Supporting Information

for

9,10-Azaboraphenanthrene-Based Small Molecules and Conjugated Polymers: Synthesis and Their Application in Chemodosimeters for the Ratiometric Detection of Fluoride Ions

Weidong Zhang,^a Guoping Li,^a Letian Xu,^a Yue Zhuo,^a Wenming Wan,^b Ni Yan^c and Gang He^{*,a}

^aFrontier Institute of Science and Technology jointly with School of Science, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.. E-mail: ganghe@mail.xjtu.edu.cn ^bCentre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, China ^cPolymer Materials & Engineering Department and Institute of Polymer Materials, School of Materials Science & Engineering, Chang'an University, Xi'an, Shaanxi 710064, China

Contents

1. Materials and instrumentation	
2. Experimental procedures and data	S3
3. Proposed mechanism for ring expansion of borole with azide	S9
4. DFT computations	S9
5. Single-crystal X-ray structure determination	S10
6. Comparison of bond distances in different BN-containing heterocycles	S12
7. GPC data for P1 and P2	S14
8. The UV-vis and excitation and emission spectra	
9. Electrochemical properties	S26
10. Comparison of HOMO/LUMO plots	S27
11. ¹ H NMR and ¹³ C NMR spectra	
12. Coordinates of molecular structures	S50
Reference	S86

1. Materials and instrumentation

General. All reactions were performed using standard Schlenk and glovebox (Vigor) techniques under argon atmosphere. Et₂O, THF, hexanes and toluene were distilled from sodium/benzophenone prior to use. Trimethyltin chloride (99%), 4-methylphenylboronic acid (7) (98%), tetrakis(triphenylphosphine) palladium (Pd(Ph₃P)₄) (99%), potassium carbonate (99%), and were purchased from Energy Chemical Inc. Dimethyltin dichloride (Me₂SnCl₂) (99%) purchased from TCI. Phenylborondichloride (PhBCl₂) were obtained from Sigma-Aldrich. (3-hexylthiophene-2,5-diyl)bis(tributylstannane) (10) were prepared according to literature procedures,¹ 2,2'-(9,9-didecyl-9H-fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (9) were prepared according to literature procedures.³ Unless otherwise indicated, all other reagents and solvents were used as commercially available without further purification. Column chromatographic purification of products was accomplished using 200-300 mesh silica gel.

NMR spectra were measured on a Bruker Avance-400 spectrometer in the solvents indicated; chemical shifts are reported in units (ppm) by assigning TMS resonance in the ¹H spectrum as 7.26 ppm, CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). UV-vis measurements were performed using DH-2000-BAL Scan spectrophotometer. Fluorescence measurements were conducted on an FLS920 system. Single crystal X-ray diffraction analysis was carried out on a Bruker Apex Duo instrument. The cyclic voltammetry (CV) were measured using a CHI660E B157216 set up. GPC measurements were made using a GPC 270 Max instrument equipped with a Viscotek VE 2001 plus autosampler, three μ-Styragel columns, and a Viscotek VE 3580 refractive index (RI) detector. The columns were calibrated using polystyrene standards. The average molecular weight of **P1** and **P2** were performed at 35 °C using THF as the eluent at a flow rate of 1.0 mL min⁻¹. High-resolution mass spectra

(HRMS) were collected on a Bruker maXisUHR-TOFmass spectrometer in an ESI positive mode for **2**, **5**, and **8** and APCI mode for **6**. Elemental analysis was conducted on a machine of Euro Vector EA3000.

2. Experimental procedures and data

2.1 Synthesis of 4,4-dimethyl-4H-stannolo[3,2-b:4,5-b']dithiophene (2):

To a solution of 4,4'-dibromo-2,2'-diiodo-1,1'-biphenyl (1.685 g, 3.0 mmol) in Et₂O (30 mL) at -78 °C was added dropwise a solution of *n*-BuLi (2.5 M in hexanes, 2.5 mL, 6.3 mmol) via syringe. After the reaction mixture was warmed to room temperature, the solution was stirred for another 3 h. A solution of Me₂SnCl₂ (0.71 g, 3.2 mmol) in 15 mL Et₂O was then added dropwise at -78 °C via syringe, and the mixture was warmed to room temperature and stirred overnight. The solvent was removed under reduced pressure and the product was extracted with 60 mL hexanes three times, and the solution was filtered through Celite. The solvent was removed from the filtrate to give a light brown solid. This product was recrystallized from hexanes at -35 °C to give **2** as yellow crystals. Yield: 0.963 g (70%). ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.76 (m, 4H, Ar*H*), 7.50 (dd, *J* = 8.4 Hz, 2Hz, Ar*H*), 0.58 (s, 6H, Sn(C*H*₃)₂); ¹³C NMR (100 MHz, CDCl₃): δ 146.0, 143.6, 138.6, 132.1, 124.0, 122.8 (Ar-C), -8.2 (Sn(CH₃)₂), HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₄H₁₃Br₂Sn, 458.8401, found, 458.8386. Mp (°C): 136.8-138.7.

2.2 Synthesis of 5-mesityl-6-phenyl-5,6-dihydrodibenzo[c,e][1,2]azaborinine (5):

To a solution of 1 (0.903 g, 3.0 mmol) in a 30 mL toluene at -78 °C was added dropwise a solution of PhBCl₂ (0.476 g, 3.0 mmol) in toluene (5 mL) via syringe. Then the mixture was slowly warmed to room temperature and stirred overnight. After MesN₃ (3.6 mmol) was added dropwise at room temperature stirred for 12 h. The solvent was removed under reduced pressure, the product was purified via column chromatography (silica gel, Petroleum ether/ ethylcetate = 50:1) afforded 0.560 g (50 %) of the white title compound. ¹H NMR (400 MHz, CDCl₃): δ 8.57 (d, J = 7.6 Hz, 2H, ArH), 7.89 (d, J = 7.6 Hz, 1H, ArH), 7.76-7.81 (m, 1H, ArH), 7.46 (t, J = 14.4 Hz, 7.2 Hz, 1H, ArH), 7.27-7.32 (m, 4H, ArH), 7.19-7.23 (m, 3H, ArH), 6.86 (s, 2H, ArH), 6.79-6.81 (m, 1H, ArH), 2.27 (s, 3H, -CH₃), 1.88 (s, 6H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 139.2, 139.1, 137.5, 136.4, 134.9, 132.5, 131.1, 129.1, 128.3, 127.2, 126.7, 126.0, 124.5, 124.1, 121.9, 121.8, 117.1 (Ar-C), 21.0, 18.0 (Mes-CH₃); ¹¹B NMR (193 MHz, CDCl₃) δ 39.1 (bs). HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₇H₂₅BN, 374.2075, found, 374.2063. Anal. Calcd. For C₂₇H₂₄BN: C, 86.87; H, 6.48; N, 3.75. Found : C, 85.84; H, 6.37; N, 3.73. UV/vis (in THF): $\lambda_{max}(\epsilon) = 317$ nm (1.30 × 10⁴ M⁻¹ cm⁻¹). Fluorescence emission (in THF) ($\lambda_{ex} =$ 300 nm): $\lambda_{\text{emis}} = 355$ nm. (Quantum yields, $\Phi = 0.52$). Mp (°C): 204.6-205.4.

2.3 Synthesis of 3,8-dibromo-5-mesityl-6-phenyl-5,6-dihydrodibenzo[c,e][1,2]

To a solution of 2 (1.376 g, 3.0 mmol) in a 30 mL toluene at -78 °C was added dropwise a solution of PhBCl₂ (0.476 g, 3.0 mmol) in toluene (5 mL) via syringe. Then the mixture was slowly warmed to room temperature and stirred overnight. After MesN₃ (3.6 mmol) was added dropwise at 40 °C, and stirred 12 h. The solvent was removed under reduced pressure, the product was purified via column chromatography (silica gel, Petroleum ether/ ethyl acetate = 50 :1) afforded 1.131 g (71 %) of the white title compound. ¹H NMR (400 MHz, CDCl₃): δ 8.35 (dd, J = 8.8 Hz, 4.4 Hz, 2H, ArH), 7.97 (d, J = 2.4 Hz, 1H, ArH), 7.86 (dd, J = 8.8 Hz, 2.4 Hz, 1H, ArH), 7.43 (dd, J = 8.8 Hz, 1)2.0 Hz, 1H, ArH), 7.20-7.25 (m, 5H, ArH), 6.93 (d, J = 2.0 Hz, 1H, ArH), 6.86 (s, 2H, ArH), 2.28 (s, 3H, -CH₃), 1.86 (s, 6H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 139.6, 138.2, 137.1, 137.0, 134.5, 134.4, 132.3, 129.4, 127.7, 127.0, 125.5, 125.3, 123.8, 122.8, 122.8, 121.1, 119.9 (Ar-C), 21.0, 18.0 (Mes-CH₃); ¹¹B NMR (193 MHz, CDCl₃) δ 39.2 (bs). HRMS (APCI) *m*/*z*: [M]⁺ calcd for C₂₇H₂₂Br₂BN, 531.0192, found, 531.0187. Anal. Calcd. For C₂₇H₂₂BBr₂BN: C, 61.06; H, 4.18; N, 2.64. Found: C, 60.92; H, 4.18; N, 2.57. UV/vis (in THF): $\lambda_{max}(\epsilon) = 324$ nm (1.07 × 10⁴ M⁻¹ cm⁻¹). Mp (°C): 218.3-220.6.

2.4 Synthesis of 5-mesityl-6-phenyl-3,8-di-p-tolyl-5,6-dihydrodibenzo[c,e][1,2]

azabor-inine (8):

i) Pd(PPh₃)₄, 5 mol%, Aliquant336, 10 mol%, K₂CO₃ (2M), Toluene

Monomer 6 (0.212g, 0.4 mmol), monomer 7 (0.17g, 0.8 mmol), Pd(PPh₃)₄ (24 mg, 5 mmol%), Aliquant336 (16 mg, 10 mmol%) and Ar₂-sparged aqueous potassium carbonate (2.0 M, 3.6 mL, 2.0 mmol) were dissolved in 8 mL of toluene in a Schlenk flask. The reaction mixture was stirred for 48 h at 110 °C. The reaction mixture was then cooled to room temperature, the solvent was removed in vacuo, the product was purified via column chromatography (silica gel, Petroleum ether/ ethyl acetate = 50:1) afforded the white title compound, recrystallized from hexanes and CH_2Cl_2 at -30 °C to give 8 as white crystals (0.115g, 52%). ¹H NMR (400 MHz, CDCl₃): δ 8.63 (dd, J = 8.4 Hz, 5.2 Hz, 2H, ArH), 8.12 (d, J = 2.0 Hz, 1H, ArH), 8.02 (dd, J = 8.4 Hz, 2.0 Hz, 1H, ArH), 7.55 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H, Ar*H*), 7.51 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.36 (d, *J* = 8.0 Hz, 2H, ArH), 7.29-7.31 (m, 2H, ArH), 7.20-7.25 (m, 7H, ArH), 7.01 (d, J = 2.0 Hz, 1H, ArH), 6.85 (s, 2H, ArH), 2.39 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 2.23 (s, 3H, CH₃), 1.93 (s, 6H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 140.4, 139.0, 138.1, 137.2, 137.0, 136.4, 135.5, 134.8, 132.5, 130.0, 129.5, 129.4, 129.2, 127.2, 127.1, 126.8, 124.5, 123.2, 122.5, 120.9, 115.2 (Ar-C), 21.1, 21.0, 18.1 (CH₃-C); ¹¹B NMR (193 MHz, CDCl₃) δ 40.5 (bs).

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₄₁H₃₇BN, 554.3014, found, 554.3014. UV/vis (in THF): $\lambda_{max} (\epsilon) = 320 \text{ nm} (3.36 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1})$. Fluorescence emission (in THF) ($\lambda_{ex} = 300 \text{ nm}$): $\lambda_{emis} = 391 \text{ nm}$ (Quantum yields, $\Phi = 0.77$). Mp (°C): 242.3-243.6.

2.5 Synthesis of P1:

i) Pd(PPh₃)₄, 5 mol%, Aliquant336, 10 mol%, K₂CO₃ (2M),Toluene

Monomer **6** (0.212g, 0.4 mmol), monomer **9** (0.28 g, 0.4 mmol), Pd(PPh₃)₄ (24 mg, 5 mmol%), Aliquant336 (16 mg, 10 mmol%) and Ar₂-sparged aqueous potassium carbonate (2.0 M, 3.6 mL, 2.0 mmol) were dissolved in 8 mL of toluene in a Schlenk flask. The reaction mixture was stirred for 48 h at 110 °C. The reaction mixture was then cooled to room temperature, the solvent was removed in vacuo, and the residue was dissolved in 1 mL CHCl₃, then reprecipitated in MeOH (200 mL), the precipitate was purified by Soxhlet extraction using acetone to remove the residual monomer and then extracted with chloroform. ¹H NMR (400 MHz, CDCl₃): δ 8.69, 8.53, 8.23, 8.13, 7.78, 7.70, 7.69, 7.59, 7.48, 7.39, 7.14, 6.92 (Ar*H*), 2.43, 2.31 (Mes-*H*), 2.08, 2.00, 1.98, 1.96, 1.26, 1.25, 1.21, 1.16, 1.05, 0.86, 0.84, 0.83, 0.81, 0.69 (octyl)). UV/vis (in THF): λ_{max} (ϵ) = 379 nm (3.57 × 10⁴ M⁻¹ cm⁻¹). Fluorescence emission (in THF) (λ_{ex} = 350 nm): λ_{emis} = 414 nm (Quantum yields, Φ = 0.88). *M*n = 6.17 kg/mol, *M*w = 9.40 kg/mol, PDI = 1.53 by GPC.

