
C(13)-C(14)-C(15)	116 16(15)
C(13)-C(14)-H(14A)	108.2
C(15) - C(14) - H(14A)	108.2
C(13) - C(14) - H(14R) C(13) - C(14) + H(14R)	108.2
C(15) - C(14) - H(14B) C(15) - C(14) - H(14B)	108.2
U(14A) C(14) H(14B)	108.2
$\Pi(14A)-C(14)-\Pi(14D)$	107.4 120 55(17)
O(3)-C(13)-C(16)	120.33(17) 121.72(17)
O(3)-C(15)-C(14)	121.72(17)
C(16)-C(15)-C(14)	11/./2(10)
C(17)-C(16)-C(21)	118.61(18)
C(1/)-C(16)-C(15)	119.06(18)
C(21)-C(16)-C(15)	122.33(17)
C(16)-C(17)-C(18)	120.7(2)
C(16)-C(17)-H(17)	119.6
C(18)-C(17)-H(17)	119.6
C(19)-C(18)-C(17)	119.9(2)
C(19)-C(18)-H(18)	120.1
C(17)-C(18)-H(18)	120.1
C(20)-C(19)-C(18)	120.2(2)
C(20)-C(19)-H(19)	119.9
C(18)-C(19)-H(19)	119.9
C(19)-C(20)-C(21)	120.4(2)
C(19)-C(20)-H(20)	119.8
C(21)-C(20)-H(20)	119.8
C(20)-C(21)-C(16)	120.2(2)
C(20)-C(21)-H(21)	119.9
C(16)-C(21)-H(21)	119.9
N(2)-C(22)-C(13)	123.06(15)

N(2)-C(22)-C(23)	114.27(14)
C(13)-C(22)-C(23)	122.67(15)
C(24)-C(23)-C(28)	118.92(16)
C(24)-C(23)-C(22)	120.57(15)
C(28)-C(23)-C(22)	120.43(16)
C(25)-C(24)-C(23)	120.44(17)
C(25)-C(24)-H(24)	119.8
C(23)-C(24)-H(24)	119.8
C(26)-C(25)-C(24)	120.18(19)
C(26)-C(25)-H(25)	119.9
C(24)-C(25)-H(25)	119.9
C(25)-C(26)-C(27)	119.69(18)
C(25)-C(26)-H(26)	120.2
C(27)-C(26)-H(26)	120.2
C(28)-C(27)-C(26)	120.41(18)
C(28)-C(27)-H(27)	119.8
C(26)-C(27)-H(27)	119.8
C(27)-C(28)-C(23)	120.31(18)
C(27)-C(28)-H(28)	119.8
C(23)-C(28)-H(28)	119.8
C(9)-N(1)-C(8)	117.51(15)
C(9)-N(1)-S(1)	119.42(14)
C(8)-N(1)-S(1)	116.02(13)
C(9)-N(2)-C(22)	116.79(15)
O(1)-S(1)-O(2)	120.46(11)
O(1)-S(1)-N(1)	106.46(11)
O(2)-S(1)-N(1)	107.26(9)
O(1)-S(1)-C(1)	106.94(10)
O(2)-S(1)-C(1)	107.92(11)
N(1)-S(1)-C(1)	107.15(9)

Symmetry transformations used to generate equivalent atom	ns:
---	-----

	U ¹¹	U ²²	U ³³	U ²³	U13	U12	
C(1)	36(1)	56(1)	34(1)	-5(1)	3(1)	1(1)	
C(2)	42(1)	58(1)	47(1)	3(1)	1(1)	9(1)	
C(3)	31(1)	64(1)	60(1)	-1(1)	3(1)	8(1)	
C(4)	40(1)	48(1)	55(1)	-8(1)	10(1)	1(1)	
C(5)	51(1)	64(2)	88(2)	-3(1)	22(1)	-6(1)	
C(6)	49(1)	59(1)	68(2)	14(1)	15(1)	11(1)	
C(7)	38(1)	72(2)	58(1)	12(1)	8(1)	15(1)	
C(8)	44(1)	57(1)	61(1)	4(1)	-3(1)	12(1)	
C(9)	34(1)	43(1)	33(1)	1(1)	5(1)	-1(1)	
C(10)	40(1)	49(1)	32(1)	1(1)	11(1)	-2(1)	
C(11)	35(1)	40(1)	41(1)	0(1)	15(1)	-2(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³)for d19363. The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}$]

