Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

| CP-made Ce <sub>1-x</sub> Zr <sub>x</sub> O <sub>2</sub> |                     |                         | FSP-made $Ce_{1-x}Zr_xO_2$ |                     |                         |  |
|----------------------------------------------------------|---------------------|-------------------------|----------------------------|---------------------|-------------------------|--|
| X                                                        | LP <sup>a</sup> (Á) | BET (m <sup>2</sup> /g) | X                          | LP <sup>a</sup> (Á) | BET (m <sup>2</sup> /g) |  |
| 0                                                        | 5.41                | NM <sup>b</sup>         | 0                          | 5.41                | NM <sup>b</sup>         |  |
| 0.20                                                     | 5.36                | 103                     | 0.20                       | 5.35                | 103                     |  |
| 0.46                                                     | 5.26                | 74                      | 0.45                       | 5.27                | 96                      |  |
| 0.74                                                     | 5.17                | 50                      | 0.70                       | 5.18                | 99                      |  |

Table S1 Lattice parameters and BET surface area of CP and FSP made  $Ce_{1-x}Zr_xO_2$  catalysts.

<sup>a</sup> Lattice parameter

<sup>b</sup> Not measured



Figure S1 HRTEM images of (a) FSP-Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>; (b) FSP-Ce<sub>0.25</sub>Zr<sub>0.75</sub>O<sub>2</sub>; (c) CP-Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> and (d) CP-Ce<sub>0.25</sub>Zr<sub>0.75</sub>O<sub>2</sub>, the insets show clearly particle shapes. Regular truncated octahedral particles with {111} and {100} as major facets are formed in FSP-made samples, while CP-made ones show irregular polygon geometries which resemble spherical particles in HRTEM images. FSP-made regular truncated octahedral particles are intermediates of the agglomeration after a high temperature calcination process, while CP-made irregular polygons or spherical particles are the final products.



Figure S2 Catalytic performance of Ce-Zr oxide solid solutions made by FSP and CP methods in CO oxidation at 300 °C and 0.1MPa in 1.66%CO/3.46%O<sub>2</sub>/He balance atmosphere, space velocity is 12000ml/g·h. The CO conversion of FSP-Ce<sub>1-x</sub>Zr<sub>x</sub>O<sub>2</sub> almost stays at the same level for different Zr content, while they obviously exhibit a volcano type trend with the Zr content over CP-Ce<sub>1-x</sub>Zr<sub>x</sub>O<sub>2</sub>.



Figure S3 TEM images and particle size distribution of FSP-Ce<sub>0.25</sub>Zr<sub>0.75</sub>O<sub>2</sub> sample before (A) and after (B) thermal treatment at 800 °C for 30h; the inset bar diagrams show the particle size distribution; the average particle sizes of fresh and calcined samples are 10.22 and 11.12 nm, respectively.



Figure S4 XRD patterns of fresh and calcined (800 °C for 30h) FSP-Ce<sub>0.25</sub> $Zr_{0.75}O_2$ samples and their crystal sizes calculated by Scherrerś equation.

|                                       | Zr content% |       |       |  |
|---------------------------------------|-------------|-------|-------|--|
| F2g peak position (cm <sup>-1</sup> ) | 25          | 50    | 75    |  |
| CP-fresh                              | 471.2       | 472.0 | 475.2 |  |
| CP-calcined                           | 474.4       | 473.3 | 458.2 |  |
| Blue Shift (cm <sup>-1</sup> )        | 3.2         | 1.3   | -17.0 |  |
| FSP-fresh                             | 465.8       | 466.1 | 461.7 |  |
| FSP-calcined                          | 471.5       | 473.1 | 470.0 |  |
| Blue Shift (cm <sup>-1</sup> )        | 5.7         | 7.0   | 8.3   |  |

Table S2 F2g peak position and shifts of fresh and calcined Ce-Zr oxide solid

## solutions with different Zr content



Figure S5. XPS spectra in Ce 3d of FSP (a, b and c) and CP (d, e and f) made Ce<sub>1</sub>.  $_xZr_xO_2$ , where (a, d) x=0.25; (b, e) x=0.5; (c, f) x=0.75.