2.6 Synthesis of P2:

i) P-(O-tolyl), Pd₂(dba)₃, Toluene

Monomer **6** (0.425g, 0.8 mmol), monomer **10** (0.0.597 g, 0.8 mmol), Pd₂(dba)₃ (11.0 mg, 0.012mmol) and P(*o*-Tolyl)₃ (18.4 mg, 0.061 mmol) were dissolved in 8 mL of toluene in a Schlenk flask. The reaction mixture was stirred for 48 h at 110 °C. The reaction mixture was then cooled to room temperature, the solvent was removed in vacuo, and the residue was dissolved in 1 mL CHCl₃, then reprecipitated in MeOH (200 mL), the precipitate was purified by Soxhlet extraction using acetone to remove the residual monomer and then extracted with chloroform. ¹H NMR (400 MHz, CDCl₃): δ 8.52, 8.10, 7.98, 7.95, 7.54, 7.28, 7.23, 7.22, 7.19, 7.00, 6.98, (Ar*H*), 6.88 (s, thienyl-*H*), 6.83 (s, thienyl-*H*), 2.59, 2.57, 2.28 (hexyl), 2.25, 1.92, (Mes-*H*), 1.58, 1.50, 1.43, 1.21-1.37, 0.83-0.94 (hexyl). UV/vis (in THF): λ_{max} (ϵ) = 398 nm (3.07 × 10⁴ M⁻¹ cm⁻¹). Fluorescence emission (in THF) (λ_{ex} = 365 nm): λ_{emis} = 458 nm (Quantum yields, φ = 0.57). *M*n = 6.08 kg/mol, *M*w = 8.04 kg/mol, PDI = 1.37 by GPC.

3. Proposed mechanism for ring expansion of borole with azide

Figure S1. Proposed mechanism for ring expansion of borole with azide.

4. DFT computations

All calculations were carried out with the GAUSSIAN 09 program package.⁴ The geometries for the ground state of compounds 5, 8, P1, P2, 5- F, 5- F', 8- F, 8- F', P1- F, P1- F', P2- F, P2- F' were optimized at the B3LYP level with the 6-31G* basis set.⁵⁻⁷

The simulated UV–Vis spectra for optimized molecules were performed at the time dependent density functional theory (TD-DFT)^{8,9} at the ground-state equilibrium geometries were determined using the B3LYP,⁵⁻⁷ in association with the 6-31G* basis set.

It should be pointed out that the structures of all stationary points were fully optimized, and frequency calculations were performed at the same level. The frequency calculations confirmed the nature of all revealed equilibrium geometries: there were no imaginary frequencies.

5. Single-crystal X-ray structure determination

X-ray Crystallography. Crystals of appropriate quality for X-ray diffraction studies were removed from a vial (in a glove box) and immediately covered with a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was then selected, attached to a glass fiber, and quickly placed in a glass vial. All data were collected using a Bruker APEX II CCD detector/D8 diffractometer using Mo/Cu K α radiation. The data were corrected for absorption through Gaussian integration from indexing of the crystal faces. Structures were solved using the direct methods programs SHELXS-97, and refinements were completed using the program SHELXL-97.¹⁰

Figure S2. Molecular Structure of **6** (CCDC 1818909) with thermal ellipsoids presented at a 50% probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): N(1)—C(12), 1.412(4); N(1)—B(1), 1.414(5); N(1)—C(19), 1.452(5); B(1)—C(1), 1.551(6); B(1)—C(14), 1.576(5). Bond angles (deg): C(12)—N(1)—B(1), 123.2(3); C(12)—N(1)—C(19), 116.1(3); B(1)—N(1)—C(19), 120.7(3); N(1)—B(1)—C(1), 116.0(3); N(1)—B(1)—C(14), 121.8(3); C(1)—B(1)—C(14), 122.2(3).

Empirical formula	$C_{27}H_{22}BBr_2N$
Formula weight	531.08
Temperature	153(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P2(1)
Unit cell dimensions	$a = 11.2690(4) \text{ Å} \qquad \alpha = 90 \text{ deg.}$
	b = 7.3358(3) Å β = 101.4180(10) deg.
	$c = 14.2605(5) \text{ Å} \qquad \gamma = 90 \text{ deg.}$
Volume	1155.54(7) Å^3
Z, Calculated density	2, 1.526 Mg/m^3
Absorption coefficient	3.522 mm^-1
F(000)	532
Crystal size	0.723 x 0.246 x 0.213 mm
Theta range for data collection	2.111 to 26.415 deg.
Limiting indices	-14<=h<=14, -9<=k<=9, -17<=l<=17
Reflections collected / unique	28928 / 4728 [R(int) = 0.0361]
Completeness to theta $= 25.242$	99.7 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4728 / 1 / 283
Goodness-of-fit on F^2	1.051
Final R indices [I>2sigma(I)]	R1 = 0.0271, wR2 = 0.0646
R indices (all data)	R1 = 0.0304, wR2 = 0.0664
Extinction coefficient	n/a
Largest diff. peak and hole	0.608 d -0.865 e. Å^-3

 Table S1. Crystallographic experimental details for compound 6 (CCDC 1818909).

6. Comparison of bond distances in different BN-containing heterocycles

	Structure	bond lengths		Structure	bond lengths
1	Br-C-Br B-N-C	1.414(5) This work	15	$\begin{array}{c} C_{3}H_{7} \\ S \\ S \\ C_{3}H_{7} \\ C_{3}H_{7} \\ \end{array}$	1.474(6) ¹¹
2		1.426(3) ¹²	16		1.402(3) ¹³
3	Ph Ad _N , B O Ph Ph Ph	1.498(2) ¹⁴	17	B-N N=N Ph	1.426(3) ¹³
4		1.443(3) ¹⁵	18		1.442(3) ¹⁶
5	B-N	1.491(2) ¹⁷	19		1.667(3) ¹⁸
6		B1–N1 1.4281(16), B2–N2 1.4253(15) ¹⁹	20		N(1)-B, 1.498(3), N(2)-B, 1.598(3) ²⁰
7		1.427(5) ²¹	21	B=N HO H	1.414(4) ²²
8	N ^{1, t-Bu} B _{N²Ph₂}	N(1)-B, 1.4079(18), N(2)-B, 1.4780(17) ²³	22	Mes N	1.447(2) ²⁴
9	N ^{1-t-Bu} B _{N²Ph₂}	N(1)-B, 1.417(3), N(2)-B, 1.480(3) ²³	23		1.4128(18) ²⁵

 Table S2 Comparison of BN bond distances in different BN-containing heterocycles

10	N ^{1'} ^{t-Bu} B _{N²Ph₂}	N(1)-B, 1.4075(19), N(2)-B, 1.4828(19) ²³	24	N ^{1,1-Bu} B N ² Ph ₂	N(1)-B, 1.403(2), N(2)-B, 1.488(2) ²³
11	N ^{1't-Bu} B _{N²Ph₂}	N(1)-B, 1.403(2), N(2)-B, 1.488(2) ²³	25	N ^{1, t-Bu} B N ² Ph ₂	N(1)-B, 1.405(2) N(2)-B, 1.478(2) ²³
12	N ^{1',t-Bu} B _{N²Ph₂}	N(1)-B, 1.4460(17), N(2)-B, 1.4856(16) ²³	26	N ^{1, t-Bu} B N ² Ph ₂	N(1)-B, 1.407(2) N(2)-B, 1.483(2) ²³
13		1.685(3) ²⁶	27	N ^{1^{-t-Bu} B_{N²Ph₂}}	N(1)-B, 1.417(3) N(2)-B, 1.480(3) ²³
14		1.637(2) ²⁷	26	N ^{1^{-t-Bu} B_{N²Ph₂}}	N(1)-B, 1.446(2) N(2)-B, 1.486(2) ²³

7. GPC data for P1 and P2

Figure S3. GPC of P1 with THF as an eluent at 1 mL/min.

Figure S4. GPC of P2 with THF as an eluent at 1 mL/min.

8. The UV-vis and excitation and emission spectra

Figure S5. Photophysical spectra for **5** in THF. (top) Experimental and calculated UV-vis absorbance spectrum; (bottom) Fluorescence excitation (solid line) and emission spectra (dashed line). [5] = 0.01 mM.

Figure S6. Photophysical spectra for **5** after added F⁻ in THF. (top) Experimental and calculated UV/Vis absorbance spectrum; (bottom) Fluorescence excitation (solid line) and emission spectra (dashed line).

Figure S7. Photophysical spectra for 8 in THF. (top) Experimental and calculated UV/Vis absorbance spectrum; (bottom) Fluorescence excitation (solid line) and emission spectra (dashed line). [8] = 0.01 mM.

Figure S8. Photophysical spectra for **8** after added F^- in THF. (top) Experimental and calculated UV/Vis absorbance spectrum; (bottom) Fluorescence excitation (solid line) and emission spectra (dashed line).

Figure S9. Photophysical spectra for **P1** in THF. (top) Experimental and calculated UV/Vis absorbance spectrum; (bottom) Fluorescence excitation (solid line) and emission spectra (dashed line). [P1] = 0.01 mM.

Figure S10. Photophysical spectra for **P1** after added F⁻ in THF. (top) Experimental and calculated UV/Vis absorbance spectrum; (bottom) Fluorescence excitation (solid line) and emission spectra (dashed line).

Figure S11. Photophysical spectra for P2 in THF. (top) Experimental and calculated UV/Vis absorbance spectrum; (bottom) Fluorescence excitation (solid line) and emission spectra (dashed line). [P2] = 0.01 mM.

Figure S12. Photophysical spectra for **P1** after added F⁻ in THF. (top) Experimental and calculated UV/Vis absorbance spectrum; (bottom) Fluorescence excitation (solid line) and emission spectra (dashed line).

Figure S13. The corresponding ratiometric plot of emission intensity ratio versus equivalents of fluoride. (a) 5, $\lambda_{em} = I_{448}/I_{354}$; (b) 8, $\lambda_{em} = I_{498}/I_{391}$; (c) P1, $\lambda_{em} = I_{516}/I_{414}$; (d) P2, $\lambda_{em} = I_{541}/I_{458}$.

Figure S14. Benesi-Hilderbrand plot of **5** (a), **8** (b), **P1** (c) and **P2** (d) at different [F⁻] concentrations. $1/\Delta I = A + B/[F^-]$, K = A/B.^{28,29}

Figure S15. Plots of the ratios of fluorescence intensity (I₀/I) and lifetime change (τ_0/τ) as a function of [F⁻] of **8** in THF upon addition of *n*-Bu₄NF, $\lambda_{em} = 391$ nm, [**8**] = 10 uM; [F⁻] = 1 mM.

Figure S16. Plots of the ratios of fluorescence intensity (I₀/I) and lifetime change (τ_0/τ) as a function of [F⁻] of **P1** in THF upon addition of *n*-Bu₄NF, $\lambda_{em} = 414$ nm, [**P1**] = 10 uM; [F⁻] = 1 mM.

9. Electrochemical properties

Cyclic voltammograms were recorded with a CHI660E/B15721b electrochemical analyzer using degassed and dried DCM under an argon atmosphere in the glovebox. The CV cell consisted of a gold electrode, a Pt wire counter electrode, and an Ag/AgCl reference electrode. All measurements were performed using DCM solutions of samples with a concentration of 1 mM and 0.1 M $Bu_4N^+PF_6^-$ as a supporting electrolyte with a scan rate of 100 mVs⁻¹. Potentials are determined against a ferrocene/ferrocenyl ion couple (Fc/Fc⁺).

Figure S17. Cyclic voltammograms of **5**, **8**, **P1** and **P2** in DCM with $Bu_4N^+PF_6^-(0.1 \text{ M})$ as a supporting electrolyte, Fc = ferrocene.

10. Comparison of HOMO/LUMO plots

Comparison of HOMO/LUMO plots for **5**, **8**, **P1**, **P2**, **5-F**, **5-F**', **8-F**, **8-F**', **P1-F**, **P1-F**', **P2-F**, and **P2-F**' (B3LYP/6-31g*)

Figure S18. Computed molecular orbital plots for 5 and 5 after added F⁻ in the gas-phase.

Figure S19. Computed molecular orbital plots for 8 and 8 after added F⁻ in the gas-phase.

Figure S20. Computed molecular orbital plots for P1 and after added F⁻ in the gas-phase.

Figure S21. Computed molecular orbital plots for P2 and after added F⁻ in the gas-phase.

Figure S22. Computed molecular orbital plots for 5 in DCM.

Figure S23. Computed molecular orbital plots for 8 in DCM.

Figure S24. Computed molecular orbital plots for P1 in DCM.

Figure S25. Computed molecular orbital plots for P2 in DCM.

	Benzene	3 C	Br-CB-Br 4	5	Br-Br B-N 6
NICS(0)	-9.7	+13.8	+12.9	-0.8	-1.0
NICS(0)zz	-13.8	+55.0	+53.5	+12.9	+13.1
NICS(1)	-11.2	+6.5	+5.8	-3.7	-3.7
NICS(1)zz	-29.0	+26.0	+24.8	-6.9	-6.6

Table S3. Calculated NICS(0), NICS(0)_{zz}, NICS(1) and NICS(1)_{zz}, values for **3**, **4**, **5**, **6** and benzene at the b3lyp/6-31g(d) level.

Table S4 Electronic properties of **BNP**-containing small molecules and conjugated polymers.

	HOMO (Exp) ^a	LUMO (Exp) ^a	HOMO $(Calc)^b$	LUMO (Calc) ^b	HOMO (Calc) ^c	LUMO (Calc) ^c
5	-5.75	-2.06	-5.83	-1.10	-5.67	-0.94
8	-5.64	-2.25	-5.59	-1.45	-5.43	-1.29
P1	-5.27	-2.23	-5.40	-1.37	-5.23	-1.19
P2	-5.24	-2.39	-5.35	-1.39	5.17	-1.19

^{*a*}Energy levels vs vacuum level were calculated from CV data and from the optically determined energy gap. Theoretical calculations have been carried out by using the GAUSSIAN09 suite of programs in DCM^{*b*} and gas-phase, ^{*c*} respectively.