C(12)	47(1)	64(1)	54(1)	1(1)	25(1)	6(1)
C(13)	30(1)	32(1)	37(1)	1(1)	8(1)	0(1)
C(14)	32(1)	38(1)	44(1)	5(1)	12(1)	4(1)
C(15)	33(1)	42(1)	44(1)	4(1)	11(1)	3(1)
C(16)	32(1)	50(1)	34(1)	5(1)	9(1)	6(1)
C(17)	37(1)	61(1)	50(1)	-5(1)	7(1)	3(1)
C(18)	33(1)	85(2)	59(1)	-10(1)	-2(1)	8(1)
C(19)	49(1)	84(2)	57(1)	2(1)	-3(1)	24(1)
C(20)	60(2)	63(2)	75(2)	21(1)	4(1)	21(1)
C(21)	41(1)	54(1)	64(1)	16(1)	8(1)	7(1)
C(22)	29(1)	32(1)	34(1)	1(1)	7(1)	0(1)
C(23)	31(1)	33(1)	34(1)	6(1)	9(1)	5(1)
C(24)	36(1)	41(1)	36(1)	5(1)	8(1)	1(1)
C(25)	47(1)	53(1)	34(1)	2(1)	5(1)	1(1)
C(26)	59(1)	59(1)	34(1)	8(1)	18(1)	6(1)
C(27)	51(1)	47(1)	52(1)	8(1)	26(1)	-1(1)
C(28)	38(1)	39(1)	43(1)	0(1)	15(1)	-1(1)
N(1)	34(1)	60(1)	36(1)	6(1)	0(1)	5(1)
N(2)	30(1)	40(1)	32(1)	2(1)	6(1)	1(1)
O(1)	61(1)	137(2)	37(1)	31(1)	-9(1)	-21(1)
O(2)	51(1)	111(1)	57(1)	-36(1)	23(1)	-9(1)
O(3)	40(1)	40(1)	88(1)	5(1)	5(1)	-2(1)
S (1)	42(1)	89(1)	30(1)	-1(1)	4(1)	-7(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for d19363.

	Х	у	Z	U(eq)	
$\overline{\mathbf{H}(2)}$	153	8887	1737	61	
H(2)	-768	7716	5150	64	
H(5A)	-578	5771	6491	100	
H(5B)	-672	4316	5997	100	
H(5C)	-1333	5876	5793	100	
H(6)	1253	4895	6294	70	
H(7)	2487	6059	5895	67	
H(8A)	2190	10367	5990	85	
H(8B)	2306	11510	5415	85	
H(8C)	3136	11496	6084	85	
H(10)	4842	8719	5280	48	
H(12A)	6391	7574	5405	79	
H(12B)	6637	6185	5933	79	
H(12C)	7130	7902	6096	79	
H(14A)	6600	5730	6988	45	
H(14B)	6262	6372	7602	45	
H(17)	9317	8425	7842	60	
H(18)	10744	6946	8264	74	

H(19)	10637	4223	8404	80	
H(20)	9128	2948	8083	82	
H(21)	7693	4406	7664	65	
H(24)	6066	9415	8039	45	
H(25)	5912	9539	9100	55	
H(26)	4593	8284	9382	59	
H(27)	3439	6877	8602	57	
H(28)	3549	6834	7534	47	

X-ray crystallographic data of compound (6m).

d19354

Table 1. Crystal data and structure refinement for d19354.				
Identification code	d19354			
Empirical formula	C21 H26 N2 O3 S			
Formula weight	386.50			
Temperature	200(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/n			

Unit cell dimensions	a = 9.0836(3) Å	a= 90°.
	b = 21.4854(9) Å	$b = 92.1120(10)^{\circ}$.
	c = 9.9912(4) Å	g = 90°.
Volume	1948.61(13) Å ³	
Z	4	
Density (calculated)	1.317 Mg/m ³	
Absorption coefficient	0.190 mm ⁻¹	
F(000)	824	
Crystal size	0.36 x 0.04 x 0.02 mm ³	
Theta range for data collection	2.25 to 25.03°.	
Index ranges	-10<=h<=10, -25<=k<=2	5, -11<=l<=9
Reflections collected	17674	
Independent reflections	3430 [R(int) = 0.0569]	
Completeness to theta = 25.03°	99.6 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9962 and 0.9347	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	3430 / 0 / 244	
Goodness-of-fit on F ²	1.059	
Final R indices [I>2sigma(I)]	R1 = 0.0494, wR2 = 0.119	95
R indices (all data)	$R1 = 0.0708, wR2 = 0.13^{\circ}$	72
Largest diff. peak and hole	0.362 and -0.386 e.Å ⁻³	

