Self-complementary nickel halides enable multifaceted comparisons of intermolecular halogen bonds: fluoride ligands vs other halides

Vargini Thangavadivale, Pedro Aguiar, Naseralla A. Jasim, Sarah J. Pike, Dan A. Smith, Adrian C. Whitwood, Lee Brammer and Robin N. Perutz

Supporting Information

Table of Contents

Table S1	Complexes prepared to study the halogen bonding interactions in the solid state.		
Figure S1	³¹ P{ ¹ H}-NMR (202 MHz) spectrum of 1pF in C_6D_6 .	S5	
Figure S2	¹⁹ F-NMR (470 MHz) spectrum of 1pF in C_6D_6 .	S5	
Figure S3	¹⁹ F-NMR (470 MHz) spectrum of 1pF in C_6D_6 .	S5	
Figure S4.	LIFDI mass spectrum showing the isotopic pattern of 1pF .	S6	
Figure S5	Molecular structure of 1pF	S6	
Table S2	Selected bond lengths (Å) and angles (°) of 1pF	S7	
Figure S6	Molecular structure of 1pCI	S7	
Table S3	Selected bond lengths (Å) and angles (°) of 1pCI .	S8	
Figure S7.	Molecular structure of 1pBr .	S8	
Table S4	Selected bond lengths (Å) and angles (°) of 1pBr .	S9	
Figure S8	³¹ P{ ¹ H}-NMR (202 MHz) spectrum of crude 1pl in C_6D_6 .	S9	
Figure S9	¹⁹ F-NMR (470 MHz) spectrum of crude 1pl in C_6D_6 .	S10	
Figure S10	³¹ P{ ¹ H}-NMR (202 MHz) spectrum of 1pl in C ₆ D ₆ after purification	S10	
Table S5	Selected bond lengths (Å) and angles (°) of 1pl .	S11	
Figure S11.	Molecular structure of 1pl	S11	
Table S6.	Crystal data for complexes 1pF , 1pCl 1pBr and 1pl ,	S12	
	Refinement of crystal structure for 1pF .	S13	
	Dinuclear products: $[NiX(PEt_3)_2]_2(\mu-2,3,5,6-C_6F_4)$ (X = Br, I).	S13	
Figure S12	LIFDI mass spectrum showing the isotopic pattern of <i>trans</i> - [Nil(PEt ₃) ₂] ₂ (μ -2,3,5,6-C ₆ F ₄).	S14	
Figure S13	Molecular structure of $[NiBr(PEt_3)_2]_2(\mu-2,3,5,6-C_6F_4)$ showing	S14	

	two independent molecules in cell.	
Table S7.	Selected bond lengths (Å) and angles (°) of [Ni(Br)(PEt_3)_2]_2(µ-2,3,5,6-C_6F_4)	S15
Figure S14.	³¹ P{ ¹ H}-NMR (202 MHz) spectrum of 2pF in C_6D_6 .	S15
Figure S15.	¹⁹ F-NMR (470 MHz) spectrum of 2pF in C_6D_6 .	S15
Figure S16	³¹ P{ ¹ H}-NMR (202 MHz) spectrum of 2pl in C_6D_6 .	S16
Figure S17	¹⁹ F-NMR (470 MHz) spectrum of 2pl in C ₆ D ₆	S16
Figure S18	Molecular structure of 2pl .	S17
Table S8	Selected bond lengths (Å) and angles (°) of 2pl .	S18
Figure S19.	³¹ P{ ¹ H}-NMR (202 MHz) spectrum of 1oF in C_6D_6	S19
Figure S20.	¹⁹ F-NMR (470 MHz) spectrum of 1oF in C_6D_6 in high field region.	S19
Figure S21.	¹⁹ F-NMR (470 MHz) spectrum of 1oF in C ₆ D ₆ in fluoroaromatic region: above ¹⁹ F NMR spectrum, below F-F COSY spectrum	S20
Figure S22.	LIFDI mass spectrum of 1oF . Above full spectrum. Below expansion and simulation.	S21
Figure S23	Molecular structure of 1oF .	S22
Table S9	Selected bond lengths (Å) and angles (°) of 1oF .	S22
Figure S24.	¹ H NMR spectrum of 1oCI in C_6D_6	S23
Figure S25.	$^{31}P{^{1}H}$ NMR spectrum (above) of 1oCI in C ₆ D ₆ and $^{31}P{^{1}H}$ correlation (below).	S24
Figure S26.	¹⁹ F NMR spectrum of 1oCI in C_6D_6 . Above ¹⁹ F NMR, below ¹⁹ F- ¹⁹ F COSY	S25
Figure S27	LIFDI mass spectrum of 1oCI . Above full spectrum. Below expansion and simulation.	S26
Figure S28.	Molecular structure of 1oCI .	S27
Table S10.	Selected bond lengths (Å) and angles (°) of 1oCI .	S27
Figure S29.	¹ H NMR spectrum of 1oBr in C_6D_6 .	S28
Figure S30.	$^{31}P{^{1}H}$ NMR spectrum (above) of 1oBr in C ₆ D ₆ and $^{31}P{^{1}H}$ correlation (below)	S29
Figure S31.	^{19}F NMR spectrum of 1oBr in C ₆ D ₆ . Above ^{19}F NMR, below $^{19}\text{F}\text{-}^{19}\text{F}$ COSY	S30
Figure S32.	LIFDI mass spectrum of 1oBr . Above full spectrum. Below expansion and simulation.	S31
Figure S33.	Above ¹ H NMR spectrum of 1oI in C_6D_6 . Below ¹ H{ ³¹ P} NMR	S32

