Supporting Information

Direct and Indirect Hyperpolarisation of Amines using paraHydrogen

Wissam Iali,^a Peter J. Rayner,^a Adel Alshehri,^a A. Jonathan. Holmes,^a Amy J. Ruddlesden^a and Simon B. Duckett^{*a}

^[a] Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5DD

Contents

1 NMR polarisation transfer experiment data

- **1.1 SABRE polarisation transfer method**
- 1.2 SABRE-RELAY polarisation transfer method with NH₃
- **1.3 Polarisation factors**
- **1.4 NMR Spectrometer**
- **1.5 Pulse Sequences**
- 2 Representative SABRE NMR spectra and enhancement factors

3 Representative SABRE NMR spectra and enhancement factors using a co-ligand

4 Representative SABRE-RELAY NMR spectra and enhancement factors

5 Optimisation of the SABRE polarisation of BnNH₂

- 5.1 Effect of varying the pressure of *p*-H₂
- **5.2 Effect of temperature of SABRE catalysis**
- 6 Ligand exchange dynamics of 2-NH₃ and 2-BnNH₂

7 NMR Characterization data for the active SABRE catalysts

- 7.1 2-NH₃
 7.2 2-BnNH₂
 7.3 2-PEA
- 7.4 [Ir(H₂)(IMes)(aniline)₂(MeCN)]Cl

1 NMR polarisation transfer experiment data

1.1 SABRE polarisation transfer method

The polarisation transfer experiments that are reported in this study were conducted in 5 mm NMR tubes that were equipped with a J. Young's tap. Samples for these polarisation transfer experiments were based on 5 mM solutions of [IrCl(COD)(IMes)] and the indicated substrate and loadings in methanol- d_4 or dichloromethane- d_2 (0.6 mL). The samples were degassed prior to the introduction of NH₃. Subsequently, *para*hydrogen (*p*-H₂) at a pressure of ca. 3 bar was added. Samples were then shaken for 10 s in the specified fringe field of an NMR spectrometer (9.4 T) before being rapidly transported into the magnet for subsequent interrogation by NMR spectroscopy. This whole process takes ca. 15 seconds to achieve.

1.2 SABRE-RELAY polarisation transfer method with NH₃

The polarisation transfer experiments that are reported were conducted in similar 5 mm NMR tubes equipped with J. Young's valves. Samples were based on 5 mM solutions of [IrCl(COD)(IMes)], NH₃ (5-10 eq.), and the indicated additional substrate at the specified loading in dichloromethane- d_2 (0.6 mL). The samples were degassed prior to the introduction of p-H₂ at a pressure of ca. 3 bar. They were shaken for 10 s in the specified fringe field of an NMR spectrometer (9.4 T) before being rapidly transported into the magnet for subsequent interrogation by NMR spectroscopy.

1.3 Polarisation factors

For calculation of the ¹H and ¹³C signal enhancements the following formula was used:

$$E = \frac{SI(pol)}{SI(unpol)}$$

Where, E = enhancement level, SI(pol) = signal of polarised sample, SI(unpol) = signal of unpolarised (reference) sample. Experimentally, both spectra were recorded on the same sample using identical acquisition parameters, including the receiver gain. The raw integrals of the relevant resonances in the polarised and unpolarised spectra were then used to determine the enhancement levels. The quoted values reflect the signal strength gain (fold) per proton/phosphorus nucleus in the specified group.

¹³C enhancements were calculated by taking the raw integral of the ${}^{13}CD_2Cl_2$ peak observed from the solvent in the sample after equilibration inside the magnet for 1 minute. CD_2Cl_2 was present in each sample at a concentration of 15.67 M and the resulting SABRE-Relay

hyperpolarised signal was then scaled according to the concentration of substrate in solution (given in section 2) to give the final enhancement value for ${}^{13}C$. These values were validated by further measurements on samples containing CHCl₃ as an internal standard.

1.4 NMR Spectrometer

Spectra were typically acquired on a 400 MHz Bruker, Avance III console using a 5 mm BBI probe which was tuned to ¹H, ¹³C, ³¹P or ¹⁵N as specified. Resonances are referenced relative to the residual proton signal of the indicated deuterated solvent.

