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1. Synthetic, instrumental, analytical and computational methods.  

 

Synthetic procedures were performed under an atmosphere of dry nitrogen unless otherwise 

specified. Solvents and reagents were obtained from Sigma-Aldrich and used without purification 

unless otherwise stated. N,N-Dimethylacetamide (DMAc) and N,N-dimethyl-formamide (DMF) 

were distilled over calcium hydride before use. 4,4'-Bis[4-(3-aminophenoxy)benzenesulfonyl]-

1,1'-biphenyl was prepared according to a literature procedure,S1 as was the model oligomer 2.S2 

Deuterated solvents were purchased from Cambridge Isotope Laboratories. Proton and 13C NMR 

spectra were recorded on a Bruker Avance 400 MHz spectrometer, with chemical shifts referenced 

to residual solvent resonances and reported in ppm relative to TMS. Glass transition temperatures 

were measured under nitrogen by differential scanning calorimetry (DSC) using a TA Q2000 

system, at a heating rate of 10 ºC min-1. Inherent viscosities (ηinh) were measured at 25 °C in a 

thermostatted water bath on 0.1% polymer solutions in 1-methylpyrrolidinone (NMP) using a 

Schott-Geräte CT-52 semi-automated viscometer and AVS 470 measurement system. Gel 

permeation chromatography was carried out using a Polymer Laboratories PL-220 instrument 

fitted with 2 x PL 10 μm mixed B columns. Molecular weights are referenced to polystyrene 

standards. Computational modelling using molecular mechanics with charge-equilibration, 

(DREIDING force-field, Materials Studio, v. 7.0, Accelrys Inc., San Diego) was carried out in 

order to obtain a preliminary structural model for copolymer-pyrene interactions. Atomic 

coordinates for the modelled structure (main paper Figure 3a) are provided in electronic format as 

a PDB file. Simulated NMR spectra were generated using the "Peak Table to Spectrum" script in 

Mestrenova (v. 9.0, Mestrelab Research, Santiago de Compostela). Single crystal X-ray data were 

measured for the pyrene complex 3 on an Oxford Diffraction X-Calibur Gemini diffractometer 

using Cu-Kα radiation at 150 K. Details of structure solution and refinement are given below and, 

in electronic format, in the associated cif, Checkcif, and structure-factor files. 

 

2. Solvent-dependence of 1H NMR spectra of copolymer 1 in the diimide region  

 

 It might be expected that the resonances associated with inequivalent pairs of protons in 

unsymmetrically-substituted naphthalenediimide residues (Al-NDI-Ar) would show spin-spin 

splitting, and this is indeed evident when CDCl3/CF3COOH (6:1 v/v) is used as solvent for 

copolymer 1. However, the coupling is suppressed when CDCl3/(CF3)2CHOH  (6:1 v/v) is used, 
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and the latter solvent mixture was employed exclusively in the present complexation study. Spin-

spin splitting of coupled, inequivalent protons vanishes when the two components of the spin 

system, despite their inequivalence, have fortuitously coincident chemical shifts.S4 This is 

evidently the case for copolymer 1 and its complexes with pyrene when CDCl3/(CF3)2CHOH (6:1, 

v/v) is used as 1H NMR solvent. 

 

3. Computational modelling of pyrene intercalation into copolymer 1. 

 

The starting point for modelling a pyrene complex of the chain-folded copolymer 1 was the 

recently-reported X-ray structure of a complex between the bis-diimide 2 and a bispyrenyl 

tweezer-molecule (Figure S1).S2 

 

   

 

Supporting Figure S1. Formation and X-ray crystal structure of a complex between bis-diimide 2 and a 

bispyrenyl tweezer-molecule.S2  

 

 

The segment of copolymer 1 seen in Figure 3a (main paper) was generated in Materials Studio by 

first deleting the N-phenyl substituents from the molecules of 2 in the structure shown above, and 

replacing them with linking triethylenedioxy units and a terminal phenylsulfonyl(4,4'-

biphenylene)sulfonyl4-phenoxyphenyl substituent. The bis(pyrenyl) tweezer molecules were 

converted to simple pyrene molecules by deleting the linking aromatic diamide groups  and 
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replacing them with hydrogens. The resulting model was then energy-minimised in Materials 

Studio (molecular mechanics with charge-equilibration) using the DREIDING force-field.S5 

Atomic coordinates for the final model are given in the SI file [Fig_3_model_data.pdb].    