	of 1ol .	
Figure S34.	¹ H- ³¹ P HMQC of 1ol	S33
Figure S35	³¹ P{ ¹ H}-NMR (202 MHz) spectrum of 1oI in C_6D_6	S33
Figure S36.	Above: ¹⁹ F-NMR spectrum (470 MHz) spectrum of 1ol in C ₆ D ₆ . Below: ¹⁹ F- ¹⁹ F COSY spectrum	S34
Figure S37.	LIFDI mass spectrum of 1oI . Above full spectrum. Below expansion and simulation.	S35
Figure S38.	Molecular structure of 1ol . Above: 1ol (α). Middle: 1ol (β) Below: 1ol (γ)	S36
Table S11	Selected bond lengths (Å) and angles (°) of 1ol (α)	S37
Table S12.	Crystal data for complexes 2pl, 1oF, 1oCl and 1ol	S38
	Refinement details for 1oX	S40
Figure S39.	¹⁹ F-NMR (470 MHz) spectrum of the sample containing $Ni(PEt_3)_2(C_6F_4)$.	S41
Figure S40.	Molecular structure of Ni(PEt ₃) ₂ (η^2 -C ₆ F ₄).	S41
Table S13.	Selected bond lengths (Å) and angles (°) of $Ni(PEt_3)_2(C_6F_4)$	S42
Table S14	Crystal data for Ni(PEt_3)_2(C_6F_4) and [Ni(Br)(PEt_3)_2]_2(\mu-2,3,5,6-C_6F_4)	S43
	Crystallographic Method for [Ni(Br)(PEt ₃) ₂] ₂ (µ-2,3,5,6-C ₆ F ₄)	S44
Figure S41.	Above: overlay of structures of 1pF at 200 K (red) and 240 K (green). Below: Diagram showing halogen-bonded chain in structure of 1pF at 240 K.	S45
Table S15	Crystal data and structure refinement for 1pF at variable temperatures.	S46
Figure S42.	¹⁹ F-MAS SSNMR spectrum of complex 1oF .	S47
Figure S43	¹⁹ F-MAS SSNMR spectrum of 3F <i>trans</i> -[NiF(C_6F_5)(PEt ₃) ₂].	S47
Figure S44.	³¹ P{ ¹ H} CPMAS spectrum of 1pF .	S48
	Gaussian Ref:	S48
Table S16.	Calculated Geometry for <i>trans</i> -[NiF(2,3,5,6-C ₆ F ₄ I)(PMe ₃) ₂]	S49
Table S17.	Calculated Geometry for trans-[NiF(2,3,5,6- C_6F_4I)(PMe ₃) ₂] + (2,3,5,6- C_6F_4I)	S50

		lodide	Bromide	Chloride	Fluoride
(1,4-C ₆ F ₄ I ₂)	Triethyl phosphines	F = F $F = F$	F F F F F F	F F F F F F	$\begin{matrix} F & F \\ I & I \\ F & F \end{matrix}$
	Diethylphenyl phosphine	F F F F F F F F F F			$F = F$ $PPhEt_2$ $I = Ni - F$ $PPhEt_2$ $F = F$
(1,2-C ₆ F ₄ I ₂)	Triethyl phosphine	$F \xrightarrow{F} I \\ F \xrightarrow{I} I \\ F \xrightarrow{I} I \\ F \xrightarrow{I} I \\ F \xrightarrow{I} PEt_3 \\ F \xrightarrow{I} F$	F F F F F F F F F F F F F F F F F F F	$F \xrightarrow{I} PEt_{3}$ $F \xrightarrow{I} PEt_{3}$ $I = 0$ $F \xrightarrow{I} PEt_{3}$ $F = F$	$F \xrightarrow{I} PEt_{3}$ $F \xrightarrow{I} PEt_{3}$ $F \xrightarrow{I} PEt_{3}$ $F \xrightarrow{I} PEt_{3}$

Table S1 Complexes prepared to study the halogen bonding interactions in the solid state.

Figure S1 ${}^{31}P{}^{1}H$ -NMR (202 MHz) spectrum of **1pF** in C₆D₆.