1.5 Pulse Sequences

• Refocused INEPT

INEPT based measurements of ¹³C and ¹⁵N NMR spectra were recorded using a standard refocused INEPT experiment with decoupling during acquisition as outlined in Fig. S1. The evolution delay (d4) is optimised to $1/2 \times J_{XH}$ and obtains in-phase X-magnetisation through the addition of a refocusing delay (d3) which is set to $1/(6 \times J_{XH})$. Values of J_{XH} are given in section 2.

Fig. S1: Ineptrd pulse sequence utilised for SABRE-RELAY derived heteronuclei detection.

2 Representative SABRE NMR spectra and enhancement factors

• Ammonia

Fig. S2 reflects a series of single scan ¹H NMR spectra employing ammonia in CD_2Cl_2 : a) ¹H NMR spectrum thermally polarised x16 vertical scale, b) ¹H SABRE NMR spectrum hyperpolarisation; using the conditions: [IrCl(COD)(IMes)] (5 mM), CD_2Cl_2 (0.6 mL), NH₃; ¹H enhancement (fold/per proton): 94-(NH₃), x1 vertical scale.

Fig. S2a Thermally polarised ¹H NMR reference spectrum for ammonia in CD₂Cl₂

Fig. S2b ¹H SABRE enhanced NMR spectrum of ammonia in CD_2Cl_2 (top) and expansion (bottom).

• Benzylamine

Fig. S3 reflects a series of single scan ¹H NMR spectra of benzylamine: a) ¹H NMR spectrum thermally polarised x8 vertical scale, b) ¹H SABRE NMR spectrum, c-f) ¹H-¹³C refocussed INEPT ¹³C SABRE NMR spectra and d) ¹H NMR spectrum recorded after adding 1 μ l of D₂O (max enhancement (per proton) of H₂O 215 fold); conditions: [IrCl(COD)(IMes)] (5 mM), benzylamine (10 eq.), CD₂Cl₂ (0.6 mL); Substrate concentration: 50 mM. ¹H NMR signal enhancement (fold/per proton): 72-(NH₂), 56-(CH₂) and 194-(Ph).

Fig. S3a Thermally polarised ¹H NMR reference spectrum of benzylamine

Fig. S3b ¹H SABRE enhanced NMR spectrum of benzylamine (top) and expansion (bottom)

Fig. S3c ¹H-¹³C refocussed INEPT ¹³C SABRE enhanced NMR spectrum of benzylamine $(J_{XH} = 10 \text{ Hz}, \text{B} = 60 \text{ G})$

Fig. S3d ¹H-¹³C refocussed INEPT ¹³C SABRE enhanced NMR spectrum of benzylamine $(J_{XH} = 10 \text{ Hz}, \text{B} = \mu\text{-magnetic shield})$

Fig. S3e ¹H-¹³C refocussed INEPT ¹³C SABRE enhanced NMR spectrum of benzylamine $(J_{XH} = 135 \text{ Hz}, \text{B} = 60 \text{ G})$

Fig. S3f ¹H-¹³C refocussed INEPT ¹³C SABRE enhanced NMR spectrum of benzylamine $(J_{XH} = 135 \text{ Hz}, \text{B} = \mu\text{-magnetic shield})$

Fig. S3g ¹H SABRE enhanced NMR spectrum for benzylamine after adding 1 μl of D_2O

• Benzylamine-¹⁵N

Fig. S4 reflects a series of single scan NMR spectra of benzylamine- 15 N: a) ¹H NMR spectrum thermally polarised x16, b) ¹H SABRE NMR spectrum and c) ¹⁵N SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), benzylamine- 15 N (10 eq.), CD₂Cl₂ (0.6 mL); Substrate concentration: 50 mM. ¹H enhancement (fold/per proton): 33-(NH₂), 34-(CH₂) and 52-(Ph)

Fig. S4a Thermally polarised ¹H NMR reference spectrum of benzylamine-¹⁵N

Fig. S4b ¹H SABRE enhanced NMR spectrum of benzylamine-¹⁵N (top) and expansion (bottom)

Fig. S4c ¹⁵N SABRE enhanced NMR spectrum of benzylamine-¹⁵N (B = 0 G)

• Phenylethylamine

Fig. S5 reflects a series of single scan NMR spectra of phenylethylamine: a) ¹H NMR spectrum thermally polarised x8, b) ¹H SABRE NMR spectrum and c) INEPT ¹³C SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), phenylethylamine (10 eq.), CD_2Cl_2 (0.6 mL); Substrate concentration: 50 mM. ¹H enhancement (fold/per proton): 108-(NH₂), 45- (CH₂), 50-(NCH₂) and 92-(Ph)