	Х	у	Z	U(eq)	
C(1)	2597(3)	6349(1)	5365(3)	29(1)	
C(2)	2560(3)	6898(1)	4648(3)	37(1)	
C(3)	1381(3)	7021(1)	3773(3)	37(1)	
C(4)	233(3)	6600(1)	3597(3)	33(1)	
C(5)	-1002(3)	6727(2)	2591(3)	44(1)	
C(6)	278(3)	6059(1)	4349(3)	36(1)	
C(7)	1449(3)	5925(1)	5229(3)	33(1)	
C(8)	5672(3)	5807(1)	4469(3)	40(1)	
C(9)	6817(3)	6547(1)	6101(2)	24(1)	
C(10)	7783(3)	6378(1)	7114(2)	24(1)	
C(11)	7644(3)	5814(1)	7962(3)	26(1)	
C(12)	7944(3)	5246(1)	7481(3)	32(1)	
C(13)	7778(3)	4656(1)	8264(3)	40(1)	
C(14)	6844(3)	4762(1)	9470(3)	41(1)	
C(15)	7349(3)	5337(1)	10226(3)	40(1)	
C(16)	7137(3)	5909(1)	9352(3)	35(1)	
C(17)	8834(3)	6877(1)	7242(2)	23(1)	
C(18)	10106(3)	6936(1)	8155(3)	27(1)	

for d19354. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

10/33(3)	6378(1)	8864(3)	37(1)	
8447(3)	7325(1)	6274(3)	25(1)	
9161(3)	7923(1)	5917(3)	34(1)	
5531(2)	6252(1)	5563(2)	28(1)	
7230(2)	7119(1)	5600(2)	25(1)	
4223(2)	6671(1)	7477(2)	41(1)	
3909(2)	5557(1)	6944(2)	42(1)	
10708(2)	7446(1)	8347(2)	36(1)	
4092(1)	6187(1)	6498(1)	30(1)	
	10733(3) 8447(3) 9161(3) 5531(2) 7230(2) 4223(2) 3909(2) 10708(2) 4092(1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10733(3) $6378(1)$ $8864(3)$ $37(1)$ $8447(3)$ $7325(1)$ $6274(3)$ $25(1)$ $9161(3)$ $7923(1)$ $5917(3)$ $34(1)$ $5531(2)$ $6252(1)$ $5563(2)$ $28(1)$ $7230(2)$ $7119(1)$ $5600(2)$ $25(1)$ $4223(2)$ $6671(1)$ $7477(2)$ $41(1)$ $3909(2)$ $5557(1)$ $6944(2)$ $42(1)$ $10708(2)$ $7446(1)$ $8347(2)$ $36(1)$ $4092(1)$ $6187(1)$ $6498(1)$ $30(1)$

Table 3. Bond lengths [Å] and angles [°] for d19354.

C(1) - C(2)	1 381(1)
C(1)-C(2)	1.301(+) 1 387(A)
C(1) - S(1)	1.770(3)
C(1) S(1) C(2)-C(3)	1.770(3) 1 382(4)
C(2) - H(2)	0.9500
C(2)-H(2) C(3)-C(4)	1.387(A)
C(3)-H(3)	0.9500
C(4)-C(6)	1 383(4)
C(4)- $C(5)$	1.505(1) 1 504(4)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1 385(4)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-N(1)	1.461(3)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-C(10)	1.365(3)
C(9)-N(2)	1.384(3)
C(9)-N(1)	1.418(3)
C(10)-C(17)	1.438(3)
C(10)-C(11)	1.487(3)
C(11)-C(12)	1.342(4)
C(11)-C(16)	1.493(4)
C(12)-C(13)	1.501(4)
C(12)-H(12)	0.9500
C(13)-C(14)	1.516(4)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-C(15)	1.512(4)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.516(4)
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900