| Samplag                                      | Ce 3d                |                       |                         |                          |                      |                        |                         | $C_{2}^{3+}/C_{2}$       |          |  |
|----------------------------------------------|----------------------|-----------------------|-------------------------|--------------------------|----------------------|------------------------|-------------------------|--------------------------|----------|--|
| Samples                                      | V(Ce <sup>4+</sup> ) | V'(Ce <sup>3+</sup> ) | V'' (Ce <sup>4+</sup> ) | V''' (Ce <sup>4+</sup> ) | U(Ce <sup>4+</sup> ) | U' (Ce <sup>3+</sup> ) | U'' (Ce <sup>4+</sup> ) | U''' (Ce <sup>4+</sup> ) | _ cc /ce |  |
| Au/FSP-Ce <sub>0.75</sub> Zr <sub>0.25</sub> | 882.5(10%)           | 883.9(22%)            | 889.3(8%)               | 898.6(18%)               | 901.0(7%)            | 902.6(15%)             | 907.6(6%)               | 917.0(15%)               | 0.37     |  |
| Au/FSP-Ce <sub>0.5</sub> Zr <sub>0.5</sub>   | 882.3(9%)            | 883.7(19%)            | 888.8(12%)              | 898.5(19%)               | 900.9(6%)            | 902.2(13%)             | 908.2(8%)               | 916.9(13%)               | 0.32     |  |
| Au/FSP-Ce <sub>0.25</sub> Zr <sub>0.75</sub> | 882.6(15%)           | 884.5(16%)            | 889.3(9%)               | 898.6(19%)               | 901.2(10%)           | 903.4(11%)             | 908.3(6%)               | 917.0(13%)               | 0.27     |  |
| Au/CP-Ce <sub>0.75</sub> Zr <sub>0.25</sub>  | 882.5(9%)            | 883.6(19%)            | 888.3(13%)              | 898.8(19%)               | 901.1(6%)            | 902.7(13%)             | 908.2(9%)               | 917.0(13%)               | 0.32     |  |
| Au/CP-Ce <sub>0.5</sub> Zr <sub>0.5</sub>    | 882.6(15%)           | 884.6(14%)            | 889.2(10%)              | 898.6(21%)               | 901.2(10%)           | 903.7(9%)              | 908.4(7%)               | 917.0(14%)               | 0.23     |  |
| Au/CP-Ce <sub>0.25</sub> Zr <sub>0.75</sub>  | 882.4(11%)           | 883.6(11%)            | 887.1(19%)              | 898.8(19%)               | 901.4(7%)            | 903.6(7%)              | 908.2(13%)              | 917.1(12%)               | 0.19     |  |
| FSP-Ce <sub>0.25</sub> Zr <sub>0.75</sub>    | 882.3(12%)           | 884.5(14%)            | 889.0(13%)              | 898.4(13%)               | 900.7(11%)           | 903.1(11%)             | 908.3(9%)               | 917.2(17%)               | 0.24     |  |
| CP-Ce <sub>0.25</sub> Zr <sub>0.75</sub>     | 882.6(20%)           | 884.2(14%)            | 888.8(9%)               | 898.3(14%)               | 901.1(18%)           | 904.2(2%)              | 907.5(6%)               | 916.8(17%)               | 0.17     |  |

Table S3 Binding energies (eV) of Ce 3d and  $Ce^{3+}/Ce$  surface atomic ratios of tested

samples

|                                       | Zr content% |       |       |  |
|---------------------------------------|-------------|-------|-------|--|
| F2g peak position (cm <sup>-1</sup> ) | 25          | 50    | 75    |  |
| CP-fresh                              | 471.2       | 472.0 | 475.2 |  |
| Au/CP                                 | 460.1       | 463.8 | 462.6 |  |
| Red Shift (cm <sup>-1</sup> )         | 11.1        | 8.2   | 12.6  |  |
| FSP-fresh                             | 465.8       | 466.1 | 461.7 |  |
| Au/FSP                                | 451.7       | 453.5 | 432.1 |  |
| Red Shift (cm-1)                      | 14.1        | 12.6  | 29.6  |  |

Table S4 F2g peak position and shifts of fresh and Au deposited Ce-Zr oxide solid solutions with different Zr content



Figure S6. TPR results of Ce-Zr oxide solid solutions before and after Au deposition.