Fig. S5a Thermally polarised ¹H NMR reference spectrum for phenylethylamine

Fig. S5c INEPT ¹³C SABRE enhanced NMR spectrum of phenylethylamine (J_{XH} = 122 Hz, B = 60 G)

• Phenoxyethylamine

Fig. S6 reflects a series of single scan NMR spectra of phenoxyethylamine: a) ¹H NMR spectrum thermally polarised x16, b) ¹H SABRE NMR spectrum and c) INEPT ¹³C SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), phenoxyethylamine (10 eq.), CD_2Cl_2 (0.6 mL); Substrate concentration: 50 mM. ¹H enhancement (fold/per proton): 99-(NH₂), 47- (NCH₂), 147-(CH₂O) and 8-(Ph)

Fig. S6a Thermally polarised ¹H NMR reference spectrum of phenoxyethylamine

Fig. S6c INEPT ¹³C SABRE enhanced NMR spectrum of phenoxyethylamine (J_{XH} = 165 Hz, B = 60 G)

• Isobutylamine

Fig. S7 reflects a series of single scan NMR spectra of isobutylamine: a) ¹H NMR spectrum thermally polarised x8 and b) ¹H SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), isobutylamine (10 eq.), CD_2Cl_2 (0.6 mL); Substrate

concentration: 50 mM. ¹H enhancement (fold/per proton): 187- (NH₂), 83-(-CH₂), 65-(CH₋) and 124-(-CH₃)

Fig. S7a Thermally polarised ¹H NMR reference spectrum for isobutylamine

Fig. S7b¹H SABRE enhanced NMR spectrum of isobutylamine (top) and expansion (bottom)

• Allylamine

Fig. S8 reflects a series of single scan NMR spectra of allylamine: a) ¹H NMR spectrum thermally polarised x4 and b) ¹H SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), allylamine (10 eq.), CD_2Cl_2 (0.6 mL); Substrate concentration: 50 mM. ¹H enhancement (fold/per proton): 76-(NH₂), 131-(-CH₂N), 178-(CH₋) and 158-(-CH₂)

Fig. S8a Thermally polarised ¹H NMR reference spectrum of allylamine

Fig. S8b ¹H SABRE enhanced NMR spectrum of allylamine (top) and expansion (bottom)

• Tryptamine

Fig. S9 reflects a series of single scan NMR spectra of tryptamine: a) ¹H NMR spectrum thermally polarised x8 and b) ¹H SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), tryptamine (10 eq.), CD_2Cl_2 (0.6 mL); Substrate concentration: 50 mM. ¹H enhancement (fold/per proton): 21-(-NH₂), 21-(CH₂-N), 8-(-CH₂-), 14-(-CH-), 7-(-NH-) and 28-(Ph)

Fig. S9a Thermally polarised ¹H NMR reference spectrum of tryptamine

Fig. S9b¹H SABRE enhanced NMR spectrum of tryptamine (top) and expansion (bottom)

3 Representative SABRE NMR spectra and enhancement factors using a co-ligand

• Aniline

Fig. S10 reflects a series of single scan NMR spectra of aniline: a) ¹H NMR spectrum thermally polarised x8, b) ¹H SABRE NMR spectrum c) ¹³C SABRE NMR spectrum and d) INEPT ¹³C SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), aniline (10 eq.), CD₂Cl₂ (0.6 mL); Substrate concentration: 50 mM and MeCN as co-ligand (8 fold excess). ¹H enhancement (fold/per proton): 306-(NH₂) and 193-(Ph)

Fig. S10a Thermally polarised ¹H NMR reference spectrum of aniline

Fig. S10b ¹H SABRE enhanced NMR spectrum of aniline (top) and expansion (bottom)

Fig. S10c¹³C SABRE enhanced NMR spectrum of spectrum for aniline

Fig. S10d INEPT ¹³C SABRE enhanced NMR spectrum of phenoxyethylamine (J_{XH} = 120 Hz, B = 60 G)