 

 

4. Crystal structure analysis of complex 3 
     

Dark red single crystals of complex 3 were grown from an equimolar solution of compound 2 and 

pyrene in chloroform/hexafluoropropan-2-ol (6:1 v/v) by vapour diffusion against methanol. 

Crystal data for 3: C46H30N4O10.C16H10.(CF3)2CHOH, Mr = 1169.06, triclinic, P-1, a = 10.6269(3), 

b = 14.9210(5), c = 17.4851(7) Å,  = 108.065(3),  = 102.085(3),  = 91.766(2)°. V = 2563.73(11) 

Å3, T = 150(2) K, Z = 2, Dc = 1.515 g cm-3, μ(Cu-Kα) = 1.006 mm-1, F(000) = 1204. Independent 

measured reflections 8183. R1 = 0.0516, wR2 = 0.0927 for 6639 independent observed reflections 

[2θ ≤ 126°, I > 2σ(I)]. CCDC 1503298. The crystal contains one molecule of hexafluoropropan-

2-ol per supramolecule of 3, hydrogen bonded to a diimide carbonyl oxygen as shown below. The 

bound pyrene molecule was disordered over two sites, and was refined using parts with the total 

occupancy set to 1.   
 

 
 

Supporting Figure S2. X-ray structure of complex 3, showing the solvating molecule of hexafluoropropan-

ol [hydrogen bond O.....O distance = 2.692(1)Å]. Only one of the two sites of pyrene intercalation is shown. 

The second site lies in the same plane as the first and is related to it by a ca. 10° rotation. See Supporting 

Figure S3 and the corresponding cif.  
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Supporting Figure S3. X-ray structure of complex 3, showing thermal ellipsoids. The pyrene guest 

molecule is disordered over two sites, as shown.  

 

 

5. Methodologies for calculating shielding factors (T) and sequence-probabilities (P). 
 

Total shielding factors, T, were obtained for any given septet sequence by determining its three-

digit code (main paper, Table 1) from the numbers and positions of "II" pairs in the sequence. The 

three digits were then used as coefficients Nk in the summation: 

 
 

          (Equation 1) 

 

to give the total shielding factor for that sequence. It should be noted that the starting value of k 

(i.e. 1) is not fixed by the model but is in fact a completely arbitrary integer. Absolute values of T 
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are thus scalable, to any magnitude, by powers of 4. The pattern of shielding factors however 

remains unchanged whatever the starting value of k, a classic example of the scale-independence 

of self-similar structures. Our choice of 1 as the initial value was the obvious place to start, but it 

also proved to have the additional advantage that the range of T-values so obtained (0 to 0.65625; 

Table S1) then corresponds very closely to the range of observed complexation shifts () in ppm 

(main paper, Figure 1). The terminating value of k (here 3) is determined by the length of the 

sequence being considered. Thus, for septets, there are 3 possible positions for "II" pairs relative 

to the central "observed" diimide residue. For nonets there are 4 such positions; for undecets 5, 

and so on. The limiting value of T, for the infinite sequence IIIII……. is 2/3, corresponding to k = 

1 to ∞ for Nk always = 2. 

 

The probability of any given "I"-centred sequence was calculated by assigning an a priori 

probability of one to the central "I" residue, and then – working outwards from this residue in both 

directions – multiplying the probabilities of finding the next-adjacent residues. For example in 

random copolymer 1, which contains equal numbers of "I" and "S" residues, the septet sequence 

IISISII has the probability 0.5 × 1 × 0.5 × 1 × 0.5 × 1 × 0.5 = 0.0625. Individual residue-

probabilities are assigned from the chemistry-based rule (see main paper) that "I" can be followed 

with equal probability by either "I" or "S", but "S" can be followed only by "I". The sequence 