Figure S3 ¹⁹F-NMR (470 MHz) spectrum of 1pF in C₆D₆.

Figure S4. LIFDI mass spectrum showing the isotopic pattern of 1pF.

Figure S5 Molecular structure of **1pF**. Displacement ellipsoids at 50% probability level. Hydrogen atoms are omitted for clarity.

I1-C1	2.103(7)	C5-F1	1.34(1)
Ni1-P1	2.209(2)	C7-F6	1.35(1)
Ni1-F2	1.827(5)	P1-C5	1.830(7)
Ni1-C1	1.852(9)	C3-C2-F2	117.0(6)
F3-C6	1.362(9)	P1-Ni1-F1	91.5
C5-C6	1.571(7)	P1-Ni1-C1	88.5

Table S2 Selected bond lengths (Å) and angles (°) of 1pF.

Figure S6 Molecular structure of **1pCI**. Displacement ellipsoids at 50% probability level and hydrogen atoms are omitted for clarity..

C1-C2	1.382(2)	CI1-Ni1	2.2037(5)
C1-Ni1	1.881(2)	Ni1-P1	2.2086(5)
C2-C3	1.381(2)	C7-C8	1.515(3)
C2-F2	1.361(2)	C4-I1···CI1	167.09(5)
C3-C4	1.385(2)	I1…CI1-Ni1	146.8(2)
C3-F3	1.350(2)	C7-P1-C11	103.12(9)
C4-I1	2.082(2)	C8-C7-P1	113.9(1)
C7-P1	1.825(2)	CI1-Ni1-C1	175.83(5)

 Table S3 Selected bond lengths (Å) and angles (°) of 1pCI.

Figure S7. Molecular structure of **1pBr**. Displacement ellipsoids at 50% probability level. Hydrogen atoms are omitted for clarity.

I1-C4	2.082(2)	C3-C4	1.372(3)
Ni1-Br1	2.3384(3)	C2-C3	1.384(3)
Ni1-P2	2.2176(6)	C13-C14	1.512(4)
Ni1-C1	1.881(2)	Br1-Ni1-C1	176.61(6)
F1-C6	1.359(2)	C4-I2···Br1	167.6(6)
F2-C5	1.349(2)	I2Br1-Ni1	143.3(1)
C1-C2	1.382(3)	C13-P1-C17	103.3(1)

Table S4 Selected bond lengths (Å) and angles (°) of 1pBr.

Figure S8 ${}^{31}P{}^{1}H$ -NMR (202 MHz) spectrum of crude 1pl in C₆D₆.

Figure S9 ¹⁹F-NMR (470 MHz) spectrum of crude 1pl in C_6D_6 .

Figure S10 ${}^{31}P{}^{1}H$ -NMR (202 MHz) spectrum of 1pl in C₆D₆ after purification

I2-C4	2.093(6)	C6-C1	1.376(9)
Ni1-P1	2.224(2)	F1-C2	1.341(7)
Ni1-I1	2.5221(9)	F2-C3	1.350(7)
Ni1-C1	1.877(6)	C4-I2…I1	168.0(2)
P2-C17	1.838(7)	I2…I1-Ni1	139.2(2)
C5-C6	1.381(8)	C15-P2-C13	103.3(3)
C5-C4	1.394(9)	11-Ni1-C1	178.3(2)
C13-C14	1.51(1)	P1-Ni1-P2	178.33(7)

Table S5 Selected bond lengths (Å) and angles (°) of 1pl.

Figure S11. Molecular structure of 1pl Thermal ellipsoids set at 50% level. Hydrogen atoms are omitted for clarity.

	1pF	1pCl	1pBr	1pl
	1825439	1825443	1825444	1825445
Formula	$C_{18}H_{30}F_5INiP_2$	$C_{18}H_{30}CIF_4INiP_2$	$C_{18}H_{30}BrF_4INiP_2$	$C_{18}H_{30}F_4I_2NiP_2$
М	588.97	605.42	649.88	696.87
a/ Å	7.8675(5)	9.95341(11)	9.95422(18)	9.9032(3)
b/ Å	11.3291(3)	16.0611(2)	16.0712(3)	16.1922(6)
c/ Å	12.9347(6)	15.04577(13)	15.0877(3)	15.2884(7)
Vol/ Å ³	1149.51(10)	2387.31(4)	2401.41(8)	2445.85(17)
Т/ К	110	110	110	110
αl°	90	90.00	90.00	90.00
βl°	94.392(5)	97.0034(9)	95.7803(19)	93.913(4)
γl°	90	90.00	90.00	90.00
Space gp	12	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c
Z	2	4	4	4
μ (Mo K α mm ⁻¹)	0.7107	0.7107	0.7107	0.7107
Reflections collected	5693	18822	22833	12397
Ind reflections	2011	7680	7765	6325
R _(int)	0.0382	0.0244	0.0346	0.0326
Final R [I $\ge 2\sigma$	R ₁ = 0.0255	R ₁ = 0.0254	R ₁ = 0.0277	R ₁ = 0.0578
(1)]	wR ₂ = 0.0592	wR ₂ = 0.0497	wR ₂ = 0.0543	wR ₂ = 0.101
Final R [all	R ₁ = 0.0255	R ₁ = 0.0254	R ₁ = 0.0277	R ₁ = 0.0816
data]	wR ₂ =0.0592	wR ₂ = 0.0497	wR ₂ = 0.0543	wR ₂ = 0.109