C(16)-H(16A)	0.9900
C(16)-H(16B)	0.9900
C(17)-C(20)	1.400(3)
C(17)-C(18)	1.451(3)
C(18)-O(3)	1.235(3)
C(18)-C(19)	1 495(4)
C(19)- $H(19A)$	0.9800
C(19)-H(19R)	0.9800
C(19)-H(19C)	0.9800
C(20)-N(2)	1.348(3)
C(20) - C(21)	1.310(3) 1488(4)
$C(21) - H(21\Delta)$	0.9800
C(21)-H(21R)	0.9800
C(21)- $H(21C)$	0.9800
N(1) S(1)	0.9800 1.640(2)
N(1)-S(1) N(2) U(2)	1.040(2)
$N(2) - \Pi(2)$ O(1) S(1)	0.9276 1.420(2)
O(1)-S(1)	1.430(2) 1.425(2)
O(2)-S(1) O(2)-O(1)-O(7)	1.433(2)
C(2)-C(1)-C(7)	120.4(3)
C(2)-C(1)-S(1)	120.2(2)
C(7)-C(1)-S(1) C(1)-C(2)-C(2)	119.4(2)
C(1)-C(2)-C(3)	119.0(3)
C(1)-C(2)-H(2)	120.2
C(3)-C(2)-H(2)	120.2
C(2)-C(3)-C(4)	121.1(3)
C(2)-C(3)-H(3)	119.4
C(4)-C(3)-H(3)	119.4
C(6)-C(4)-C(3)	118.2(3)
C(6)-C(4)-C(5)	121.5(3)
C(3)-C(4)-C(5)	120.3(3)
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(4)-C(6)-C(7)	121.7(3)
C(4)-C(6)-H(6)	119.2
C(7)-C(6)-H(6)	119.2
C(6)-C(7)-C(1)	118.9(3)
C(6)-C(7)-H(7)	120.5
C(1)-C(7)-H(7)	120.5
N(1)-C(8)-H(8A)	109.5
N(1)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
N(1)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(10)-C(9)-N(2)	109.2(2)
C(10)-C(9)-N(1)	131.4(2)

N(2)-C(9)-N(1)	119.4(2)
C(9)-C(10)-C(17)	105.9(2)
C(9)-C(10)-C(11)	125.0(2)
C(17)-C(10)-C(11)	128.9(2)
C(12)-C(11)-C(10)	120.9(2)
C(12)-C(11)-C(16)	122.1(2)
C(10)-C(11)-C(16)	117.0(2)
C(11)-C(12)-C(13)	123.8(3)
C(11)-C(12)-H(12)	118.1
C(13)-C(12)-H(12)	118.1
C(12)- $C(13)$ - $C(14)$	110.9(2)
C(12)- $C(13)$ - $H(13A)$	109.5
C(14)- $C(13)$ - $H(13A)$	109.5
C(12)-C(13)-H(13B)	109.5
C(14)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	108.1
C(15)-C(14)-C(13)	110.6(2)
C(15)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14A)	109.5
C(15)-C(14)-H(14R)	109.5
C(13)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(14)-C(15)-C(16)	110.1 110.2(2)
C(14)- $C(15)$ - $H(15A)$	109.6
C(16)-C(15)-H(15A)	109.0
C(14)- $C(15)$ - $H(15R)$	109.0
C(16)-C(15)-H(15B)	109.6
H(15A)-C(15)-H(15B)	109.0
C(11)-C(16)-C(15)	112.8(2)
$C(11) \cdot C(16) \cdot E(15)$ $C(11) \cdot C(16) \cdot H(16A)$	109.0
C(15)-C(16)-H(16A)	109.0
C(11)-C(16)-H(16R)	109.0
C(15)-C(16)-H(16B)	109.0
$H(16\Delta) - C(16) - H(16B)$	107.8
C(20) - C(17) - C(10)	107.0 107.6(2)
C(20)-C(17)-C(18)	107.0(2) 123 2(2)
C(10)- $C(17)$ - $C(18)$	123.2(2) 129 1(2)
O(3) - C(18) - C(17)	129.1(2) 120.8(2)
O(3)-C(18)-C(19)	120.0(2) 118 6(2)
C(17) - C(18) - C(19)	120.0(2)
C(17) - C(10) - C(17) $C(18) - C(19) - H(19\Delta)$	120.3(2)
C(18)-C(19)-H(19R)	109.5
H(10A) - C(10) - H(10B)	109.5
$\Gamma(1)R - C(1) - \Pi(1)D$	109.5
H(10A) - C(10) - H(10C)	109.5
H(19R)-C(19)-H(19C) H(10R)-C(10)-H(19C)	109.5
$N(2)_{(20)_{(10)}_{(10)}_{(10)}(10)_{(10)_{(10)}_{(10)}(10)_{(10$	107.3 107.4(2)
N(2) - C(20) - C(17)	107.4(2) 121 $A(2)$
$\Gamma(2) = C(20) = C(21)$ C(17) = C(20) = C(21)	121.4(2) 131.7(2)
C(20) - C(21) C(20) - C(21) = U(21A)	100 5
C(20)-C(21)-A(21A)	107.3