IISISII is symmetrical, but many other sequences, e.g. IISIIII are unsymmetrical and so – in NMR 

terms – are indistinguishable from their mirror images, in this case IIIISII. We term such 

unsymmetrical sequences directionally degenerate. As these comprise two equally probable but 

spectroscopically indistinguishable sequences, they are represented in Tables S1 and S2 by a single 

sequence with twice the probability of a symmetrical one. Again, the method is not limited to 

septets. Sequence probabilities (and shielding factors) for nonets are thus enumerated as a further 

example of the method in Table S2, and are used to generate the simulated NMR spectra shown in 

Figure S3. The self-consistency of the method is confirmed by the fact that the probabilities for all 

possible sequences of a given length [final columns of Table 2 (main paper) and Table S1] sum 

precisely to 1. 
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6. Simulated 1H NMR spectra (400 MHz) for copolymer 1 in the presence of one molar 

equivalent (relative to diimide units) of pyrene-d10, at 400 MHz. These spectra were simulated 

using the data for septet sequences in Table 2 (main paper) at different length scales but at a 

constant, realistic, spectroscopic linewidth (4 Hz). The shielding factor axis T refers to the 

original, unscaled (1) spectrum  

 

 

 

Supporting Figure S4. The re-scaled spectra are aligned to highlight the self-similar character of the "1" 

spectrum. The unscaled spectrum, based on the septet sequences in Table S1, uses T-values from the fourth-

quarter Cantor set (Table S1) as complexation shifts (, and sequence probabilities as integrals. 
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7. Table S1. Total shielding factors and sequence-probabilities for the allowed nonet sequences in 

copolymer 1. The simulated 1H NMR spectrum shown in Figure S4 was again generated by plotting "Group 

probability" against "Group T-value". 
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8. Simulated 1H NMR spectrum (400 MHz) for copolymer 1 in the presence of one molar 

equivalent (relative to diimide units) of pyrene-d10, from the data for nonet sequences shown 

in Table S1 above.   

 

 

 
 

 

Supporting Figure S5.  This nonet-based simulation (400 MHz) was generated from the 15 values of T 

given in Table S2, but shows only the same 10 resonances as the septet-based Supporting Figure S2 because 

of peak overlap at the realistic linewidth (4 Hz) used in the simulation. The resulting match to experiment 

(main paper Figure 2) is rather better for nonets than for septets, notably in terms of the asymmetry of 

several resonance-groups, but the septet-based simulation remains a good approximation.  
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9. Mathematical formulation of generalized Cantor sets 
 

9. 1 Demonstration of the quaternary expression for the fourth-quarter Cantor set 

 

The fourth-quarter Cantor set, like the middle-third Cantor set, can be defined as the limit of a 

sequence of sets Ck. We start with the closed interval C0 = [0,1]. Then the set C1 is obtained by 

removing the fourth quarter (of length ) from C0, leaving [0, ¾]. The next set C2 is defined by 

removing the fourth quarter (of length ) from each of the three remaining quarters of length ¼. 

So       3 71 1 11
16 4 16 2 162 0, , ,C  . The set C3 is defined by removing the fourth quarter (of length 

) from each of the remaining quarters of length . And so on ad infinitum. The fourth-quarter 

Cantor set is the limit of the sequence Ck when k goes to infinity. Since , then 

we can also define the limit to be the intersection of the sets: 

 

𝐶 = ⋂ 𝐶𝑘
∞
𝑘=1       Eq. S1 

       

Mandelbrot coined the word “trema”, from a Latin word meaning “hole”, to name the intervals 

that are removed in this kind of construction.S6 The trema removed in the first iteration is called 

the first-level trema; the tremas removed in the second iteration are called second-level tremas, 

and so on. We demonstrate here the equivalence between the construction by tremas of the fourth-

quarter Cantor set and its quaternary expression. The proof is adapted from the one given by Edgar 

for the middle-third Cantor set.S7  

 

Proposition. Let . Then x belongs to the fourth-quarter Cantor set if and only if x has a 

quaternary (base-4) expansion, given by  

      Eq. S2 

 using only the digits Nk = 0, 1 and 2.  