4 Representative SABRE-RELAY NMR spectra and enhancement factors

• Isopropylamine

Fig. S11 reflects a series of single scan NMR spectra of isopropylamine: a) ¹H NMR spectrum thermally polarised x16, b) ¹H SABRE NMR spectrum and c) ¹³C SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), isopropylamine (10 eq.), CD₂Cl₂ (0.6 mL); Substrate concentration: 50 mM. ¹H enhancement (fold/per proton): 220- (NH₂), 27- (CH) and 150-(CH₃)

Fig. S11a Thermally polarised ¹H NMR reference spectrum for isopropylamine

Fig. S11b¹H SABRE enhanced NMR spectrum of isopropylamine (top) and expansion (bottom)

Fig. S11c INEPT ¹³C SABRE enhanced NMR spectrum of isopropylamine (J_{XH} = 122 Hz, B = 60 G)

• Dibenzylamine

Fig. S12 reflects a series of single scan NMR spectra of dibenzylamineamine: a) ¹H NMR spectrum thermally polarised x64, b) ¹H SABRE NMR spectrum c) ¹³C SABRE NMR spectrum and d) INEPT ¹³C SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), dibenzylamine (10 eq.), CD₂Cl₂ (0.6 mL); Substrate concentration: 50 mM. ¹H enhancement (fold/per proton): 274-(NH-), 200-(CH₂) and 275-(Ph).

Fig. S12a Thermally polarised ¹H NMR reference spectrum of dibenzylamineamine

Fig. S12b ¹H SABRE enhanced NMR spectrum of dibenzylamineamine (top) and expansion (bottom)

Fig. S12c ¹³C SABRE enhanced NMR spectrum of dibenzylamineamine

Fig. S12d INEPT ¹³C SABRE enhanced NMR spectrum of dibenzylamineamine (J_{XH} = 122 Hz, B = 60 G)

• Aniline

Fig. S13 reflects a series of single scan NMR spectra of aniline: a) ¹H NMR spectrum thermally polarised x8 and b) ¹H SABRE NMR spectrum using conditions: [IrCl(COD)(IMes)] (5 mM), aniline (10 eq.), CD_2Cl_2 (0.6 mL); Substrate concentration: 50 mM. ¹H enhancement (fold/per proton): 150-(NH₂) and 9-(Ph)

Fig. S13a Thermally polarised ¹H NMR reference spectrum of aniline

5 Optimisation of the SABRE polarisation level of BnNH₂

5.1 Effect of varying the pressure of *p*-H₂

Increasing the pressure of p-H₂ was shown to improve the observed signal gains for the protons of BnNH₂ as shown in Figure S14.

Fig. S14: Effect of p-H₂ pressure on the SABRE polarisation of BnNH₂ (10 eq.) using **1** (5 mM) in dichloromethane- d_2 solution

5.2 Effect of Temperature of SABRE catalysis

Increasing temperature at which the SABRE transfer occurs increased the observed signal gains of BnNH₂ as shown in Figure S15.

Fig. S15: Effect of temperature on the SABRE polarisation of BnNH₂ with 1 in dichloromethane- d_2 under 3-bar p-H₂ and transfer at 60 G.

6 Ligand exchange dynamics of 2-NH₃ and 2-BnNH₂

The kinetic behaviour of $2-NH_3$ and $2-BnNH_2$ under 3 bar H_2 was examined using well established exchange spectroscopy methods as follows:

A series of exchange spectroscopy (EXSY) measurements were performed to probe the dynamic behaviour of these systems. This process involved the selective excitation of a single resonance and the subsequent measurement of a ¹H NMR spectrum at time, t, after the initial pulse. The resulting measurements consisted of a series of data arrays such that t is varied

typically between 0.1 to 1.0 s, to encode the reaction profile. Integrals for the interchanging peaks in the associated ¹H EXSY spectra were obtained and converted into a percentage of the total detected signal. These data were then analysed as a function of the mixing time according to a differential kinetic model.

Ligand	Temperature / K	Rate of Dissociation / s ⁻¹
Equatorial NH ₃	298	0.32 ± 0.01
Hydride	298	1.65 ± 0.02
Equatorial NH ₃	308	10.42 ± 0.06
Hydride	308	1.41 ± 0.01

Table S1: Observed rate of ligand loss from 2-NH₃ at varying temperatures.

Ligand	Temperature / K	Rate of Dissociation / s ⁻¹
Equatorial NH ₃	298	3.33 ± 0.03
Hydride	298	2.84 ± 0.05
Equatorial NH ₃	308	9.85 ± 0.04

Table S2: Observed rate of ligand loss from 2-BnNH₂ at the indicated temperature.