C(20)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(20)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(9)-N(1)-C(8)	118.8(2)
C(9)-N(1)-S(1)	119.05(17)
C(8)-N(1)-S(1)	117.61(18)
C(20)-N(2)-C(9)	109.9(2)
C(20)-N(2)-H(2')	126.3
C(9)-N(2)-H(2')	123.4
O(1)-S(1)-O(2)	118.67(13)
O(1)-S(1)-N(1)	106.22(11)
O(2)-S(1)-N(1)	111.22(12)
O(1)-S(1)-C(1)	109.66(12)
O(2)-S(1)-C(1)	106.81(12)
N(1)-S(1)-C(1)	103.19(12)

Table 4. Anisotropic displacement parameters (Å²x 10³)for d19354. The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}$]

	U ¹¹	U ²²	U33	U ²³	U13	U12	
C(1)	24(1)	34(2)	28(1)	-2(1)	1(1)	-1(1)	
C(2)	29(1)	37(2)	46(2)	6(1)	-3(1)	-7(1)	
C(3)	31(2)	41(2)	39(2)	10(1)	0(1)	0(1)	
C(4)	26(1)	43(2)	30(2)	-8(1)	2(1)	3(1)	
C(5)	35(2)	60(2)	36(2)	-3(2)	-5(1)	4(1)	
C(6)	28(1)	40(2)	40(2)	-8(1)	0(1)	-7(1)	
C(7)	30(1)	31(2)	38(2)	-1(1)	-1(1)	-4(1)	
C(8)	36(2)	50(2)	35(2)	-19(1)	3(1)	-9(1)	
C(9)	23(1)	26(1)	24(1)	0(1)	-2(1)	-1(1)	
C(10)	24(1)	26(1)	21(1)	-1(1)	-1(1)	2(1)	
C(11)	24(1)	30(2)	24(1)	2(1)	-3(1)	0(1)	
C(12)	37(2)	29(2)	32(2)	2(1)	3(1)	2(1)	
C(13)	41(2)	31(2)	47(2)	7(1)	4(1)	3(1)	
C(14)	40(2)	36(2)	47(2)	15(1)	3(1)	1(1)	
C(15)	39(2)	50(2)	30(2)	9(1)	1(1)	-3(1)	
C(16)	41(2)	36(2)	28(2)	2(1)	0(1)	1(1)	
C(17)	23(1)	27(1)	20(1)	-2(1)	-1(1)	2(1)	
C(18)	24(1)	35(2)	21(1)	-4(1)	-1(1)	-1(1)	
C(19)	29(1)	42(2)	39(2)	6(1)	-10(1)	2(1)	
C(20)	24(1)	28(1)	23(1)	-3(1)	-2(1)	0(1)	
C(21)	37(2)	32(2)	34(2)	5(1)	-4(1)	-4(1)	
N(1)	24(1)	33(1)	27(1)	-7(1)	-4(1)	-3(1)	
N(2)	27(1)	25(1)	24(1)	2(1)	-5(1)	1(1)	
O(1)	35(1)	56(1)	33(1)	-16(1)	-1(1)	-2(1)	

O(2)	42(1)	42(1)	42(1)	13(1)	-2(1)	-6(1)
O(3)	36(1)	37(1)	34(1)	-4(1)	-13(1)	-5(1)
S (1)	27(1)	37(1)	26(1)	-1(1)	-1(1)	-2(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for d19354.