Table S5. Calculated (λ_{TD-DFT}) wavelengths of **5**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

λ _{TD-DFT}	Oscillator Strength, f	MOs	
200.26	0 1200	HOMO-1 ->LUMO+1	12.01%
500.20	0.1388	HOMO ->LUMO	81.05%
		HOMO-4 ->LUMO	47.32%
	0.1495	HOMO-3 ->LUMO	11.19%
255.32		HOMO-1 ->LUMO+1	23.07%
		HOMO-4 ->LUMO	13.51%
		HOMO-1 ->LUMO+1	24.31%
		HOMO ->LUMO+2	6.92%
		HOMO ->LUMO+3	30.70%
		HOMO-6 ->LUMO	5.70%
244.32	0.1333	HOMO-2 ->LUMO+1	21.82%
		HOMO ->LUMO+3	41.35%

Table S6. Calculated (λ_{TD-DFT}) wavelengths of **5**-F. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

λ _{TD-DFT}	Oscillator	MOs	
	Strength, I		
366.61	0.121	HOMO ->LUMO	96.81%
		HOMO-1 ->LUMO	53.85%
266.27	0.1099	HOMO ->LUMO+5	15.69%
		HOMO ->LUMO+6	21.84%
259 1	0.0758	HOMO-2 ->LUMO	76.48%
238.1		HOMO ->LUMO+6	15.07%
250.64	0.0672	HOMO-3 ->LUMO	37.99%
		HOMO-1 ->LUMO+3	7.62%
		HOMO ->LUMO+6	21.70%
		HOMO ->LUMO+7	7.33%
		HOMO-3 ->LUMO	34.03%
		HOMO-1 ->LUMO	13.16%
245.85	0.0898	HOMO-1 ->LUMO+1	11.43%
		HOMO ->LUMO+6	13.40%
		HOMO ->LUMO+7	14.25%

Table S7. Calculated (λ_{TD-DFT}) wavelengths of **5**-F'. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

2	Oscillator		
∧TD-DFT	Strength, f	IVIOS	
366.61	0.121	HOMO ->LUMO	96.81%
		HOMO-1 ->LUMO	53.84%
266.27	0.1098	HOMO ->LUMO+5	15.70%
		HOMO ->LUMO+6	21.84%
259.1	0.0759	HOMO-2 ->LUMO	76.48%
258.1	0.0758	HOMO ->LUMO+6	15.07%
		HOMO-3 ->LUMO	38.00%
250.65	0.0672	HOMO-1 ->LUMO+3	7.62%
250.65		HOMO ->LUMO+6	21.70%
		HOMO ->LUMO+7	7.33%
		HOMO-3 ->LUMO	34.03%
	0.0898	HOMO-1 ->LUMO	13.16%
245.85		HOMO-1 ->LUMO+1	11.43%
		HOMO ->LUMO+6	13.40%
		HOMO ->LUMO+7	14.26%
		HOMO-1 ->LUMO	5.37%
220.25	0.2527	HOMO-1 ->LUMO+3	10.48%
230.35	0.2527	HOMO ->LUMO+6	9.38%
		HOMO ->LUMO+7	41.32%

Table S8. Calculated (λ_{TD-DFT}) wavelengths (in nm) of **8**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

2	Oscillator MOs		
NTD-DFT	Strength, f	MOS	
333.85	0.8134	HOMO ->LUMO	88.72%
		HOMO-1 ->LUMO	22.56%
311.22	0.1639	HOMO ->LUMO	6.17%
		HOMO ->LUMO+1	65.58%
201.80	.89 0.0986	HOMO-1 ->LUMO	65.01%
291.89		HOMO ->LUMO+1	19.55%
270.66	0.4262	HOMO-1 ->LUMO+1	76.50%
		HOMO-9 ->LUMO	5.78%
		HOMO-6 ->LUMO	7.73%
263.68	0.1387	HOMO ->LUMO+2	15.11%
		HOMO ->LUMO+3	7.88%
		HOMO ->LUMO+4	29.43%

Table S9. Calculated (λ_{TD-DFT}) wavelengths of **8-F**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

λ_{TD-DFT}	Oscillator Strength, f	MOs	
456.13	0.2833	HOMO ->LUMO	98.54%
324.16	0.618	HOMO-1 ->LUMO	89.60%
		HOMO-2 ->LUMO	44.11%
303.88	0.1269	HOMO ->LUMO+5	23.49%
		HOMO ->LUMO+6	17.09%
291.02	0.0943	HOMO-3 ->LUMO	87.05%
284.93	0.0726	HOMO ->LUMO+8	84.97%
		HOMO-7 ->LUMO	28.23%
249.65	0.2168	HOMO-3 ->LUMO+1	5.91%
		HOMO ->LUMO+10	51.72%
Table S10. Calculated (λ_{TD-DFT}) wavelengths of **8-F**'. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

λ_{TD-DFT}	Oscillator Strength, f	MOs	
430.22	0.2799	HOMO ->LUMO	98.06%
328.76	0.7238	HOMO-1 ->LUMO	89.46%
250.75	0.2169	HOMO-7 ->LUMO	11.56%
		HOMO ->LUMO+10	61.70%

Table S11. Calculated (λ_{TD-DFT}) wavelengths of **P1**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

2	Oscillator	MOg	
∧ TD-DFT	Strength, f	IVIOS	
342.24	1.1913	HOMO -> LUMO	95.51%
		HOMO-2 -> LUMO	6.22%
313.82	0.0994	HOMO-1 -> LUMO	21.72%
		HOMO -> LUMO+1	60.56%
	0.0977	HOMO-8 -> LUMO	8.01%
284 42		HOMO-1 -> LUMO+1	13.30%
204.43		HOMO -> LUMO+2	50.39%
		HOMO -> LUMO+3	12.79%
	0.1306	HOMO-8 -> LUMO	9.34%
278.58		HOMO-1 -> LUMO+1	19.58%
		HOMO -> LUMO+3	43.73%
		HOMO-10 -> LUMO	32.70%
220.21	0.102	HOMO-9 -> LUMO+1	10.11%
230.51	0.102	HOMO-6 -> LUMO+1	12.86%
		HOMO-1 -> LUMO+6	13.72%

Table S12. Calculated (λ_{TD-DFT}) wavelengths (in nm) of **P1-F**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

2	Oscillator	MOa	
∧TD-DFT	Strength, f	IVIOS	
523.68	0.0848	HOMO -> LUMO	99.15%
385.26	0.4947	HOMO-1 -> LUMO	96.20%
357.25	0.0996	HOMO -> LUMO+2	93.60%
350.05	0.1597	HOMO -> LUMO+3	93.47%
202.69	0.5243	HOMO-6 -> LUMO	81.37%
292.08		HOMO-1 -> LUMO+3	7.54%
	0.0774	HOMO-1 -> LUMO+3	13.12%
260.02		HOMO -> LUMO+6	5.28%
209.02	0.0774	HOMO -> LUMO+7	15.81%
		HOMO -> LUMO+10	53.50%

Table S13. Calculated (λ_{TD-DFT}) wavelengths of **P1-F**'. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*).

2	Oscillator	MOs	
∧ TD-DFT	Strength, f	WIOS	
562.01	0.0853	HOMO -> LUMO	99.28%
		HOMO-1 -> LUMO	49.07%
379.28	0.1152	HOMO -> LUMO+2	33.01%
		HOMO -> LUMO+3	13.15%
274.06	0.4100	HOMO-1 -> LUMO	43.65%
574.00	0.4199	HOMO -> LUMO+2	53.38%
	0.1344	HOMO-1 -> LUMO	5.59%
370.37		HOMO -> LUMO+2	9.19%
		HOMO -> LUMO+3	81.61%
202.26	0.498	HOMO-7 -> LUMO	79.80%
292.30		HOMO -> LUMO+8	10.06%
	0.1547	HOMO-1 -> LUMO+3	20.00%
266 74		HOMO -> LUMO+10	21.14%
200.74		HOMO -> LUMO+11	15.77%
		HOMO -> LUMO+13	18.65%
		HOMO-2 -> LUMO+2	34.99%
266.2	0.0549	HOMO-2 -> LUMO+3	44.44%
		HOMO -> LUMO+13	6.06%

		HOMO-9 -> LUMO	11.57%
257.79	0.1041	HOMO-5 -> LUMO+1	9.55%
		HOMO -> LUMO+13	38.39%

Table S14. Calculated (λ_{TD-DFT}) wavelengths of **P2**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

λtd-dft	Oscillator	MOs	
	Strength, I		
343.24	0.7838	HOMO ->LUMO	91.13%
		HOMO-1 ->LUMO	21.43%
315.8	0.1213	HOMO ->LUMO	6.01%
		HOMO ->LUMO+1	66.01%
	0.2484	HOMO-2 ->LUMO	10.41%
273.95		HOMO-1 ->LUMO+1	53.19%
		HOMO ->LUMO+3	17.45%
		HOMO-6 ->LUMO	27.31%
		HOMO-3 ->LUMO	11.04%
262 17	0.0072	HOMO-2 ->LUMO+1	7.98%
203.47	0.0973	HOMO ->LUMO+2	10.47%
		HOMO ->LUMO+3	9.86%
		HOMO ->LUMO+4	13.79%

Table S15. Calculated (λ_{TD-DFT}) wavelengths (in nm) of **P2-F**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

λ_{TD-DFT}	Oscillator Strength, f	MOs	
458.37	0.1703	HOMO ->LUMO	98.20%
224.02	0.1853	HOMO-1 ->LUMO	50.82%
554.95		HOMO ->LUMO+1	43.58%
	0.1168	HOMO-1 ->LUMO	18.61%
330.48		HOMO ->LUMO+1	12.17%
		HOMO ->LUMO+2	65.98%
	0.2849	HOMO-1 ->LUMO	23.58%
226.27		HOMO ->LUMO+1	38.71%
320.27		HOMO ->LUMO+2	25.71%
		HOMO ->LUMO+3	6.25%

267.5	0.0915	HOMO-8 ->LUMO	10.38%
		HOMO-7 ->LUMO	57.41%
		HOMO-1 ->LUMO+1	9.12%
		HOMO ->LUMO+8	13.15%

Table S16. Calculated (λ_{TD-DFT}) wavelengths (in nm) of **P2-F'**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

2	Oscillator	MO	
ATD-DFT	Strength, f	MOS	
431.81	0.1618	HOMO ->LUMO	97.37%
227 15	0 45 65	HOMO-1 ->LUMO	88.78%
337.15	0.4363	HOMO ->LUMO+1	6.15%
210.12	0.1604	HOMO ->LUMO+1	75.32%
318.12	0.1694	HOMO ->LUMO+2	16.89%
		HOMO ->LUMO+1	9.65%
313.58	0.0756	HOMO ->LUMO+2	60.04%
		HOMO ->LUMO+3	24.87%
	0.099	HOMO ->LUMO+1	5.16%
307.57		HOMO ->LUMO+2	16.99%
		HOMO ->LUMO+3	71.06%
	0.100	HOMO-7 ->LUMO	17.71%
262.14		HOMO-1 ->LUMO+1	10.64%
262.14	0.108	HOMO ->LUMO+7	9.81%
		HOMO ->LUMO+8	50.19%
		HOMO-7 ->LUMO	13.57%
		HOMO-1 ->LUMO+1	27.82%
250.1	0.0968	HOMO-1 ->LUMO+2	9.51%
		HOMO-1 ->LUMO+3	11.54%
		HOMO ->LUMO+8	14.08%

11. ¹H NMR and ¹³C NMR spectra

Figure S26. ¹H and ¹³C NMR spectra of 2 in CDCl₃.

Figure S27. ¹H and ¹³C NMR spectra of 5 in CDCl₃.

Figure S29. ¹¹B NMR spectra of 6 in CDCl₃.

Figure S30. ¹H and ¹³C NMR spectra of 6 in CDCl₃.

Figure S31. ¹H and ¹³C NMR spectra of 8 in CDCl₃.

---40.45

Figure S33. ¹H NMR spectra of P1in CDCl₃.

Figure S35. ¹H NMR spectra of P2 in CDCl₃.

---33.69

Figure S37. (top) Fluoride anion binding to model compound **5**. (bottom) ¹⁹F NMR spectra of a mixture of **5** after addition of 1, 2 and 5 equivs. of TBAF.

Figure S38. ¹¹B NMR spectra of a mixture of **5** after addition of 1, 2 and 5 equivs. of TBAF.