 

Proof. The first place to the right of the point in the quaternary expression of x is a 3 if and only if 

x is between 

        and       , 
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where we have used the subscript 4 to indicate a number expressed in a quaternary base (instead 

of in the standard decimal base). The first-level trema is the closed interval . 

Neither ¾ nor 1 have expansions excluding the digit 3, so they are both contained in the trema. 

After this trema is removed from C0, we have C1. So C1 contains exactly the numbers in [0,1] that 

have a base-4 expansion not using 3 in the first place to the right of the point.  

 

The second place in a number x in C1 is a 3 if and only if x belongs to one of the three second-level 

tremas: 

, 

, 

. 

 

There is a subtlety in whether the upper limit of the interval defining each trema is included in the 

trema or not. The numbers ¼ and ½ both have alternative quaternary expressions excluding the 

digit 3, which are ¼ = (0.1)4 and ½ = (0.2)4, so they are not included in the tremas. In contrast, for 

¾ the alternative expression ¾ = (0.3)4 still contains a 3, so it must be included in the trema. C2 is 

obtained from C1 after these tremas are removed, so C2 contains exactly the numbers in [0,1] that 

have a base-4 expansion using 3 neither in the first place nor the second place to the right of the 

point. 

 

In the same way, it is easy to check that C3 contains exactly the numbers in [0,1] that have a base-

4 expansion not using 3 in the first 3 places after the point. Continuing in this way, we see that the 

points remaining in the fourth-quarter Cantor set are exactly the numbers in [0,1] that 

have a base-4 expansion not using 3 at all. 

 

It is possible to generalize the construction rules for Cantor sets based on the expansion formula: 

 

     Eq. S3 

 

   
4 4
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
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where b is a positive integer number (greater than 2), and the {Nk} coefficients can take values 

between 0 and b-1, except for some excluded values. We start by dividing C0 = [0,1] into b 

intervals, and assign integers 0 to b-1 to each interval. Then the set C1 is obtained by removing the 

intervals corresponding to the excluded integers in expansion S3. Each remaining interval is 

further divided into b intervals, which are enumerated 0 to b-1 again. The set C2 is obtained by 

removing the open intervals corresponding to the excluded integers. And so on ad infinitum.  

 

 

 

Supporting Figure S6. Some Cantor set constructions (shown up to the third iteration) and their fractal 

dimensions. The fourth-quarter construction is shown in two colours, because the segments remaining after 

each division and deletion are contiguous, and the different colours are needed to enable the segments to 

be visualised. In the other three constructions, the "remaining segments" are non-contiguous and so can be 

visualised in monochrome. 

 

Fig S5 shows some examples, including the “middle-third” and “fourth-quarter” sets, but also two 

examples with more than one excluded integer in the expansion. These geometric constructions 

involve division of a line of unit length into segments, deletion of one or more segments, and then 

repeating the same two operations on each of the remaining segments. The pattern of the remaining 

segments is shown after each iteration of both operations.  
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The fractal (Hausdorff) dimension of each of these self-similar sets equals their similarity 

dimension:1 

   Eq. S4 

 

Thus, the fractal dimension of the middle-third set is D = ln2/ln3 ≈ 0.631, whereas for the fourth-

quarter set it is D = ln3/ln4 ≈ 0.792. The limiting case of a non-fractal set occurs when all integers 

are allowed in the expansion, in which case x can take all values between 0 and 1, and then D = 1.  

 

9. 2 Generalization of the Cantor set to non-integer bases  

 

We have used the integer value b = 4 as the exponential base in the model to describe the NMR 

spectrum, which leads to the fourth-quarter Cantor set described above. However, it is important 

to realise that the same mathematical model with a non-integer value of b, within certain 

constraints, also leads to a Cantor-type set. In fact, there is no reason why the base b should be an 

integer in the model describing the NMR data, and we will show below that the optimal agreement 

between model and experiment is achieved when b = 3.9.  