 Table S6. Crystal data for complexes 1pF, 1pCl 1pBr and 1pl.

Flack	0.087(15)	n/a	n/a	n/a
parameter				

Refinement of crystal structure for 1pF. The crystal of **1pF** exhibited multi-crystal (nonmerohedral) twinning which was modelled using CrysAlisPro. The twinning may have resulted from slight cracking of the crystal on cooling. Inclusion of both components of the twin gave a poorer fit than just using a single component from the twin analysis, as judged by the *R*, *wR2*, *GOOF* indices and the anisotropic displacement ellipsoid shapes. Therefore, only data from the major component were used, and reflections showing significant overlap with those of the minor component were omitted. The molecule is situated on a two-fold rotation axis parallel to the *b*-axis which passes along the Ni–F bond and bisects the phenyl ring. The ADP of atom F1 was restrained to be approximately isotropic.

Dinuclear products: [*trans*-NiX(PEt₃)₂]₂(μ -2,3,5,6-C₆F₄) (X = Br, I). The product arising from the oxidative addition of both iodine atoms on 1,4-C₆F₄l₂, [*trans*-NiI(PEt₃)₂]₂(μ -2,3,5,6-C₆F₄), when reacted with tetramethylammonium bromide gave rise to [*trans*-NiBr(PEt₃)₂]₂(μ -2,3,5,6-C₆F₄), the identity of which was confirmed by X-ray crystallographic studies. Single crystals of the complex where grown from hexane. The structure of [*trans*-NiBr(PEt₃)₂]₂(μ -2,3,5,6-C₆F₄), showed two nickel centres bound to the fluoroaromatic ring, C₆F₄, para to each other. Two triethyl phosphine groups *trans* to each other and a bromide completed the square-planar geometry around the metal centres. The plane of the metal coordination centre and the plane of the aromatic ring were near perpendicular to each other (88.2°). Selected bond lengths and angles are given in Table S7 and crystal data in Table S14.

Figure S11 LIFDI mass spectrum showing the isotopic pattern of $[trans-Nil(PEt_3)_2]_2(\mu - 2,3,5,6-C_6F_4)$.

.**Figure S13** Molecular structure of [*trans*-NiBr(PEt₃)₂]₂(μ -2,3,5,6-C₆F₄) showing two independent molecules in cell. Displacement ellipsoids at 50% probability level and hydrogen atoms are omitted for clarity.

Table S7. Selected bond lengths (Å) and angles (°) of [*trans*-NiBr(PEt₃)₂]₂(μ -2,3,5,6-C₆F₄).

Br1-Ni2	2.3547(3)	C18-F21	1.370(3)
Ni2-P3	2.2165(7)	Br1-Ni2-C17	172.87(7)
Ni2-P10	2.2147(7)	P3-Ni2-P10	172.36(3)
Ni2-C17	1.898(2)	Ni2-C17-C19	122.5(2)
P3-C4	1.829(3)	F21-C18-C17	118.8(2)
C17-C18	1.392(3)	P10-Ni2-C17	92.21(7)

Figure S14. ³¹P{¹H}-NMR (202 MHz) spectrum of 2pF in C₆D₆.

Figure S15. ¹⁹F-NMR (470 MHz) spectrum of 2pF in C₆D₆.

Figure S16 ${}^{31}P{}^{1}H$ -NMR (202 MHz) spectrum of 2pl in C₆D₆.

Figure S17 ¹⁹F-NMR (470 MHz) spectrum of **2pl** in C_6D_6 .

Figure S18 Molecular structure of **2pl**. Displacement ellipsoids at 50% probability level. Hydrogen atoms are omitted for clarity.

I1-Ni1	2.5347(4)	C4-C5	1.381(4)
I2-C4	2.089(2)	C1-C6	1.387(3)
Ni1-P1	2.2194(6)	C5-C6	1.388(3)
Ni1-C1	1.901(2)	C4-C3	1.390(3)
P1-C7	1.839(2)	C4-I2…I1	167.4(7)
P2-C19	1.839(2)	I2…I1-Ni1	158.2(1)
F1-C2	1.354(2)	C9-P1-C16	105.8(1)
C7-C8	1.521(3)	11-Ni1-C1	172.92(7)

Table S8 Selected bond lengths (Å) and angles (°) of 2pl.