12. Coordinates of molecular structures

Center	Atomic	Atomic	Cooi	rdinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.731201	2.304305	0.288386
2	6	0	-2.160123	1.023901	0.119097
3	6	0	-3.020631	-0.105185	0.067557
4	6	0	-4.413698	0.095982	0.183375
5	6	0	-4.944051	1.367664	0.339832
6	6	0	-4.101754	2.485903	0.394272
7	6	0	-1.026830	-1.628372	-0.121629
8	6	0	-0.502967	-2.927885	-0.280011
9	6	0	-1.334185	-4.030055	-0.410465
10	6	0	-2.721741	-3.863714	-0.390834
11	6	0	-3.248163	-2.591215	-0.238463
12	6	0	-2.438167	-1.444610	-0.096787
13	5	0	-0.626649	0.828100	0.049598
14	7	0	-0.151721	-0.521877	-0.011402
15	6	0	0.365284	2.060188	0.021809
16	6	0	1.270671	-0.804236	0.011191
17	6	0	0.253322	3.005728	-1.018401
18	6	0	1.091297	4.120083	-1.093746
19	6	0	2.057286	4.333558	-0.109816
20	6	0	2.178839	3.422582	0.940894
21	6	0	1.349171	2.302201	0.998267
22	6	0	1.882956	-1.147584	1.230609
23	6	0	3.259976	-1.391462	1.238003
24	6	0	4.032208	-1.314657	0.075248
25	6	0	3.388260	-0.986574	-1.120532
26	6	0	2.013732	-0.732662	-1.179367
27	6	0	1.360898	-0.387276	-2.496188
28	6	0	1.083280	-1.266079	2.507323
29	6	0	5.514223	-1.609200	0.104956
30	1	0	-2.072718	3.165662	0.343792
31	1	0	-5.097766	-0.744915	0.162289
32	1	0	-6.020692	1.491223	0.427974

Table S17 Cartesian coordinates of optimized geometry of **5** (DFT, B3LYP/6-31g*)Standard orientation: (Ground State)

33	1	0	-4.518514	3.480964	0.525542
34	1	0	0.570904	-3.064906	-0.306010
35	1	0	-0.897717	-5.017576	-0.533278
36	1	0	-3.384301	-4.717761	-0.497823
37	1	0	-4.326245	-2.480144	-0.238619
38	1	0	-0.506161	2.867140	-1.785372
39	1	0	0.984380	4.823327	-1.916148
40	1	0	2.707420	5.203446	-0.159275
41	1	0	2.924335	3.582140	1.716139
42	1	0	1.473403	1.605889	1.822524
43	1	0	3.740421	-1.647237	2.180381
44	1	0	3.969490	-0.925219	-2.038525
45	1	0	0.448040	-0.969764	-2.660541
46	1	0	1.082563	0.672605	-2.535219
47	1	0	2.044449	-0.583286	-3.327939
48	1	0	0.514284	-0.354417	2.722537
49	1	0	0.354135	-2.083084	2.448430
50	1	0	1.741474	-1.463387	3.358715
51	1	0	5.714940	-2.668757	-0.103590
52	1	0	6.054187	-1.023554	-0.646746
53	1	0	5.947624	-1.383716	1.085093

Zero-point correction=	0.438133
Thermal correction to Energy=	0.462754
Thermal correction to Enthalpy=	0.463698
Thermal correction to Gibbs Free Energy=	0.382933
Sum of electronic and zero-point Energies=	-1122.596548
Sum of electronic and thermal Energies=	-1122.571927
Sum of electronic and thermal Enthalpies=	-1122.570983
Sum of electronic and thermal Free Energies=	-1122.651747

Center	Atomic	Atomic	Coo	rdinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.964108	0.984002	-1.768501
2	6	0	2.140908	0.243531	-0.904056
3	6	0	2.697128	-0.872608	-0.240565
4	6	0	4.049071	-1.208615	-0.480232
5	6	0	4.845166	-0.448003	-1.328873
6	6	0	4.302239	0.663509	-1.981475
7	6	0	0.411449	-1.539665	0.623339
8	б	0	-0.357778	-2.490335	1.348651
9	б	0	0.228967	-3.480374	2.125530
10	б	0	1.618781	-3.577217	2.215698
11	6	0	2.390210	-2.690680	1.468290
12	6	0	1.840839	-1.698560	0.640931
13	5	0	0.596494	0.686264	-0.733894
14	7	0	-0.191307	-0.511744	-0.069198
15	6	0	0.459744	2.081540	0.123657
16	6	0	-1.618484	-0.531236	-0.215945
17	6	0	1.166090	2.305529	1.320623
18	6	0	1.041286	3.490689	2.048671
19	6	0	0.198239	4.507959	1.591617
20	6	0	-0.505096	4.321861	0.399432
21	6	0	-0.367556	3.129424	-0.317947
22	6	0	-2.177876	-1.131307	-1.367246
23	6	0	-3.564550	-1.120725	-1.541351
24	6	0	-4.423875	-0.540045	-0.604131
25	6	0	-3.855450	0.016184	0.541864
26	6	0	-2.470306	0.031850	0.757612
27	6	0	-1.933627	0.624881	2.039694
28	6	0	-1.292618	-1.792403	-2.395979
29	6	0	-5.918517	-0.507276	-0.832018
30	1	0	2.528440	1.836271	-2.286727
31	1	0	4.483046	-2.093851	-0.024000
32	1	0	5.883892	-0.731432	-1.492828
33	1	0	4.916220	1.262019	-2.653028
34	1	0	-1.439015	-2.424452	1.304850
35	1	0	-0.409644	-4.170491	2.675156

Table S18 Cartesian coordinates of optimized geometry of **5-F** (DFT, B3LYP/6-31g*)

 Standard orientation: (Ground State)

36	1	0	2.092839	-4.327374	2.844237	
37	1	0	3.471548	-2.771344	1.532570	
38	1	0	1.833778	1.528912	1.691303	
39	1	0	1.603410	3.624811	2.972349	
40	1	0	0.096369	5.434742	2.154361	
41	1	0	-1.159968	5.109500	0.027074	
42	1	0	-0.911856	2.996675	-1.249743	
43	1	0	-3.983749	-1.583131	-2.434776	
44	1	0	-4.505436	0.450565	1.301170	
45	1	0	-1.102599	0.034997	2.435796	
46	1	0	-1.558364	1.640616	1.883921	
47	1	0	-2.723306	0.665394	2.799742	
48	1	0	-0.616160	-1.054252	-2.833616	
49	1	0	-0.670877	-2.572996	-1.942089	
50	1	0	-1.894460	-2.250702	-3.189763	
51	1	0	-6.466958	-0.430099	0.114184	
52	1	0	-6.216769	0.352324	-1.449384	
53	1	0	-6.267421	-1.409046	-1.350118	
54	9	0	0.018087	0.933532	-2.031169	

Zero-point correction=	0.437846
Thermal correction to Energy=	0.463663
Thermal correction to Enthalpy=	0.464607
Thermal correction to Gibbs Free Energy=	0.381416
Sum of electronic and zero-point Energies=	-1222.522263
Sum of electronic and thermal Energies=	-1222.496446
Sum of electronic and thermal Enthalpies=	-1222.495502
Sum of electronic and thermal Free Energies=	-1222.578693

			~	1	
Center	Atomic	Atomic	Co	ordinates (Ang	gstroms)
number	Number	туре	Х	Ŷ	L
1	6	0	-2.964058	0.983819	-1.768685
2	6	0	-2.140871	0.243450	-0.904141
3	6	0	-2.697082	-0.872656	-0.240586
4	6	0	-4.049001	-1.208725	-0.480282
5	6	0	-4.845089	-0.448206	-1.329018
6	6	0	-4.302171	0.663269	-1.981688
7	6	0	-0.411406	-1.539614	0.623396
8	6	0	0.357823	-2.490232	1.348784
9	6	0	-0.228924	-3.480212	2.125735
10	6	0	-1.618739	-3.577047	2.215913
11	6	0	-2.390169	-2.690573	1.468434
12	6	0	-1.840796	-1.698519	0.640995
13	5	0	-0.596489	0.686261	-0.733931
14	7	0	0.191335	-0.511736	-0.069215
15	6	0	-0.459827	2.081518	0.123647
16	6	0	1.618512	-0.531195	-0.215966
17	6	0	0.367379	3.129472	-0.317954
18	6	0	0.504854	4.321904	0.399455
19	6	0	-0.198463	4.507920	1.591659
20	6	0	-1.041431	3.490574	2.048708
21	6	0	-1.166170	2.305430	1.320633
22	6	0	2.470335	0.031938	0.757568
23	6	0	3.855477	0.016261	0.541821
24	6	0	4.423904	-0.540012	-0.604154
25	6	0	3.564580	-1.120730	-1.541353
26	6	0	2.177907	-1.131304	-1.367246
27	6	0	1.292644	-1.792452	-2.395944
28	6	0	1.933656	0.625016	2.039631
29	6	0	5.918542	-0.507236	-0.832043
30	1	0	-2.528394	1.836057	-2.286968
31	1	0	-4.482961	-2.093944	-0.024005
32	1	0	-5.883799	-0.731686	-1.492986
33	1	0	-4.916137	1.261705	-2.653318
34	1	0	1.439059	-2.424349	1.304989
35	1	0	0.409685	-4.170286	2.675415

Table S19 Cartesian coordinates of optimized geometry of **5-F'** (DFT, B3LYP/6-31g*)Standard orientation: (Ground State)

36	1	0	-2.092792	-4.327158	2.844509
37	1	0	-3.471508	-2.771220	1.532725
38	1	0	0.911665	2.996800	-1.249770
39	1	0	1.159661	5.109592	0.027090
40	1	0	-0.096655	5.434693	2.154428
41	1	0	-1.603541	3.624636	2.972401
42	1	0	-1.833800	1.528756	1.691301
43	1	0	4.505465	0.450671	1.301110
44	1	0	3.983781	-1.583170	-2.434760
45	1	0	0.670922	-2.573037	-1.942014
46	1	0	0.616176	-1.054326	-2.833608
47	1	0	1.894484	-2.250774	-3.189717
48	1	0	1.558530	1.640800	1.883843
49	1	0	1.102537	0.035227	2.435681
50	1	0	2.723302	0.665427	2.799718
51	1	0	6.466985	-0.430063	0.114158
52	1	0	6.267449	-1.408999	-1.350153
53	1	0	6.216790	0.352372	-1.449402
54	9	0	-0.018034	0.933552	-2.031159

Zero-point correction = 0.437848 Thermal correction to Energy= 0.463664 Thermal correction to Enthalpy= 0.464608 Thermal correction to Gibbs Free Energy= 0.381423 Sum of electronic and zero-point Energies= -1222.522262 Sum of electronic and thermal Energies= -1222.496446 Sum of electronic and thermal Enthalpies= -1222.495502 Sum of electronic and thermal Free Energies= -1222.578687

Center	Atomic	Atomic	c Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	-3.154920	-0.566644	0.020526		
2	6	0	-1.749390	-0.653179	-0.025162		
3	6	0	-1.141076	-1.936105	-0.018166		
4	6	0	-1.976532	-3.073559	0.028440		
5	6	0	-3.354603	-2.953197	0.065224		
6	6	0	-3.982077	-1.690187	0.063817		
7	6	0	1.137966	-0.875236	-0.011860		
8	6	0	2.538239	-1.012124	-0.030798		
9	6	0	3.167400	-2.256621	-0.089810		
10	6	0	2.355591	-3.404761	-0.135351		
11	6	0	0.978377	-3.284971	-0.116406		
12	6	0	0.320308	-2.039180	-0.048707		
13	5	0	-0.863118	0.616682	-0.034652		
14	7	0	0.553988	0.413567	0.030645		
15	6	0	-1.489917	2.065164	-0.140114		
16	6	0	1.456694	1.546458	0.104399		
17	6	0	-2.291454	2.385087	-1.255409		
18	6	0	-2.881922	3.641962	-1.401410		
19	6	0	-2.704985	4.613868	-0.416091		
20	6	0	-1.930323	4.318696	0.707011		
21	6	0	-1.328529	3.066364	0.835474		
22	6	0	1.944969	1.955514	1.359132		
23	6	0	2.803873	3.057606	1.411285		
24	6	0	3.190382	3.750962	0.260317		
25	6	0	2.704885	3.302809	-0.970668		
26	6	0	1.841507	2.206722	-1.074798		
27	6	0	1.346084	1.755326	-2.427808		
28	6	0	1.577914	1.217864	2.625932		
29	6	0	4.092028	4.960341	0.347503		
30	1	0	-3.610630	0.418196	0.003929		
31	1	0	-1.552376	-4.071166	0.057963		
32	1	0	-3.962377	-3.851780	0.130220		
33	1	0	3.149339	-0.120601	0.025969		
34	1	0	2.808675	-4.387901	-0.218432		
35	1	0	0.388371	-4.192370	-0.174251		

Table S20 Cartesian coordinates of optimized geometry of 8 (DFT, B3LYP/6-31g*)Standard orientation: (Ground State)

36	1	0	-2.458578	1.634191	-2.025029
37	1	0	-3.485543	3.857609	-2.279632
38	1	0	-3.168902	5.591456	-0.520578
39	1	0	-1.790075	5.066797	1.483505
40	1	0	-0.722948	2.869231	1.715185
41	1	0	3.182700	3.379452	2.379355
42	1	0	3.005524	3.818142	-1.880767
43	1	0	1.460516	0.674225	-2.562202
44	1	0	0.282592	1.988286	-2.558387
45	1	0	1.897874	2.258441	-3.227742
46	1	0	0.492552	1.146377	2.760781
47	1	0	1.960912	0.190462	2.615849
48	1	0	1.994949	1.723388	3.501978
49	1	0	4.783749	4.885885	1.193540
50	1	0	4.684701	5.085316	-0.564978
51	1	0	3.509129	5.881023	0.484613
52	6	0	4.648091	-2.361430	-0.107811
53	6	0	5.436667	-1.415764	-0.785663
54	6	0	5.301913	-3.414407	0.555366
55	6	0	6.826749	-1.518335	-0.798233
56	1	0	4.953465	-0.607736	-1.327539
57	6	0	6.691907	-3.517875	0.542357
58	1	0	4.715045	-4.142867	1.107864
59	6	0	7.461445	-2.570010	-0.134579
60	1	0	7.414927	-0.779100	-1.335838
61	1	0	7.174910	-4.336533	1.069619
62	1	0	8.545093	-2.650308	-0.145259
63	6	0	-5.460222	-1.566282	0.113188
64	6	0	-6.286617	-2.484628	-0.557402
65	6	0	-6.075208	-0.526278	0.831862
66	6	0	-7.675048	-2.367905	-0.511848
67	1	0	-5.835341	-3.282069	-1.141554
68	6	0	-7.463269	-0.408003	0.876239
69	1	0	-5.458481	0.180867	1.379283
70	6	0	-8.270487	-1.328592	0.205241
71	1	0	-8.292583	-3.085953	-1.045378
72	1	0	-7.915257	0.400914	1.444437
73	1	0	-9.352724	-1.237066	0.240907