7 NMR Characterisation data for the active SABRE catalysts featuring in this paper

7.1 NMR characterisation data for 2-NH₃

Resonance number	¹ H (ppm)	¹³ C (ppm)	¹⁵ N (ppm)
1		153.8	
2			190.83
3	6.80	121.5	
4		138.11	
5		135.25	
6	7.00	129.00	
7		138.64	
8	2.10	18.30	
9	2.35	20.78	
10	-23.61		
	2.21 (br, s, $J_{\rm NH} = 67$		
11	Hz)		-34.9
12	2.84 (br, s, $J_{\rm NH} = 69$		-46.5
12	Hz)		10.0

7.2 NMR characterisation data for 2-BnNH₂

Resonance	¹ H (ppm)	¹³ C (ppm)	¹⁵ N (ppm)
number			
1		153.8	
2			192.83
3	6.80	121.73	
4		138.11	
5		135.25	
6	6.90	129.29	
7		138.64	
8	2.17	18.30	
9	2.21	20.78	
10	-23.95		
	5.00 (br, dt, J_{HH} = 5 and 11 Hz, 2H, J_{15NH} =		
11	68 Hz)		-6.4
	2.30 (br, t, J_{HH} = 11 Hz, 2H, J_{15NH} = 68 Hz)		
12	$3.65 (dt, J_{HH} = 5 and 15 Hz, 2 H), 3.30 (ddd,$	52.14	
12	$J_{HH} = 3$, 12 and 15 Hz, 2H)	55.14	
13		141.8	
14	7.35 (d, $J_{HH} = 5 Hz$)	128.33	
15	7.25 (t, $J_{HH} = 5 Hz$)	126.88	
16	~7.28 - overlap	-	
17	$4.25 (t, J_{HH} = 7 Hz, 2H, J_{15NH} = 69 Hz)$		-13.4
18	$3.85 (t, J_{HH} = 7 Hz, 2H)$	57.26	
19		-	
20	7.30	128.35	
21	~7.28 - overlap	-	
22	~7.28 - overlap	-	

7.3 NMR characterisation data for 2-PEA

Resonance number	¹ H (ppm)	¹³ C (ppm)	¹⁵ N (ppm)
1		153.8	
2			192.21
3	6.75	121.73	
4		138.14	
5		135.06	
6	7.0	129.4	
7		138.64	
8	2.17	18.30	
9	2.21	21.10	
10	-23.95		
11	4.42.00 (t, $J_{HH} = 11$ Hz, 2H, $J_{15NH} = 68$ Hz) 2.11 (br, t, $J_{HH} = 11$ Hz, 2H, $J_{15NH} = 68$ Hz)		-7.2
12	2.41 (dt, J _{HH} = 9 and 11 Hz, 2 H), 3.30 (2H, overlap)	50.7	
13			
14		141.8	
15	$7.32 (dd, J_{HH} = 7 Hz)$	128.33	
16	7.25 (t, $J_{\rm HH}$ = 7 Hz)	126.88	
17	~7.28 - overlap	-	
18	$3.685 (t, J_{HH} = 5.9 \text{ Hz}, 2\text{H}, J_{15\text{NH}} = 69 \text{ Hz})$		-16.2
19	2.78 (t, J _{HH} = 6.15 Hz, 2H)	53.9	
20		-	
21	7.32	128.33	
22	~7.2 - overlap	-	
23	~7.12 - overlap	-	

7.4 NMR characterisation data for [Ir(H)₂(IMes)(aniline)₂(MeCN)]Cl

Resonance number	¹ H (ppm)	¹³ C (ppm)	¹⁵ N (ppm)
1		153.8	
2			193.75
3	6.90	121.5	
4		138.11	
5		135.25	
6	7.00	129.00	
7		138.64	
8	2.10	18.30	
9	2.35	20.78	
10	-24.72	-	-
	$4.34 (d, J_{\rm HH} = 8 \text{ Hz}),$	-	-25
11	$8.00 (d, J_{\rm HH} = 8 {\rm Hz})$		
12			
13	$6.50 (d, J_{\rm HH} = 7 {\rm Hz})$		
14	8.27 (t, J_{HH} = 7 Hz)		
15	$6.78 (d, J_{\rm HH} = 7 {\rm Hz})$		
16			176
	0.95 (s)		
17			