Figure S19. ${}^{31}P{}^{1}H$ -NMR (202 MHz) spectrum of 1oF in C₆D₆.

Figure S20. ¹⁹F-NMR (470 MHz) spectrum of $1 \sigma F$ in $C_6 D_6$ in high field region.

Figure S21. ¹⁹F-NMR (470 MHz) spectrum of **1oF** in C_6D_6 in fluoroaromatic region: above ¹⁹F NMR spectrum, below ¹⁹F-¹⁹F COSY spectrum.

Figure S22. LIFDI mass spectrum of **1oF**. Above full spectrum. Below expansion and simulation.

Figure S23 Molecular structure of **1oF**. Displacement ellipsoids at 50% probability level. Hydrogen atoms and phosphine $C(\beta)$ substituents are omitted for clarity.

C1-C2	1.39(1)	F1-Ni1	1.841(5)
C1-Ni1	1.891(7)	Ni1-P1	2.218(2)
C2-C3	1.39(1)	C1-C6	13.95(9)
C2-I1	2.110(7)	C7-P1	1.829(9)
C3-C4	1.39(1)	P1-Ni1-P2	173.12(8)
C3-F2	1.341(9)	F1-Ni1-C1	179.3(3)
C4-C5	1.35(1)	Ni1-F1…I1	172.4(3)
C4-F3	1.361(9)	C2-I1F1	173.2(2)
C5-C6	1.38(1)	C7-P1-C11	104.5(4)

Table S9 Selected bond lengths (Å) and angles (°) of 1oF.

Figure S24. ¹H NMR spectrum of **1oCI** in C_6D_6 .

Figure S25. ³¹P{¹H} NMR spectrum (above) of **1oCI** in C_6D_6 and ³¹P-¹H correlation (below).

Figure S26.¹⁹F NMR spectrum of **1oCI** in C_6D_6 . Above ¹⁹F NMR, below ¹⁹F-¹⁹F COSY

Figure S27 LIFDI mass spectrum of **1oCI**. Above full spectrum. Below expansion and simulation.

Figure S28. Molecular structure of **1oCI**. Thermal ellipsoids set at 50% level. Hydrogen atoms and the end methyl groups are omitted for clarity.

I1-C13	2.09(3)	I1-C13	2.09(3)
Ni2-P3	2.220(7)	Ni2-C12	1.88(2)
Ni2-C14	2.19(1)	F6-C5	1.34(4)
P3-C18	1.85(7)	C13-I1-Cl4	171.5(7)
F8-C9	1.32(3)	Ni2-Cl4-l1	160.7(5)

 Table S10.
 Selected bond lengths (Å) and angles (°) of 1oCl.

Figure S30. ³¹P{¹H} NMR spectrum (above) of **10Br** in C_6D_6 and ³¹P-¹H correlation (below)

Figure S31.¹⁹F NMR spectrum of 10Br in C₆D₆. Above ¹⁹F NMR, below ¹⁹F-¹⁹F COSY

Figure S32. LIFDI mass spectrum of **1oBr**. Above full spectrum. Below expansion and simulation.

Figure S33. Above ¹H NMR spectrum of **1ol** in C_6D_6 . Below ¹H{³¹P} NMR of **1ol**.

Figure S35 ${}^{31}P{}^{1}H$ -NMR (202 MHz) spectrum of **1ol** in C₆D₆.

Figure S36. Above: ¹⁹F-NMR spectrum (470 MHz) spectrum of **1ol** in C₆D₆. Below: ¹⁹F-¹⁹F COSY spectrum

Figure S37. LIFDI mass spectrum of 1ol. Above full spectrum. Below expansion and simulation.

S36

Figure S38. Molecular structure of **1ol**. Top: **1ol**(α) crystals grown from hexane. Middle: **1ol**(β) crystals grown from chloroform(only major component displayed). Bottom: **1ol**(γ) crystals grown from grown from chloroform. The independent molecule in **1ol**(γ) which does not exhibit halogen bonding is not shown Displacement ellipsoids at 50% probability level and hydrogen atoms are omitted for clarity. Halogen bond distances in Å.

C1-C2	1.403(6)	Ni1-P1	2.2254(10)
C1-C6	1.385(6)	I1-Ni1	2.5332(6)
C1-Ni1	1.907(4)	C2-C3	1.381(6)
C2-I2	2.096(4)	C2-I2I1	178.5(1)
C3-F1	1.359(5)	Ni-I1…I2	144.16(2)
C6-F4	1.357(6)	C7-P1-C9	103.8(2)
C7-P1	1.824(4)	I1-Ni1-C1	173.81(13)
C9-C10	1.521(7)	P1-Ni1-P1'	177.33(5)

Table S11 Selected bond lengths (Å) and angles (°) of $1ol(\alpha)$.