Zero-point correction=	0.599927
Thermal correction to Energy=	0.634159
Thermal correction to Enthalpy=	0.635103
Thermal correction to Gibbs Free Energy=	0.531339
Sum of electronic and zero-point Energies=	-1584.550323
Sum of electronic and thermal Energies=	-1584.516091
Sum of electronic and thermal Enthalpies=	-1584.515147
Sum of electronic and thermal Free Energies=	-1584.618911

Center	Atomic	Atomic	Соо	rdinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	3.212784	-0.313262	-0.283718
2	6	0	1.830172	-0.420778	-0.084794
3	6	0	1.273828	-1.706534	0.095567
4	6	0	2.132868	-2.828682	0.055975
5	6	0	3.499870	-2.689940	-0.127665
6	6	0	4.076555	-1.417332	-0.302440
7	6	0	-1.065150	-0.747731	-0.009364
8	6	0	-2.460012	-1.013840	-0.017352
9	6	0	-3.003812	-2.257796	0.311143
10	6	0	-2.131213	-3.302910	0.660292
11	6	0	-0.760790	-3.080843	0.622514
12	6	0	-0.184724	-1.853514	0.258865
13	5	0	0.938716	0.927802	-0.097248
14	7	0	-0.579584	0.513534	-0.261948
15	6	0	1.196028	1.837784	1.243579
16	6	0	-1.496147	1.523733	-0.711230
17	6	0	1.250700	1.280641	2.534927
18	6	0	1.459210	2.060874	3.674194
19	6	0	1.629318	3.443012	3.554121
20	6	0	1.595389	4.023924	2.284394
21	6	0	1.386956	3.228026	1.153901
22	6	0	-1.661332	1.724034	-2.100886
23	6	0	-2.519431	2.731522	-2.549808
24	6	0	-3.231078	3.546774	-1.664909
25	6	0	-3.080822	3.309810	-0.298704
26	6	0	-2.228599	2.313886	0.198769
27	6	0	-2.144345	2.104012	1.693241
28	6	0	-0.934578	0.852074	-3.096346
29	6	0	-4.126223	4.654395	-2.173326
30	1	0	3.629513	0.684370	-0.402882
31	1	0	1.727153	-3.833619	0.128177
32	1	0	4.122859	-3.579913	-0.185712
33	1	0	-3.128512	-0.212839	-0.309088
34	1	0	-2.519780	-4.262559	0.989186
35	1	0	-0.104773	-3.900371	0.900648

Table S21 Cartesian coordinates of optimized geometry of 8-F (DFT, B3LYP/6-31g*)Standard orientation: (Ground State)

36	1	0	1.127813	0.204624	2.650923	
37	1	0	1.492937	1.592489	4.657160	
38	1	0	1.793259	4.057265	4.438106	
39	1	0	1.735539	5.099057	2.175532	
40	1	0	1.370819	3.687551	0.168678	
41	1	0	-2.637323	2.879090	-3.622932	
42	1	0	-3.645966	3.913224	0.411226	
43	1	0	-2.034299	1.046465	1.946538	
44	1	0	-1.282999	2.625732	2.121670	
45	1	0	-3.049206	2.485532	2.181779	
46	1	0	0.145039	0.972854	-2.979073	
47	1	0	-1.161969	-0.208536	-2.936508	
48	1	0	-1.220572	1.112463	-4.122097	
49	1	0	-4.614275	4.377500	-3.115673	
50	1	0	-4.910508	4.900648	-1.448071	
51	1	0	-3.560438	5.577578	-2.363983	
52	6	0	-4.473775	-2.464296	0.304311	
53	6	0	-5.362622	-1.434240	0.663975	
54	6	0	-5.030237	-3.703933	-0.062485	
55	6	0	-6.742345	-1.633004	0.653229	
56	1	0	-4.959975	-0.474292	0.973055	
57	6	0	-6.409577	-3.906122	-0.068496	
58	1	0	-4.367258	-4.507833	-0.369710	
59	6	0	-7.276118	-2.870926	0.288540	
60	1	0	-7.403245	-0.817967	0.940053	
61	1	0	-6.809414	-4.873878	-0.364252	
62	1	0	-8.352442	-3.026405	0.281636	
63	6	0	5.535784	-1.260475	-0.509699	
64	6	0	6.460429	-2.120390	0.112839	
65	6	0	6.050724	-0.246187	-1.339401	
66	6	0	7.832799	-1.977501	-0.086595	
67	1	0	6.094057	-2.894205	0.781855	
68	6	0	7.422751	-0.098230	-1.534837	
69	1	0	5.360028	0.418997	-1.849200	
70	6	0	8.324517	-0.964135	-0.911853	
71	1	0	8.521677	-2.654201	0.414934	
72	1	0	7.788750	0.693349	-2.185186	
73	1	0	9.394943	-0.849334	-1.065718	
74	9	0	1.303951	1.733556	-1.233778	

Zero-point correction=

0.599872

0.635222
0.636166
0.530519
-1684.481502
-1684.446152
-1684.445208
-1684.550855

Center	Atomic	Atomic	Со	ordinates (Ang	gstroms)	
Number	Number	Туре	Х	Y	Z	
			2.062461	0.00077	0.000702	
1	6	0	-3.062461	-0.689977	-0.282703	
2	6	0	-1.667987	-0.731338	-0.403423	
3	6	0	-1.012/19	-1.949292	-0.101087	
4	6	0	-1.776137	-3.053322	0.334880	
5	6	0	-3.157655	-2.980266	0.438041	
6	6	0	-3.836349	-1.788220	0.124212	
7	6	0	1.234874	-0.818828	-0.205928	
8	6	0	2.643230	-0.946148	-0.148482	
9	6	0	3.294993	-2.182856	-0.142479	
10	6	0	2.516783	-3.352818	-0.200538	
11	6	0	1.132249	-3.250523	-0.228447	
12	6	0	0.454403	-2.021536	-0.197986	
13	5	0	-0.801060	0.536618	-0.935401	
14	7	0	0.620648	0.420748	-0.255527	
15	6	0	-1.524653	1.968204	-0.620710	
16	6	0	1.391122	1.559843	0.129764	
17	6	0	-1.956481	2.785290	-1.680734	
18	6	0	-2.631089	3.991325	-1.467635	
19	6	0	-2.904376	4.420193	-0.168097	
20	6	0	-2.499163	3.625454	0.907597	
21	6	0	-1.826296	2.423957	0.676392	
22	6	0	1.646026	1.783013	1.505500	
23	6	0	2.370081	2.910629	1.898259	
24	6	0	2.864156	3.833160	0.971105	
25	6	0	2.627335	3.582706	-0.380138	
26	6	0	1.905146	2.466112	-0.822773	
27	6	0	1.716819	2.258645	-2.306537	
28	6	0	1.160240	0.808053	2.551406	
29	6	0	3.611518	5.067908	1.421423	
30	1	0	-3.568093	0.236201	-0.544125	
31	1	0	-1.282273	-3.972583	0.638743	
32	1	0	-3.712072	-3.837611	0.813748	
33	1	0	3.234363	-0.038542	-0.100760	
34	1	0	2.992358	-4.327562	-0.265059	

Table S22 Cartesian coordinates of optimized geometry of 8-F' (DFT, B3LYP/6-31g*)

 Standard orientation: (Ground State)

35	1	0	0.548153	-4.164428	-0.293433	
36	1	0	-1.758887	2.450428	-2.695863	
37	1	0	-2.947604	4.595269	-2.317410	
38	1	0	-3.429965	5.357719	0.005985	
39	1	0	-2.708657	3.943703	1.928076	
40	1	0	-1.533374	1.818844	1.532186	
41	1	0	2.549118	3.073893	2.960793	
42	1	0	3.022036	4.273422	-1.124994	
43	1	0	1.663458	1.199680	-2.564624	
44	1	0	0.774332	2.699957	-2.648886	
45	1	0	2.534573	2.732571	-2.863462	
46	1	0	0.137818	0.477939	2.345258	
47	1	0	1.779787	-0.098023	2.570385	
48	1	0	1.193349	1.258933	3.549660	
49	1	0	4.258240	4.857734	2.282230	
50	1	0	4.241066	5.469318	0.618789	
51	1	0	2.923634	5.869940	1.725092	
52	6	0	4.776803	-2.257926	-0.099831	
53	6	0	5.581333	-1.297141	-0.739978	
54	6	0	5.429704	-3.299887	0.584954	
55	6	0	6.972606	-1.372562	-0.694029	
56	1	0	5.104646	-0.495409	-1.296010	
57	6	0	6.820844	-3.379702	0.627634	
58	1	0	4.832171	-4.040506	1.109125	
59	6	0	7.602770	-2.415151	-0.011169	
60	1	0	7.567057	-0.616838	-1.202782	
61	1	0	7.295826	-4.193586	1.171544	
62	1	0	8.688092	-2.474642	0.023144	
63	6	0	-5.311425	-1.693903	0.239662	
64	6	0	-6.140056	-2.799365	-0.030691	
65	6	0	-5.936699	-0.493509	0.628304	
66	6	0	-7.526650	-2.712648	0.086169	
67	1	0	-5.687054	-3.730335	-0.360615	
68	6	0	-7.323135	-0.403918	0.739471	
69	1	0	-5.321469	0.370420	0.861847	
70	6	0	-8.128742	-1.513207	0.471731	
71	1	0	-8.140042	-3.583471	-0.136354	
72	1	0	-7.775707	0.536761	1.045574	
73	1	0	-9.210409	-1.443201	0.560394	
74	9	0	-0.643275	0.409220	-2.364571	

Zero-point correction=	0.599696
Thermal correction to Energy=	0.635185
Thermal correction to Enthalpy=	0.636129
Thermal correction to Gibbs Free Energy=	0.530053
Sum of electronic and zero-point Energies=	-1684.481092
Sum of electronic and thermal Energies=	-1684.445603
Sum of electronic and thermal Enthalpies=	-1684.444659
Sum of electronic and thermal Free Energies=	-1684.550735

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	6.624544	1.671702	3.651334	
2	6	0	5.717938	0.954925	2.840026	
3	6	0	4.337422	0.988737	3.164979	
4	6	0	3.931017	1.736394	4.292703	
5	6	0	4.851105	2.419457	5.069308	
6	6	0	6.225062	2.403157	4.763849	
7	6	0	3.382388	0.258636	2.325640	
8	6	0	3.808231	-0.418050	1.148837	
9	6	0	2.864808	-1.109427	0.366470	
10	6	0	1.510130	-1.163278	0.700528	
11	6	0	1.093592	-0.494178	1.866502	
12	6	0	2.010324	0.188338	2.644491	
13	5	0	6.190424	0.187577	1.581813	
14	7	0	5.172490	-0.411889	0.770514	
15	6	0	7.725377	0.044524	1.225572	
16	6	0	5.517570	-1.073929	-0.472679	
17	6	0	8.309532	0.523587	0.038510	
18	6	0	9.676383	0.392872	-0.210096	
19	6	0	10.502691	-0.238220	0.721421	
20	6	0	9.952074	-0.724506	1.907662	
21	6	0	8.586608	-0.572340	2.156336	
22	6	0	5.389485	-0.368614	-1.683770	
23	6	0	5.741303	-1.016895	-2.871457	
24	6	0	6.205995	-2.335593	-2.885784	
25	6	0	6.298690	-3.012988	-1.667585	
26	6	0	5.959704	-2.407292	-0.452479	
27	6	0	4.865124	1.048202	-1.717256	
28	6	0	6.067851	-3.181769	0.839196	
29	6	0	6.612897	-3.001174	-4.179923	
30	6	0	0.544531	-1.910292	-0.142668	
31	6	0	0.912384	-3.115870	-0.768614	
32	6	0	0.004590	-3.837561	-1.540595	
33	6	0	-1.292139	-3.347436	-1.705733	
34	6	0	-1.674439	-2.127527	-1.111888	

Table S23. Cartesian coordinates of optimized geometry of P1 (DFT, B3LYP/6-31g*) Standard orientation: (Ground State)

35	6	0	-0.768509	-1.428860	-0.322763
36	6	0	-2.442009	-3.901725	-2.421325
37	6	0	-2.570376	-5.068380	-3.175689
38	6	0	-3.792883	-5.349914	-3.786222
39	6	0	-4.886481	-4.480489	-3.664965
40	6	0	-4.738686	-3.305875	-2.906812
41	6	0	-3.534485	-3.023240	-2.269851
42	6	0	-3.141961	-1.801369	-1.426387
43	6	0	7.214689	3.160832	5.616461
44	6	0	-6.208959	-4.805578	-4.320782
45	6	0	-13.865097	0.024352	5.545753
46	6	0	-12.358054	-0.251638	5.535532
47	6	0	-11.764277	-0.324967	4.123040
48	6	0	-10.255054	-0.599680	4.105607
49	6	0	-9.658657	-0.676134	2.694319
50	6	0	-8.149051	-0.950194	2.683499
51	6	0	-7.546687	-1.036187	1.275265
52	6	0	-6.037483	-1.312852	1.276120
53	6	0	-5.426937	-1.416274	-0.129299
54	6	0	-3.921779	-1.713591	-0.077938
55	6	0	-2.345259	10.944533	-3.346370
56	6	0	-2.787370	9.583185	-3.892858
57	6	0	-2.507291	8.423035	-2.928885
58	6	0	-2.942101	7.055483	-3.470938
59	6	0	-2.658869	5.894186	-2.509165
60	6	0	-3.084335	4.526297	-3.058253
61	6	0	-2.798807	3.362943	-2.099589
62	6	0	-3.208269	1.994748	-2.659947
63	6	0	-2.923284	0.829046	-1.701029
64	6	0	-3.304059	-0.526587	-2.312138
65	1	0	7.678637	1.654622	3.388145
66	1	0	2.883847	1.798308	4.568007
67	1	0	4.501525	2.987097	5.929862
68	1	0	3.198151	-1.600513	-0.538786
69	1	0	0.054949	-0.542356	2.178985
70	1	0	1.651715	0.669677	3.547089
71	1	0	7.689388	1.009569	-0.709176
72	1	0	10.096072	0.780599	-1.135209
73	1	0	11.566522	-0.346845	0.525608
74	1	0	10.585096	-1.215718	2.642754
75	1	0	8.179085	-0.940695	3.095661