	Х	у	Z	U(eq)	
H(2)	3340	7190	4756	45	
H(3)	1357	7400	3284	44	
H(5A)	-838	7130	2160	66	
H(5B)	-1939	6737	3046	66	
H(5C)	-1033	6398	1911	66	
H(6)	-514	5771	4259	43	
H(7)	1466	5550	5731	39	
H(8A)	4697	5642	4207	60	
H(8B)	6318	5465	4765	60	
H(8C)	6094	6016	3701	60	
H(12)	8280	5217	6594	39	
H(13A)	8763	4503	8567	48	
H(13B)	7312	4333	7680	48	
H(14A)	5799	4811	9170	49	
H(14B)	6918	4396	10070	49	
H(15A)	8403	5295	10501	48	
H(15B)	6778	5383	11045	48	
H(16A)	6079	6022	9309	42	
H(16B)	7688	6261	9767	42	
H(19A)	11580	6503	9437	55	
H(19B)	11050	6073	8204	55	
H(19C)	9980	6191	9415	55	
H(21A)	8592	8122	5183	51	
H(21B)	10165	7841	5635	51	
H(21C)	9197	8199	6699	51	
H(2')	6792	7298	4840	36	

¹H-NOE map of compound (7c).

Irradiation	Enhancement(%)
H^4 (δ 2.13)	H^{5} (δ 6.87, 3.09%), H^{3} (δ 6.89, 2.62%).
H ² (δ 2.31)	H ¹ (δ 5.45, 1.15%), H ³ (δ 6.89, 1.69%).
H ⁹ (δ 2.36)	H ⁸ (δ 7.21, 3.28%).
H ⁶ (δ 3.21)	H ⁷ (δ 7.44, 1.67%).
H^1 (δ 5.45)	H ² (δ 2.31, 1.31%), H ⁸ (δ 7.21, 1.54%).
H ⁵ (δ 6.87)	H ⁴ (δ 2.13, 6.04%).
H ³ (δ 6.89)	H ² (δ 2.31, 2.86%), H ⁴ (δ 2.13, 4.43%).
H ⁷ (δ 7.44)	H ⁸ (δ 7.21, 7.87%), H ⁵ (δ 6.87, 0.94%).

(8) Spectral data ¹H, ¹³C, NOE:

Current Data Parameters NAME 17062017		2-07-29-5319 		
EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date20170617 Time21.51 INSTRUM Spect PROBHD 5 mm DUL 13C-1 PULPROG2gg30 TD. 65536				
SOLVENT CDCI3 NS 510 DS 0 SWH 22727.273 Hz FIDRES 0.346791 Hz AQ 1.4418420 sec RG 57 DW 22.000 usec DE 6.00 usec TE 300.0 K D1 2.00000000 sec DELTA 1.88999998 sec TD0 1			$ \begin{array}{c} $	
Emerge CHANNEL (1 Emerge CHANNEL (1) NUC1 13C P1 9.70 usec Pb+				
Emerge CHANNEL 12 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 90.00 usec PL2 -2.40 dB PL12 15.10 dB PL13 18.10 dB SFO2 400.1516010 MHz				. 1
F2 – Processing parameters SI 32768 SF 100.6178038 MHz WDW EM SSB 0				
210 200 190 180 170	160 150 140 1	30 120 110 1	00 90 80 70 60	50 40 30 20 ppm

4

513

2.02

2

2.04 3.18 3.15 1

з

0 ppm

5

9

8

7

6

1.0

198.6913	154.3346 151.5595 150.3974 150.0865	123.1103	113.6544	77.3186 77.0001 76.6821	62.0119	43.6785	32.9350 30.3886 23.5062 22.6386	
Current Data Parameters NAME 26062017 EXPNO 2	\\/			\vee			11 \/	
PROCNO 1 F2 - Acquisition Parameters Date Date 20170626 Time 23.02 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG PULPROG zgpg30 TD 65536 SOLVENT CDCI3						5	SG-3-43-C	
DS 0 SWH 22727.273 Hz FIDRES 0.346791 Hz AQ 1.4418420 sec RG 57 DW 22.000 usec DE 6.00 usec TE 300.0 K D1 2.0000000 sec d11 0.0300000 sec DELTA 1.89999998 sec TD0 1								
Second State CHANNEL f1 NUC1 13C P1 9.70 usec PL1 -0.50 dB SF01 100.6288660 MHz	(3f)							
CHANNEL 12 CHANNEL 12 CPDPRG2 Wall215 NUC2 1H PCPD2 90.00 usec PL2 -2.40 dB PL12 15.10 dB PL13 18.10 dB SFO2 400.1516010 MHz	######################################		J			~~~~	engentense versioner and	ann an San Sala an Anna
F2 – Processing parameters SI 32768 SF 100.61780855 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00								
210 200 190 180	170 160 150 140 13	30 120	110 100 9	0 80 70	60	50 40	30 20	maa