	2pl	1oF	1oCl	1ol(α) grown	1ol(β) grown	1ol(γ) grown
				from hexane	from CHCl₃	from CHCI ₃
CCDC	1825446	1825447	1825448	1825449	1825451	1825450
Formula	$C_{26}H_{30}F_4I_2NiP_2$	$C_{18}H_{30}F_5INiP_2$	$C_{18}H_{30}CIF_4INiP_2$	$C_{18}H_{30}F_4I_2NiP_2$	$C_{18}H_{30}F_4I_2NiP_2$	$C_{18}H_{30}F_4I_2NiP_2$
М	792.95	588.97	605.42	696.87	696.87	696.87
a/ Å	7.8141(3)	9.4116(5)	9.2736(2)	12.6196(2)	14.0554(2)	12.19004(19)
<i>b</i> / Å	12.9211(4)	12.7010(8)	13.2118(3)	14.8011(4)	14.4542(2)	28.0191(5)
c/ Å	14.7784(5)	9.7270(5)	9.8170(2)	13.2994(2)	24.3397(5)	14.2344(2)
V/ Å ³	1401.12(9)	1157.62(11)	1197.81(5)	2484.11(9)	4944.85(15)	4859.88(13)
Т/ К	110	110	110	110	110	110
αl°	76.749(3)	90	90	90	90	90
βl°	79.700(3)	95.365(8)	95.220(2)	90	90	91.6129(13)
γl°	76.748(3)	90	90	90	90	90

Table S12. Crystal data for complexes 2pl, 1oF, 1oCl and 1ol

Space gp	P-1	P2 ₁	P2 ₁	Cmc2 ₁	Pbca	P2 ₁ /c
Z	2	2	2	4	8	8
Reflections collected	17424	7725	10869	8209	23320	18154
Independent reflections	8876	7725	6245	3532	7817	8677
Final R	R ₁ = 0.0248	R ₁ = 0.0333	R ₁ = 0.0288	R ₁ = 0.0204	R ₁ = 0.0290	R ₁ = 0.0358
[l≥2σ(l)]	wR ₂ = 0.0526	wR ₂ = 0.0846	wR ₂ = 0.0636	wR ₂ = 0.0434	wR ₂ = 0.0534	wR ₂ = 0.0858
Final R [all	R ₁ = 0.0310	R ₁ = 0.0333	R ₁ = 0.0288	R ₁ = 0.0220	R ₁ = 0.0429	R ₁ = 0.0429
data]	wR ₂ = 0.0566	wR ₂ = 0.0845	wR ₂ = 0.0636	wR ₂ = 0.0447	wR ₂ = 0.0593	wR ₂ = 0.0904
Flack parameter	n/a	0.466(14)	0.156(18)	-0.004(11)	n/a	n/a

Refinement of crystal structures of 1oX. The crystal of **1oF** was non-merohedrally twinned and modelled as a two-component system using CrysAlisPro. The ratio of the components refined to 0.542:0.458 (1). There was also evidence of racemic twinning but it was not possible to model both non-merohedral and merohedral twinning at the same time.

The crystal of **1oCl** exhibited two forms of disorder. Firstly, the nickel and chlorine were disordered and modelled in two positions with occupancies of 0.73:0.27(2). The nickel atoms were constrained to have identical ADPs as were the chlorine atoms. Secondly, one of the triethylphosphine ligands was disordered, with each ethyl group being modelled in two positions (occupancies 0.605:0.395(6)). For one of the ethyl groups the methyl carbons occupied the same site. Each pair of methyl carbons was constrained to have a common set of ADPs. The C–C distances in the disordered ethyls were restrained to 1.52 Å. The crystal was also racemically twinned with the ratio of the two components refined to 0.84:0.16(2).

The crystal of **1ol**(β) exhibited disorder with the iodine (I1) and aromatic ring modelled in two positions differing by 180° rotation about an axis close to the I1–Ni–C1 axis and refined occupancies of 0.931:0.069(1). The aromatic ring of the minor form was constrained to be a regular hexagon with C-C bond lengths of 1.39 Å. The ADPs of atoms of the minor form were constrained to be the same as those of the adjacent atoms of the major form (ie. C2 & C6a I2 & F4a, I1 & I1a, etc).

Figure S39. ¹⁹F-NMR (470 MHz) spectrum of the sample containing Ni(PEt₃)₂(C_6F_4).

Figure S40. Molecular structure of Ni(PEt₃)₂(η^2 -C₆F₄). Thermal ellipsoids set at 50% level and hydrogen atoms are omitted for clarity.