76	1	0	5.646346	-0.475496	-3.810697
77	1	0	6.642501	-4.045437	-1.657922
78	1	0	3.824748	1.097302	-1.374498
79	1	0	5.441138	1.715294	-1.065665
80	1	0	4.903724	1.450965	-2.733803
81	1	0	6.232939	-4.244799	0.638437
82	1	0	6.906296	-2.822785	1.447889
83	1	0	5.161062	-3.085507	1.445996
84	1	0	6.010957	-2.643465	-5.022354
85	1	0	7.664017	-2.792448	-4.420513
86	1	0	6.503276	-4.089329	-4.122865
87	1	0	1.913336	-3.508842	-0.615749
88	1	0	0.304789	-4.780369	-1.991048
89	1	0	-1.053893	-0.495502	0.152074
90	1	0	-1.729891	-5.746916	-3.299219
91	1	0	-3.899547	-6.256176	-4.378257
92	1	0	-5.577891	-2.618453	-2.837666
93	1	0	8.232387	3.063920	5.225721
94	1	0	6.972729	4.230502	5.658568
95	1	0	7.217431	2.793476	6.650897
96	1	0	-6.706232	-3.902172	-4.691624
97	1	0	-6.080276	-5.490606	-5.165389
98	1	0	-6.899320	-5.286064	-3.614022
99	1	0	-14.257700	0.068043	6.568172
100	1	0	-14.096770	0.979988	5.059207
101	1	0	-14.415464	-0.759688	5.011025
102	1	0	-12.155414	-1.195021	6.062505
103	1	0	-11.838828	0.531670	6.106086
104	1	0	-11.968784	0.618672	3.595107
105	1	0	-12.283565	-1.109421	3.552249
106	1	0	-10.052016	-1.542155	4.635881
107	1	0	-9.737228	0.185739	4.676205
108	1	0	-9.861288	0.265615	2.162643
109	1	0	-10.174681	-1.462887	2.124015
110	1	0	-7.947562	-1.889180	3.220354
111	1	0	-7.633535	-0.161092	3.251031
112	1	0	-7.745489	-0.097760	0.736281
113	1	0	-8.060571	-1.826482	0.708040
114	1	0	-5.841342	-2.246598	1.823607
115	1	0	-5.523985	-0.518979	1.838806
116	1	0	-5.614628	-0.478963	-0.671052

117	1	0	-5.946659	-2.207322	-0.683633	
118	1	0	-3.767060	-2.661222	0.454595	
119	1	0	-3.437762	-0.944346	0.538418	
120	1	0	-2.557599	11.750713	-4.057984	
121	1	0	-2.863221	11.182923	-2.409080	
122	1	0	-1.267875	10.957721	-3.139902	
123	1	0	-2.279062	9.389894	-4.848341	
124	1	0	-3.862261	9.612031	-4.121877	
125	1	0	-3.017824	8.615377	-1.973229	
126	1	0	-1.431933	8.397096	-2.697090	
127	1	0	-2.432146	6.866036	-4.427352	
128	1	0	-4.017587	7.081595	-3.701820	
129	1	0	-3.173771	6.079397	-1.554601	
130	1	0	-1.584385	5.871972	-2.273828	
131	1	0	-2.569037	4.343081	-4.012948	
132	1	0	-4.158869	4.547423	-3.293921	
133	1	0	-3.322863	3.539257	-1.148255	
134	1	0	-1.726136	3.348295	-1.856123	
135	1	0	-2.680253	1.819472	-3.608957	
136	1	0	-4.280082	2.009077	-2.908181	
137	1	0	-3.471971	0.997363	-0.763877	
138	1	0	-1.857098	0.835556	-1.443716	
139	1	0	-2.712630	-0.680969	-3.224173	
140	1	0	-4.350589	-0.479619	-2.641559	

1.232871
1.298682
1.299626
1.119448
-2486.937755
-2486.871944
-2486.871000
-2487.051178

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	6.480496	1.425235	3.660453	
2	6	0	5.596591	0.625926	2.919495	
3	6	0	4.210261	0.868731	3.063890	
4	6	0	3.775225	1.913140	3.906623	
5	6	0	4.680978	2.677883	4.630662	
6	6	0	6.058979	2.437485	4.527385	
7	6	0	3.251553	0.057805	2.292234	
8	6	0	3.690666	-0.676097	1.141806	
9	6	0	2.708992	-1.324340	0.356669	
10	6	0	1.348113	-1.317393	0.681669	
11	6	0	0.940680	-0.642993	1.846313	
12	6	0	1.887402	0.017265	2.619503	
13	5	0	6.102741	-0.591237	1.967827	
14	7	0	5.035247	-0.732299	0.812403	
15	6	0	7.613152	-0.355362	1.389485	
16	6	0	5.373500	-1.099369	-0.524727	
17	6	0	7.970484	0.717348	0.551563	
18	6	0	9.282213	0.921920	0.119232	
19	6	0	10.297374	0.050473	0.522601	
20	6	0	9.978882	-1.017113	1.363256	
21	6	0	8.659669	-1.207437	1.785963	
22	6	0	5.171008	-0.158849	-1.565832	
23	6	0	5.521438	-0.493095	-2.875344	
24	6	0	6.066159	-1.739038	-3.200528	
25	6	0	6.236061	-2.660556	-2.167813	
26	6	0	5.900806	-2.371177	-0.837984	
27	6	0	4.567400	1.195024	-1.277894	
28	6	0	6.097574	-3.436893	0.213589	
29	6	0	6.476042	-2.065366	-4.618862	
30	6	0	0.362364	-2.025123	-0.169981	
31	6	0	0.689549	-3.232247	-0.820954	
32	6	0	-0.237460	-3.912419	-1.606650	
33	6	0	-1.520468	-3.383675	-1.764570	
34	6	0	-1.864702	-2.165139	-1.146684	

Table S24 Cartesian coordinates of optimized geometry of **P1-F** (DFT, B3LYP/6-31g*)

 Standard orientation: (Ground State)

35	6	0	-0.938957	-1.507011	-0.345439
36	6	0	-2.685080	-3.887640	-2.492239
37	6	0	-2.852992	-5.034023	-3.269526
38	6	0	-4.083612	-5.263678	-3.889000
39	6	0	-5.147590	-4.362476	-3.755580
40	6	0	-4.961993	-3.207983	-2.972973
41	6	0	-3.752300	-2.977727	-2.327591
42	6	0	-3.320580	-1.785318	-1.460412
43	6	0	7.050594	3.242929	5.336407
44	6	0	-6.477472	-4.624824	-4.425812
45	6	0	-14.027167	0.223809	5.489886
46	6	0	-12.525755	-0.081902	5.482368
47	6	0	-11.927177	-0.151879	4.071795
48	6	0	-10.423900	-0.457882	4.057314
49	6	0	-9.822538	-0.531741	2.648036
50	6	0	-8.319696	-0.841181	2.640224
51	6	0	-7.712557	-0.924977	1.233959
52	6	0	-6.211553	-1.243528	1.237128
53	6	0	-5.597512	-1.344973	-0.166731
54	6	0	-4.103169	-1.693798	-0.114828
55	6	0	-1.971458	10.945408	-3.139267
56	6	0	-2.454366	9.612988	-3.721594
57	6	0	-2.249467	8.425851	-2.771645
58	6	0	-2.726592	7.087176	-3.349063
59	6	0	-2.519984	5.899046	-2.400591
60	6	0	-2.987795	4.559738	-2.984643
61	6	0	-2.778075	3.370021	-2.038833
62	6	0	-3.229464	2.029233	-2.632360
63	6	0	-3.013519	0.838371	-1.686694
64	6	0	-3.437161	-0.491534	-2.325022
65	1	0	7.549351	1.246832	3.553124
66	1	0	2.717678	2.155785	3.974563
67	1	0	4.317296	3.482070	5.270320
68	1	0	3.033706	-1.837982	-0.541355
69	1	0	-0.097223	-0.674208	2.166611
70	1	0	1.556576	0.512828	3.528131
71	1	0	7.201660	1.418143	0.232260
72	1	0	9.514780	1.762645	-0.533254
73	1	0	11.322204	0.205091	0.188727
74	1	0	10.760013	-1.701745	1.692517
75	1	0	8.420592	-2.035056	2.449210

76	1	0	5.368573	0.244208	-3.663210	
77	1	0	6.637225	-3.647348	-2.398602	
78	1	0	3.484656	1.122238	-1.112373	
79	1	0	4.988421	1.633246	-0.367956	
80	1	0	4.735100	1.882656	-2.114613	
81	1	0	6.012344	-4.434638	-0.234725	
82	1	0	7.090378	-3.356933	0.671124	
83	1	0	5.381365	-3.338347	1.030754	
84	1	0	5.792296	-1.617584	-5.350508	
85	1	0	7.482902	-1.687473	-4.847489	
86	1	0	6.490976	-3.147765	-4.792206	
87	1	0	1.679704	-3.653084	-0.676142	
88	1	0	0.037567	-4.854583	-2.075751	
89	1	0	-1.192900	-0.574374	0.148069	
90	1	0	-2.034864	-5.737445	-3.404243	
91	1	0	-4.217603	-6.155506	-4.498185	
92	1	0	-5.777589	-2.493033	-2.892867	
93	1	0	8.057724	3.176231	4.909988	
94	1	0	6.772732	4.304259	5.380775	
95	1	0	7.114312	2.887246	6.375461	
96	1	0	-6.877766	-3.717996	-4.895535	
97	1	0	-6.389728	-5.392615	-5.202129	
98	1	0	-7.232684	-4.972068	-3.706909	
99	1	0	-14.423788	0.263734	6.511142	
100	1	0	-14.237794	1.189299	5.013108	
101	1	0	-14.590542	-0.542990	4.943563	
102	1	0	-12.344121	-1.034705	6.000007	
103	1	0	-11.993625	0.684584	6.063692	
104	1	0	-12.109941	0.801647	3.553569	
105	1	0	-12.460349	-0.918964	3.490056	
106	1	0	-10.243040	-1.410060	4.578229	
107	1	0	-9.892247	0.310038	4.638789	
108	1	0	-10.000933	0.420710	2.126615	
109	1	0	-10.354436	-1.299460	2.066172	
110	1	0	-8.143092	-1.790940	3.166816	
111	1	0	-7.788223	-0.071681	3.219624	
112	1	0	-7.883241	0.025795	0.706795	
113	1	0	-8.245695	-1.693075	0.653715	
114	1	0	-6.044285	-2.189856	1.772491	
115	1	0	-5.678470	-0.472861	1.813325	
116	1	0	-5.751454	-0.393180	-0.694166	

117	1	0	-6.141221	-2.108958	-0.736346
118	1	0	-3.982773	-2.655082	0.401691
119	1	0	-3.594855	-0.953341	0.516584
120	1	0	-2.131525	11.772684	-3.840808
121	1	0	-2.503222	11.188236	-2.210757
122	1	0	-0.900388	10.909824	-2.904916
123	1	0	-1.927964	9.414858	-4.666269
124	1	0	-3.520571	9.690803	-3.979367
125	1	0	-2.776894	8.623856	-1.826309
126	1	0	-1.183066	8.350226	-2.512174
127	1	0	-2.198078	6.891851	-4.294197
128	1	0	-3.793314	7.163500	-3.609313
129	1	0	-3.052697	6.090781	-1.457090
130	1	0	-1.454789	5.826534	-2.136702
131	1	0	-2.453555	4.370283	-3.927685
132	1	0	-4.053764	4.630980	-3.249792
133	1	0	-3.319589	3.553689	-1.098657
134	1	0	-1.714570	3.305382	-1.767463
135	1	0	-2.684936	1.848108	-3.570939
136	1	0	-4.293854	2.091527	-2.906625
137	1	0	-3.574053	1.015987	-0.758102
138	1	0	-1.954473	0.795395	-1.407758
139	1	0	-2.842434	-0.650306	-3.234158
140	1	0	-4.479182	-0.402291	-2.662658
141	9	0	6.098250	-1.803809	2.752854

Zero-point correction=	1.232463
Thermal correction to Energy=	1.299535
Thermal correction to Enthalpy=	1.300479
Thermal correction to Gibbs Free Energy=	1.116536
Sum of electronic and zero-point Energies=	-2586.865664
Sum of electronic and thermal Energies=	-2586.798592
Sum of electronic and thermal Enthalpies=	-2586.797648
Sum of electronic and thermal Free Energies=	-2586.981592