 

The generalization to non-integer bases can also be explained in terms of the expansion given in 

Eq. S3.  Any fractional number can be expressed in that form with a non-integer b value, using 

non-negative integer digits Nk that are less than b (i.e. Nk = 0, 1, …, [b]; where [b] is the integer 

part of b). The theory of number representations in non-integer bases was introduced by the 

Hungarian mathematician Rényi,S8 and has recently found interesting applications in the 

description of quasicrystals.S8  

 

One difference with respect to the integer expansion, which in the form given by Eq. S3 can 

represent any number from 0 to 1, is that the maximum number that the non-integer expansion can 

represent is  ∑ [𝑏]/𝑏𝑘∞
𝑘=0  =  [b]/(b-1). Since for non-integer b values we have b-1 < [b] < b, this 

maximum number is between 1 and 1.5.   

 

We can now define a generalization of the fourth-quarter Cantor set to any base 3 < b < 4, as the 

set of all x values which have a b-expansion (given by Eq. S3), using only the digits Nk = 0, 1 and 

2.  

ln(Number of allowed integers in { })

ln

kN
D

b

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Based on the analysis in the previous subsection for the integer-base construction, it is clear that 

the generalized construction should have the first-level trema between (0.3)𝑏 = 3/b and (0. 3̅)𝑏 =

3/(𝑏 − 1), which means that the trema width is 
3

𝑏(𝑏−1)
.   

 

The three second-level tremas are: 

 between (0.03)𝑏 =
3

𝑏2    and  (0.03̅)𝑏 =
3

𝑏(𝑏−1)
; 

 between (0.13)𝑏 =
1

𝑏
+

3

𝑏2    and  (0.13̅)𝑏 =
1

𝑏
+

3

𝑏(𝑏−1)
;  

 between (0.23)𝑏 =
2

𝑏
+

3

𝑏2    and  (0.23̅)𝑏 =
2

𝑏
+

3

𝑏(𝑏−1)
; 

which are each of width  
3

𝑏2(𝑏−1)
. [Note: in order to evaluate periodic expansions in base b as a 

function of b, the following equation is useful:  ∑ (
1

𝑏𝑘)∞
𝑘=𝑛 =

1

𝑏𝑛−1(𝑏−1)
] 

 

By defining tremas in this way ad infinitum, only numbers not containing 3 in their base-b 

expansion will be part of the final set.  

 

It is clear from these expressions that i) they reduce to those given for the fourth-quarter Cantor 

set when we set b = 4; and ii) that the resulting pattern will also be self-similar with magnification 

factor b. It also follows from the above, although it is already obvious from Eq. S3, that the 

generalized set is not simply “proportional” to the fourth-quarter set. Even if the number of tremas 

in each step of the construction is the same as in the integer-base case, the relative widths of the 

tremas with respect to the original interval depends on b. The exponential base b is therefore a 

useful parameter to fit the position of the peaks of our NMR spectrum, which we do in the next 

subsection.  

  



Supporting Information 

 S15 

9. 3 Finding the optimal b to fit the NMR data 

 

Finally, we will allow the value of b in our NMR shielding model to adopt non-integer values and 

optimize the value to minimize the discrepancy with experimental data. The model (up to septets) 

is represented by the equation: 

Δ𝛿 = 𝑎 ∑
𝑁𝑘

𝑏𝑘

3

𝑘=1

 

 

where a is a proportionality constant (which in the main text of the article was shown to be ~1 

ppm). The fitting of the model involves finding the parameters a and b that minimize the root mean 

square error (RMSE) between model and experimental data.  

 

 

 

Supporting Figure S7. Variation of the root mean square error (RMSE) between model and experimental 

data with parameters a and b.  
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Figure S7 illustrates that the minimum discrepancy with experiments is obtained if a = 1.01 ppm 

and b = 3.90. This is a shallow minimum, and small variations of a and b lead to very small 

increases in the RMSE. For comparison, the model with approximate values a = 1 ppm and b = 4 

as described in the paper, leads to an RMSE that is ~0.01 ppm higher than the minimum. This 

RMSE difference is roughly the same as the precision of the experimental data. Therefore we can 

report the fitted exponential base parameter as b = 3.9 ± 0.1.  The difference in RMSE obtained by 

changing a from 1 to 1.01 is even smaller. This means that the approximate parameters a = 1 ppm 

and b = 4 can be considered to be adequate within the precision of the experiment.  
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