C1-C2	1.364(5)	C2-C1-C1'	121.6(3)
C1-C1	1.359(5)	Ni1-C1-C1'	68.70(10)
C2-C3	1.386(5)	C1-Ni1-P1	106.28(10)
C3–C3'	1.385(8)	C1-Ni1-C1'	42.61
C2-F1	1.365(4)	C1-Ni1-P1	148.88
C3-F2	1.356(4)	C1–C1'–Ni–P1'	-1.5(4)
C4-P1	1.824(3)	P1-P1'-C1-C1'	1.05
Ni1-P1	2.1684(9)		
Ni1-C1	1.870(3)		

Table S13. Selected Bond lengths (Å) and angles (°) of $Ni(PEt_3)_2(C_6F_4)$

	$Ni(PEt_3)_2(C_6F_4)$	[<i>trans</i> -NiBr(PEt ₃) ₂] ₂ (2,3,5,6-C ₆ F ₄)
CCDC	1825452	1825404
formula	$C_{18}H_{30}F_4NiP_2$	$C_{30}H_{60}Br_2F_4Ni_2P_4$
М	443.07	897.92
a/ Å	8.13398(18)	11.0590(5
b/ Å	8.13398(18)	12.1681(6)
c/ Å	31.6136(10)	15.1847(8)
V/ Å ³	2091.61(11)	1982.25(10)
Т/ К	110	123
αl°	90	75.960(3)
βl°	90	89.526(2)
γ <i>Ι</i> °	90	89.997(2)
Space gp	P4 ₃ 2 ₁ 2	P-1
Z	4	2
Reflections collected	6224	8104
Independent reflections	3289	8071
Final R [I>2α(I)]	R ₁ = 0.0549	R ₁ = 0.0252
	wR ₂ = 0.0860	wR ₂ = 0.0609
Final R [all data]	R ₁ = 0.0637	R ₁ = 0.0283
	wR ₂ = 0.0890	wR ₂ = 0.0627
Flack parameter	0.043(10)	n/a

Table S14 Crystal data for Ni(PEt₃)₂(C₆F₄) and [*trans*-NiBr(PEt₃)₂]₂(μ -2,3,5,6-C₆F₄)

Crystallographic Method for [trans-NiBr(PEt₃)₂]₂(µ-2,3,5,6-C₆F₄)

The X-ray intensities of the dimer were measured on a Bruker APEX II diffractometer using Incoatec microsource (Mo-K α radiation; λ = 0.71073 Å) and an Oxford Cryosystems low temperature device operating at 123 K as standard.¹ Absorption corrections were carried out using the multiscan procedure *SADABS*.² The structures were solved by charge-flipping methodology (SUPERFLIP) and refined by full-matrix least-squares against *F*² using all data (CRYSTALS).³ H atoms were located in difference maps and initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C-H in the range 0.93--0.98, N-H in the range 0.86--0.89 Å) and U_{iso} (H) (in the range 1.2-1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints. All non-H atoms were modelled with anisotropic displacement parameters

Figure S41. Top: Overlay of structures of **1pF** at 200 K (red) and 240 K (green). Bottom: Halogen-bonded chain in structure of **1pF** at 240 K. Hydrogen atoms and minor component of the disordered phosphine ligand omitted for clarity.

 Table S15 Crystal data and structure refinement for 1pF at various temperatures.

Т / К	110	200	240
CCDC	1825440	1825441	1825442
Crystal system	monoclinic	monoclinic	monoclinic
Space group	12	12	Сс
a/Å	7.8920(5)	8.0074(4)	17.1652(15)
b/Å	11.3325(4)	11.3665(4)	8.5185(13)
c/Å	12.9439(5)	12.9665(5)	16.935(2)
α/°	90	90	90
β/°	94.434(5)	94.616(4)	96.803(10)
γ/°	90	90	90
V/Å ³	1154.19(9)	1176.34(8)	2458.8(5)
Ζ	2	2	4
Reflections collected	4467	4258	5903
Goodness-of-fit on F ²	0.969	1.035	1.077
Final R [I≥2σ(I)]	$R_1 = 0.0312,$ w $R_2 = 0.0611$	$R_1 = 0.0287,$ w $R_2 = 0.0783$	$R_1 = 0.0559,$ w $R_2 = 0.1623$
Final R indexes [all data]	$R_1 = 0.0364,$ w $R_2 = 0.0622$	$R_1 = 0.0312,$ w $R_2 = 0.0801$	$R_1 = 0.0769,$ w $R_2 = 0.1825$

Figure S42. ¹⁹F-MAS SSNMR spectrum of complex **1oF**. Top: best fit simulated spectrum for the Ni–F resonance with the positions of the shielding tensor marked. Bottom: experimental spectrum. Signals arising from the fluorinated benzene ligand (–80 to –200 ppm) are truncated. The black dots indicate the peaks corresponding to the fluoride resonance.

