Supporting Information

Selective Hydrogenation of 1, 3-Butadiene Catalyzed by A Single Pd Atom

Anchored on Graphene: The Importance of Dynamics

Yingxin Feng, Linsen Zhou, Qiang Wan, Sen Lin,* and Hua Guo*

*: corresponding authors: slin@fzu.edu.cn and hguo@unm.edu

 $\label{eq:Figure S1. Energetics and geometry for the hydrogenation of the oxygen atoms on \ensuremath{\,\text{Pd}}.$

Figure S2. Energetics and geometry for the reaction of water formation on Pd.

Figure S3. Minimum energy path from TS2 to 1B* obtained from NEB calculations.

Table S1 The adsorption energies for Pd, 1,3-butadiene and butane with and without Grimme's semi-empirical scheme. From the test results, it is clear that the Grimme's semi-empirical scheme is important for the dispersion interaction.

	<i>E</i> _{Pd}	E 1,3-butadiene	E _{butane}
With Grimme's scheme	-1.87	-1.66	-0.56
Without Grimme's scheme	-1.44	-1.30	-0.08