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
			6 109676	2 557006	2 995106	
1	0	0	5 700817	2.337990	2.005100	
2	0	0	3.700817	1.304339	2.271233	
5	0	0	4.317803	1.505524	2.300843	
4	0	0	3.796912	2.327903	5.449429 4.057726	
5	0	0	4.620104	3.470101	4.037730	
0	0	0	3.994121	0.501745	5.765554 1.974115	
/ 0	0	0	3.443934	0.391/43	1.8/4113	
ð 0	0	0	3.917210	-0.121000	0.025227	
9	0	0	2.963830	-0.800410	-0.023327	
10	6	0	1.034075	-1.012000	0.378390	
11	6	0	1.212855	-0.392819	1.500/5/	
12	6	0	2.116150	0.590592	2.270558	
13	5	0	6.383045	0.527201	1.258302	
14	1	0	5.239259	-0.0/4650	0.340822	
15	6	0	7.205308	-0.620404	2.093897	
16	6	0	5.600323	-0.562067	-0.961483	
17	6	0	8.558288	-0.886819	1.822087	
18	6	0	9.284375	-1.846079	2.535439	
19	6	0	8.671214	-2.569369	3.560371	
20	6	0	7.329253	-2.316395	3.862585	
21	6	0	6.618770	-1.356100	3.141096	
22	6	0	5.578066	0.346860	-2.046968	
23	6	0	5.956088	-0.090816	-3.316947	
24	6	0	6.353309	-1.411319	-3.557184	
25	6	0	6.343398	-2.298964	-2.483745	
26	6	0	5.970439	-1.904115	-1.189449	
27	6	0	5.141100	1.776498	-1.841156	
28	6	0	5.963298	-2.943009	-0.093539	
29	6	0	6.767301	-1.856052	-4.940604	
30	б	0	0.687125	-1.819872	-0.429368	
31	6	0	1.105565	-2.990781	-1.092199	
32	6	0	0.214822	-3.763766	-1.833702	
33	6	0	-1.119842	-3.364294	-1.930069	
34	6	0	-1.556522	-2.180888	-1.300210	

Table S25 Cartesian coordinates of optimized geometry of **P1-F'** (DFT, B3LYP/6-31g*)

 Standard orientation: (Ground State)

35	6	0	-0.664865	-1.432137	-0.540767
36	6	0	-2.261072	-3.988677	-2.599865
37	6	0	-2.347276	-5.151413	-3.364772
38	6	0	-3.575950	-5.508631	-3.926075
39	6	0	-4.716031	-4.715449	-3.748868
40	6	0	-4.614308	-3.543781	-2.974663
41	6	0	-3.408058	-3.191536	-2.381620
42	6	0	-3.059983	-1.958988	-1.531360
43	6	0	6.899134	4.521721	4.436610
44	6	0	-6.035366	-5.096924	-4.379145
45	6	0	-13.417147	-0.469030	6.018644
46	6	0	-11.916611	-0.765592	5.936866
47	6	0	-11.384530	-0.790193	4.498348
48	6	0	-9.881887	-1.083889	4.407955
49	6	0	-9.349969	-1.105204	2.969495
50	6	0	-7.846090	-1.393681	2.880046
51	6	0	-7.312747	-1.409043	1.441932
52	6	0	-5.806898	-1.687923	1.353397
53	6	0	-5.273573	-1.696626	-0.087010
54	6	0	-3.761433	-1.954405	-0.137926
55	6	0	-3.844299	10.845300	-2.815774
56	6	0	-4.108795	9.474716	-3.446701
57	6	0	-3.646693	8.306854	-2.566119
58	6	0	-3.909704	6.930121	-3.188915
59	6	0	-3.453076	5.764505	-2.302767
60	6	0	-3.718539	4.386406	-2.921822
61	6	0	-3.273594	3.223320	-2.026329
62	6	0	-3.538535	1.843384	-2.641784
63	6	0	-3.108080	0.683455	-1.732086
64	6	0	-3.375279	-0.684261	-2.374711
65	1	0	7.561475	2.573988	2.643785
66	1	0	2.729821	2.571872	3.649505
67	1	0	4.186878	4.200480	4.740485
68	1	0	3.283250	-1.334967	-0.949242
69	1	0	0.203506	-0.540840	1.939947
70	1	0	1.773598	0.865307	3.192154
71	1	0	9.044048	-0.325391	1.027628
72	1	0	10.330858	-2.027586	2.292949
73	1	0	9.230845	-3.316060	4.121037
74	1	0	6.839557	-2.868119	4.663861
75	1	0	5.576267	-1.170992	3.398692

76	1	0	5.936783	0.619700	-4.142974
77	1	0	6.626900	-3.338128	-2.649337
78	1	0	4.135754	1.829778	-1.406643
79	1	0	5.821110	2.276119	-1.145716
80	1	0	5.132820	2.322038	-2.792048
81	1	0	5.803595	-3.942915	-0.516033
82	1	0	6.914431	-2.955107	0.448932
83	1	0	5.181021	-2.746561	0.643009
84	1	0	5.990749	-1.637985	-5.685722
85	1	0	7.680820	-1.344311	-5.272791
86	1	0	6.963803	-2.933602	-4.970400
87	1	0	2.140352	-3.305675	-0.994279
88	1	0	0.557767	-4.678152	-2.312669
89	1	0	-0.985072	-0.534278	-0.021463
90	1	0	-1.470043	-5.770898	-3.534871
91	1	0	-3.646379	-6.414527	-4.525101
92	1	0	-5.492881	-2.912584	-2.863487
93	1	0	7.438626	5.118962	3.689399
94	1	0	6.332478	5.214543	5.070117
95	1	0	7.659743	4.042667	5.067973
96	1	0	-6.401999	-4.311868	-5.053486
97	1	0	-5.947233	-6.019872	-4.962280
98	1	0	-6.814097	-5.256485	-3.621706
99	1	0	-13.767220	-0.457421	7.057264
100	1	0	-13.653127	0.506917	5.576427
101	1	0	-14.000929	-1.224696	5.478409
102	1	0	-11.707263	-1.732196	6.418352
103	1	0	-11.362316	-0.012430	6.516019
104	1	0	-11.596672	0.176991	4.016802
105	1	0	-11.939548	-1.543996	3.918661
106	1	0	-9.670087	-2.051109	4.889148
107	1	0	-9.328688	-0.330193	4.989057
108	1	0	-9.563938	-0.138206	2.488627
109	1	0	-9.901540	-1.860115	2.388151
110	1	0	-7.631129	-2.361164	3.359064
111	1	0	-7.296237	-0.639396	3.463396
112	1	0	-7.532065	-0.442084	0.963256
113	1	0	-7.859444	-2.165946	0.858501
114	1	0	-5.585890	-2.655262	1.829322
115	1	0	-5.262851	-0.931799	1.939711
116	1	0	-5.513041	-0.732479	-0.559076

117	1	0	-5.808333	-2.465777	-0.658298	
118	1	0	-3.544489	-2.915773	0.348271	
119	1	0	-3.264037	-1.194139	0.479405	
120	1	0	-4.183915	11.658842	-3.467348	
121	1	0	-4.365384	10.947048	-1.855684	
122	1	0	-2.774177	10.994399	-2.626281	
123	1	0	-3.603074	9.416756	-4.421904	
124	1	0	-5.183734	9.369009	-3.656144	
125	1	0	-4.151207	8.367286	-1.589379	
126	1	0	-2.571281	8.412983	-2.356940	
127	1	0	-3.401452	6.868320	-4.163521	
128	1	0	-4.985185	6.826695	-3.401830	
129	1	0	-3.960685	5.828785	-1.327984	
130	1	0	-2.378235	5.866926	-2.090402	
131	1	0	-3.203423	4.317546	-3.892261	
132	1	0	-4.793051	4.287161	-3.141899	
133	1	0	-3.790046	3.294127	-1.056595	
134	1	0	-2.200561	3.322608	-1.804846	
135	1	0	-3.010310	1.766199	-3.604280	
136	1	0	-4.610624	1.748464	-2.875822	
137	1	0	-3.642092	0.766847	-0.774210	
138	1	0	-2.040692	0.787352	-1.504304	
139	1	0	-2.807567	-0.754667	-3.312918	
140	1	0	-4.434865	-0.728341	-2.664436	
141	9	0	7.323305	1.199944	0.408861	

Zero-point correction=	1.232212
Thermal correction to Energy=	1.299424
Thermal correction to Enthalpy=	1.300368
Thermal correction to Gibbs Free Energy=	1.116239
Sum of electronic and zero-point Energies=	-2586.866641
Sum of electronic and thermal Energies=	-2586.799430
Sum of electronic and thermal Enthalpies=	-2586.798485
Sum of electronic and thermal Free Energies=	-2586.982615

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	4.804113	2.989927	0.134115	
2	6	0	3.615402	2.231106	0.066708	
3	6	0	2.369748	2.910129	0.083842	
4	6	0	2.375521	4.320961	0.162021	
5	6	0	3.562488	5.030926	0.218409	
6	6	0	4.809586	4.378042	0.206872	
7	6	0	1.127782	2.134643	0.023954	
8	6	0	1.149929	0.711770	0.021341	
9	6	0	-0.059983	-0.001679	-0.051862	
10	6	0	-1.301627	0.636531	-0.109976	
11	6	0	-1.321159	2.045545	-0.092550	
12	6	0	-0.138082	2.755615	-0.035199	
13	5	0	3.644793	0.685027	0.027157	
14	7	0	2.379820	0.012829	0.060055	
15	6	0	5.006102	-0.115286	-0.073763	
16	6	0	2.318649	-1.435229	0.112633	
17	6	0	5.843551	0.096167	-1.188141	
18	6	0	7.064096	-0.567474	-1.328421	
19	6	0	7.495159	-1.450288	-0.337652	
20	б	0	6.693908	-1.665251	0.785038	
21	6	0	5.466954	-1.011949	0.907811	
22	6	0	2.414642	-2.179555	-1.075407	
23	6	0	2.366321	-3.575139	-0.990375	
24	6	0	2.224579	-4.239649	0.230331	
25	6	0	2.110155	-3.467381	1.390014	
26	6	0	2.149802	-2.070081	1.356854	
27	6	0	2.561204	-1.504354	-2.417913	
28	6	0	1.990862	-1.275643	2.632455	
29	6	0	2.212739	-5.749149	0.297210	
30	6	0	-2.552816	-0.121194	-0.201280	
31	16	0	-2.682090	-1.778552	0.359517	
32	6	0	-4.360788	-1.887922	-0.119635	
33	6	0	-4.793935	-0.705367	-0.675770	
34	6	0	-3.761159	0.284746	-0.712854	

Table S26 Cartesian coordinates of optimized geometry of **P2** (DFT, B3LYP/6-31g*)Standard orientation: (Ground State)

35	6	0	6.095315	5.166844	0.277104
36	6	0	-5.121606	-3.158046	0.127827
37	1	0	5.754207	2.462662	0.135432
38	1	0	1.445457	4.878256	0.187532
39	1	0	3.528366	6.117210	0.279933
40	1	0	-0.023595	-1.083392	-0.092717
41	1	0	-2.267846	2.576155	-0.106774
42	1	0	-0.196975	3.837954	-0.032296
43	1	0	5.534310	0.796297	-1.961704
44	1	0	7.679920	-0.388914	-2.206627
45	1	0	8.448048	-1.964013	-0.437483
46	1	0	7.022708	-2.346852	1.565829
47	1	0	4.860829	-1.205307	1.788150
48	1	0	2.438699	-4.156304	-1.907566
49	1	0	1.981950	-3.963836	2.349912
50	1	0	1.831768	-0.697579	-2.547354
51	1	0	3.558644	-1.063708	-2.533624
52	1	0	2.418905	-2.224961	-3.229031
53	1	0	1.947657	-1.941846	3.499239
54	1	0	2.817745	-0.572793	2.785882
55	1	0	1.070868	-0.679128	2.620218
56	1	0	1.802740	-6.187837	-0.618796
57	1	0	3.227941	-6.149150	0.422533
58	1	0	1.615827	-6.109078	1.142101
59	1	0	-3.910763	1.266489	-1.151618
60	1	0	6.967522	4.505744	0.277750
61	1	0	6.194386	5.850200	-0.576239
62	1	0	6.140621	5.781768	1.185072
63	1	0	-6.067902	-3.152736	-0.421434
64	1	0	-4.556064	-4.040438	-0.193724
65	1	0	-5.359035	-3.292653	1.191380
66	6	0	-6.192877	-0.434019	-1.177830
67	1	0	-6.135795	0.239011	-2.044186
68	1	0	-6.652229	-1.360185	-1.545999
69	6	0	-7.117735	0.195766	-0.116679
70	1	0	-7.194169	-0.485599	0.742037
71	1	0	-6.652547	1.114622	0.266695
72	6	0	-8.519697	0.511886	-0.652263
73	1	0	-8.970178	-0.406650	-1.057783
74	1	0	-8.435959	1.207293	-1.500853
75	6	0	-9.457589	1.110710	0.403620

76	1	0	-9.548880	0.410280	1.247196	
77	1	0	-9.005006	2.024437	0.816964	
78	6	0	-10.856620	1.438661	-0.134122	
79	1	0	-11.305251	0.527446	-0.555067	
80	1	0	-10.765957	2.146152	-0.970659	
81	6	0	-11.791606	2.022952	0.929638	
82	1	0	-12.780314	2.248532	0.513910	
83	1	0	-11.932146	1.321941	1.761685	
84	1	0	-11.385734	2.952788	1.346997	

	0711456
Zero-point correction=	0./11456
Thermal correction to Energy=	0.753043
Thermal correction to Enthalpy=	0.753987
Thermal correction to Gibbs Free Energy=	0.630810
Sum of electronic and zero-point Energies=	-1988.659950
Sum of electronic and thermal Energies=	-1988.618364
Sum of electronic and thermal Enthalpies=	-1988.617419
Sum of electronic and thermal Free Energies=	-1988.740596

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	4.800174	-2.778183	-0.825060
2	6	0	3.646580	-2.033774	-0.531775
3	6	0	2.402817	-2.701040	-0.520435
4	6	0	2.371744	-4.083268	-0.815067
5	6	0	3.534061	-4.791536	-1.087224
6	6	0	4.781280	-4.147541	-1.093031
7	6	0	1.165923	-1.935020	-0.264831
8	6	0	1.181229	-0.495991	-0.271735
9	6	0	-0.067565	0.171716	-0.185256
10	6	0	-1.283183	-0.500682	-0.024137
11	б	0	-1.274049	-1.904421	0.055159
12	6	0	-0.065675	-2.577598	-0.066535
13	5	0	3.795051	-0.448741	-0.255139
14	7	0	2.360103	0.208121	-0.352547
15	6	0	4.520776	-0.148314	1.186402
16	6	0	2.298841	1.625736	-0.570969
17	6	0	4.172501	-0.830285	2.367162
18	6	0	4.790353	-0.563637	3.590943
19	6	0	5.796412	0.403503	3.671453
20	6	0	6.174619	1.087667	2.513858
21	6	0	5.546355	0.807459	1.296584
22	6	0	2.215578	2.537193	0.500942
23	6	0	2.201800	3.912377	0.224527
24	6	0	2.264944	4.410919	-1.075553
25	6	0	2.315679	3.488622	-2.125832
26	6	0	2.329306	2.110587	-1.899452
27	6	0	2.114682	2.082592	1.939124
28	6	0	2.364881	1.153164	-3.066154
29	6	0	2.285876	5.898733	-1.344755
30	6	0	-2.550835	0.230411	0.082372
31	16	0	-2.759874	1.831045	-0.613887
32	6	0	-4.417191	1.943700	-0.060141
33	6	0	-4.785940	0.802392	0.613814
34	6	0	-3.722689	-0.155224	0.687170

Table S27 Cartesian coordinates of optimized geometry of **P2-F** (DFT, B3LYP/6-31g*)

 Standard orientation: (Ground State)

35	6	0	6.052984	-4.916896	-1.369799
36	6	0	-5.221814	3.173077	-0.368803
37	1	0	5.754079	-2.252387	-0.845974
38	1	0	1.425129	-4.613785	-0.868697
39	1	0	3.473073	-5.855803	-1.314892
40	1	0	-0.068129	1.255522	-0.201882
41	1	0	-2.201051	-2.458726	0.168302
42	1	0	-0.083201	-3.662012	-0.013489
43	1	0	3.397319	-1.594496	2.326109
44	1	0	4.490846	-1.111598	4.483737
45	1	0	6.282796	0.615650	4.622380
46	1	0	6.963201	1.838440	2.560164
47	1	0	5.851853	1.338337	0.398408
48	1	0	2.132870	4.609635	1.059180
49	1	0	2.342053	3.851079	-3.153182
50	1	0	1.596944	1.124735	2.023799
51	1	0	3.105356	1.951950	2.387016
52	1	0	1.569591	2.825707	2.533891
53	1	0	2.331308	1.698051	-4.016868
54	1	0	3.275757	0.550750	-3.025701
55	1	0	1.515579	0.460443	-3.038430
56	1	0	1.890168	6.464918	-0.493673
57	1	0	3.306361	6.263070	-1.530950
58	1	0	1.688384	6.157930	-2.227634
59	1	0	-3.818189	-1.097966	1.217127
60	1	0	6.873530	-4.241982	-1.637879
61	1	0	6.381148	-5.494221	-0.492840
62	1	0	5.924554	-5.633603	-2.191806
63	1	0	-6.157617	3.177146	0.199802
64	1	0	-4.676936	4.090758	-0.114120
65	1	0	-5.485240	3.239885	-1.433602
66	6	0	-6.151369	0.533972	1.201871
67	1	0	-6.033762	-0.001295	2.154800
68	1	0	-6.657810	1.477006	1.446127
69	6	0	-7.064041	-0.296228	0.277023
70	1	0	-7.190320	0.239391	-0.674202
71	1	0	-6.558491	-1.239281	0.027649
72	6	0	-8.438885	-0.593861	0.888213
73	1	0	-8.939135	0.354210	1.138863
74	1	0	-8.305804	-1.126181	1.842215
75	6	0	-9.351158	-1.419226	-0.028351

76	1	0	-9.480428	-0.890241	-0.984534
77	1	0	-8.854710	-2.369739	-0.274346
78	6	0	-10.730386	-1.711758	0.576499
79	1	0	-11.227354	-0.761702	0.820671
80	1	0	-10.601997	-2.240468	1.531934
81	6	0	-11.633750	-2.537415	-0.345559
82	1	0	-12.611792	-2.726745	0.112663
83	1	0	-11.806184	-2.020187	-1.297720
84	1	0	-11.180461	-3.509316	-0.577027
85	9	0	4.622615	0.143969	-1.275073

Zero-point correction=	0.711132
Thermal correction to Energy=	0.753981
Thermal correction to Enthalpy=	0.754926
Thermal correction to Gibbs Free Energy=	0.629274
Sum of electronic and zero-point Energies=	-2088.587290
Sum of electronic and thermal Energies=	-2088.544440
Sum of electronic and thermal Enthalpies=	-2088.543496
Sum of electronic and thermal Free Energies=	-2088.669148

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
		0	-4 567201	3 021168	-0 042252
2	6	0	-3 413365	2.247677	0 152012
- 3	6	0	-2.168049	2.821290	-0.199591
4	6	0	-2.135622	4.116773	-0.755843
5	6	0	-3.300346	4.855381	-0.925981
6	6	0	-4.543447	4.320117	-0.559655
7	6	0	-0.936924	2.030664	-0.024970
8	6	0	-1.009046	0.603201	0.087929
9	6	0	0.204286	-0.122289	0.113375
10	6	0	1.457519	0.500380	0.088893
11	6	0	1.514104	1.905130	0.035610
12	6	0	0.331663	2.630898	-0.017446
13	5	0	-3.443249	0.762792	0.813785
14	7	0	-2.236209	-0.032654	0.178602
15	6	0	-4.872482	-0.000705	0.603662
16	6	0	-2.284242	-1.424310	-0.133490
17	6	0	-5.688149	-0.273571	1.716785
18	6	0	-6.943344	-0.877012	1.593494
19	6	0	-7.430509	-1.227533	0.333455
20	6	0	-6.649339	-0.960013	-0.793773
21	6	0	-5.398667	-0.355073	-0.652649
22	6	0	-2.426394	-2.410093	0.866526
23	6	0	-2.493184	-3.758790	0.488688
24	6	0	-2.421232	-4.168130	-0.841523
25	6	0	-2.260071	-3.178999	-1.817263
26	б	0	-2.187926	-1.824074	-1.490813
27	б	0	-2.495090	-2.062753	2.334644
28	б	0	-2.001707	-0.802003	-2.586900
29	б	0	-2.533611	-5.627170	-1.221957
30	б	0	2.699385	-0.278251	0.156269
31	16	0	2.804150	-1.915212	-0.475589
32	6	0	4.485448	-2.072684	-0.010115
33	6	0	4.936042	-0.919922	0.590357
34	6	0	3.917454	0.084632	0.676562

Table S28 Cartesian coordinates of optimized geometry of **P2-F'** (DFT, B3LYP/6-31g*)

 Standard orientation: (Ground State)

35	6	0	-5.812617	5.128631	-0.708737
36	6	0	5.219943	-3.348725	-0.304232
37	1	0	-5.529614	2.586091	0.222803
38	1	0	-1.194311	4.543557	-1.093296
39	1	0	-3.247353	5.852134	-1.363941
40	1	0	0.152418	-1.201198	0.214891
41	1	0	2.472786	2.415036	0.004557
42	1	0	0.393384	3.714993	-0.057222
43	1	0	-5.316776	0.003042	2.700202
44	1	0	-7.542842	-1.072730	2.482118
45	1	0	-8.406528	-1.698941	0.228996
46	1	0	-7.016673	-1.223864	-1.784784
47	1	0	-4.816377	-0.149059	-1.548611
48	1	0	-2.597647	-4.511192	1.270321
49	1	0	-2.194132	-3.469603	-2.865648
50	1	0	-2.036072	-1.096726	2.546729
51	1	0	-3.537532	-1.983891	2.666772
52	1	0	-2.010977	-2.843615	2.934548
53	1	0	-2.214936	-1.240808	-3.568300
54	1	0	-2.652273	0.065080	-2.436615
55	1	0	-0.973917	-0.417257	-2.605932
56	1	0	-2.310198	-6.280218	-0.370383
57	1	0	-3.546194	-5.880237	-1.567673
58	1	0	-1.844045	-5.888062	-2.034542
59	1	0	4.077369	1.044331	1.158493
60	1	0	-6.691873	4.478661	-0.782766
61	1	0	-5.975969	5.794918	0.151370
62	1	0	-5.786348	5.764364	-1.603303
63	1	0	6.189114	-3.364719	0.204823
64	1	0	4.656788	-4.228955	0.030368
65	1	0	5.411955	-3.478132	-1.378449
66	6	0	6.337303	-0.685720	1.103913
67	1	0	6.283088	-0.156145	2.066017
68	1	0	6.835347	-1.641160	1.313780
69	6	0	7.218354	0.133637	0.139679
70	1	0	7.286419	-0.395862	-0.820922
71	1	0	6.720909	1.089084	-0.076598
72	6	0	8.627175	0.397914	0.685334
73	1	0	9.121008	-0.562421	0.899286
74	1	0	8.550815	0.919461	1.651474
75	6	0	9.509696	1.219140	-0.263398

76	1	0	9.583829	0.701213	-1.231459	
77	1	0	9.019901	2.181719	-0.473073	
78	6	0	10.921025	1.478370	0.279375	
79	1	0	11.411444	0.516220	0.486633	
80	1	0	10.847328	1.995022	1.247124	
81	6	0	11.795163	2.301633	-0.672490	
82	1	0	12.796493	2.467757	-0.257624	
83	1	0	11.914356	1.795236	-1.638537	
84	1	0	11.348849	3.284301	-0.869474	
85	9	0	-3.204409	0.901966	2.233026	

Zero-point correction=	0.711429
Thermal correction to Energy=	0.754079
Thermal correction to Enthalpy=	0.755023
Thermal correction to Gibbs Free Energy=	0.630832
Sum of electronic and zero-point Energies=	-2088.586483
Sum of electronic and thermal Energies=	-2088.543833
Sum of electronic and thermal Enthalpies=	-2088.542889
Sum of electronic and thermal Free Energies=	-2088.667080

Reference

- 1 N. I. Abdo, A. A. El-Shehawy, A. A. El-Barbary and J.-S. Lee, Eur. J. Org. Chem., 2012, 5540-5551.
- 2 H. Wang, J. Yang, J. Sun, Y. Xu, Y. Wu, Q. Dong, W.-Y. Wong, Y. Hao, X. Zhang and H. Li, *Macromol. Chem. Phys.*, 2014, 215, 1060-1067.
- 3 M. T. Berry, D. Castrejon and J. E. Hein, Org. Lett., 2014, 16, 3676-3679.
- G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01; Gaussian, Inc., Wallingford, CT, 2010.
- 5 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 6 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623-11627.
- 7 C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- 8 R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454-464.
- 9 M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439-4449.
- 10 G. Sheldrick, Acta Crystallogr. A, 2008, 64, 112-122.
- 11 X.-Y. Wang, H.-R. Lin, T. Lei, D.-C. Yang, F.-D. Zhuang, J.-Y. Wang, S.-C. Yuan and J. Pei, *Angew. Chem. Int. Ed.*, 2013, **52**, 3117-3120.
- 12 T. Hatakeyama, S. Hashimoto, S. Seki and M. Nakamura, J. Am. Chem. Soc., 2011, 133, 18614-18617.
- 13 S. Yruegas, J. J. Martinez and C. D. Martin, Chem. Commun., 2018, DOI: 10.1039/C8CC01529E.
- 14 K. Huang and C. D. Martin, Inorg. Chem., 2015, 54, 1869-1875.
- 15 H. Braunschweig, M. A. Celik, F. Hupp, I. Krummenacher and L. Mailaender, *Angew. Chem. Int. Ed.*, 2015, **54**, 6347-6351.
- 16 T. Taniguchi, J. Wang, S. Irle and S. Yamaguchi, Dalton. Trans., 2013, 42, 620-624.
- 17 M. J. D. Bosdet, C. A. Jaska, W. E. Piers, T. S. Sorensen and M. Parvez, Org. Lett., 2007, 9, 1395-1398.
- 18 A. Wakamiya, T. Taniguchi and S. Yamaguchi, Angew. Chem. Int. Ed., 2006, 45, 3170-3173.
- 19 A. W. Baggett, F. Guo, B. Li, S.-Y. Liu and F. Jäkle, Angew. Chem. Int. Ed., 2015, 54, 11191-11195.
- 20 J. F. Araneda, W. E. Piers, B. Heyne, M. Parvez and R. McDonald, Angew. Chem. Int. Ed., 2011, 50, 12214-12217.
- 21 A. J. V. Marwitz, A. N. Lamm, L. N. Zakharov, M. Vasiliu, D. A. Dixon and S.-Y. Liu, *Chem. Sci.*, 2012, **3**, 825-829.
- 22 K. D. Harris, B. M. Kariuki, C. Lambropoulos, D. Philp and J. M. Robinson, *Tetrahedron*, 1997, 53, 8599-8612.

- 23 E. R. Abbey, L. N. Zakharov and S.-Y. Liu, J. Am. Chem. Soc., 2008, 130, 7250-7252.
- 24 M. Schaefer, J. Schaefer, R. D. Dewhurst, W. C. Ewing, M. Krahfuss, M. W. Kuntze-Fechner, M. Wehner, C. Lambert and H. Braunschweig, *Chem.-Eur. J.*, 2016, **22**, 8603-8609.
- 25 A. Gackstatter, H. Braunschweig, T. Kupfer, C. Voigt and N. Arnold, *Chem.-Eur. J.*, 2016, 22, 16415-16419.
- 26 K. Liu, R. A. Lalancette and F. Jäkle, J. Am. Chem. Soc., 2017, 139, 18170-18173.
- 27 F. Cheng, E. M. Bonder, A. Doshi and F. Jäkle, Polym. Chem., 2012, 3, 596-600.
- 28 Y. Li, Y. Kang, J.-S. Lu, I. Wyman, S.-B. Ko and S. Wang, Organometallics, 2014, 33, 964-973.
- 29 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703-2707.