Figure S43 ¹⁹F-MAS SSNMR spectrum of **3F** *trans*-NiF(C_6F_5)(PEt₃)₂. Top: best fit simulated spectrum for the Ni–F resonance with the positions of the shielding tensor marked. Bottom: experimental spectrum. Signals arising from the fluorinated benzene ligand (–110 to –160 ppm) are truncated. The black dots indicate the peaks corresponding to the fluoride resonance.

Figure S44. ³¹P{¹H} CPMAS spectrum of **1pF**. The lineshape hints at the presence of two peaks, which are resolvable using Lorentz-Gaussian apodization (LB = -50 Hz, GB = 0.8) allowing measurement of ²*J*(³¹P, ¹⁹F) = 42 ± 3 Hz.

Gaussian Reference:

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

Center Number	Atomic Numb	At er	omic Type	Coordinates (Angstroms X Y Z)
1	6	0	0.416066	0.654293 -0.954560	
2	6	0	1.797250	0.668513 -0.975531	
3	6	0	2.515377	-0.000001 -0.000001	
4	6	0	1.797242	-0.668514 0.975523	
5	6	0	0.416057	-0.654291 0.954541	
6	6	0	-0.336879	0.000001 -0.000012	
7	9	0	2.427851	1.335302 -1.940599	
8	9	0	2.427833	-1.335304 1.940596	
9	9	0	-4.090432	0.000007 -0.000010	
10	28	0	-2.26899	8 0.000004 -0.000013	
11	15	0	-2.529723	3 -2.219516 -0.436460	
12	9	0	-0.211064	1.344869 -1.931308	
13	15	0	-2.52971	1 2.219520 0.436465	
14	53	0	4.615859	9 -0.000005 0.000004	
15	6	0	-3.494591	-3.009493 0.895699	
16	1	0	-4.386057	2.414395 1.062351	
17	1	0	-3.773001	-4.027291 0.633702	
18	1	0	-2.908800	0 -3.024544 1.809756	
19	6	0	-3.566145	6 -2.452497 -1.920699	
20	1	0	-3.853/64	-3.493681 -2.043598	
21	1	0	-4.450567	-1.834503 -1.809371	
22	1	0	-3.025286	-2.128224 -2.804927	
23	0	0	-1.120923		
24	1	0	-1.400980		
20	1	0	-0.512323	3 -3.005328 -1.524200	
20	l G	0	-0.501553	3 - 3.377470 - 0.195141	
21	0	0	-1.120900	3.334363 0.093001 3.005310 1.524321	
20	1	0	-0.512203	2 2 2 7 7 4 9 1 0 1 0 5 1 7 6	
29	1	0	-1 466962	A = 362208 0.195170	
31	6	0	-3 494620	3009517 - 0.895652	
32	1	0	-4 386084	2 414414 -1 062295	
33	1	0 0	-3 773033	4 027308 -0 633626	
34	1	Ő	-2 908852	3 024594 -1 809724	
35	6	Ő	-3 566088	2 452473 1 920739	
36	1	0	-3 025208	2 128171 2 804943	
37	1	Õ	-3.853694	3.493657 2.043673	
38	1	Õ	-4.450521	1.834491 1.809420	
39	9	Õ	-0.211080	-1.344866 1.931286	

Table S18. Calculated Geometry for [*trans*-NiF(2,3,5,6-C₆F₄I)(PMe₃)₂]

Center Number	Atomic Numb	At	tomic Type	Coordinates X Y	(Angstroms) Z
1	6	0	3.625770	-0.820467	0.817517
2	6	0	5.007019	-0.837330	0.835521
3	6	0	5.725047	-0.000003	-0.000022
4	6	0	5.007017	0.837326	-0.835562
5	6	0	3.625768	0.820468	-0.817549
6	6	0	2.874906	0.000002	-0.000014
7	9	0	5.637031	-1.670430	1.660723
8	9	0	5.637027	1.670424	-1.660767
9	9	0	-0.886367	0.000008	0.000000
10	28	0	0.948922	2 0.000005	-0.000008
11	15	0	0.740002	2 2.036409	1.006441
12	9	0	2.995556	-1.679055	1.647039
13	15	0	0.739990) -2.036399	-1.006455
14	53	0	7.825247	-0.000007	-0.000029
15	6	0	-0.195383	3.189312	-0.055022
16	1	0	-1.121678	2.712140	-0.356286
17	1	0	-0.416430	4.115634	0.469234
18	1	0	0.384475	3.413815	-0.945118
19	6	0	-0.267057	1.918865	2.525176
20	1	0	-0.483497	2.904766	2.928997
21	1	0	-1.195367	1.409880	2.289483
22	1	0	0.263024	1.338871	3.274878
23	6	0	2.198267	3.006581	1.524769
24	1	0	1.894672	3.933523	2.004454
25	1	0	2.800361	2.429532	2.219906
26	1	0	2.809561	3.240844	0.659170
27	6	0	2.198250	-3.006571	-1.524797
28	1	0	2.800336	-2.429524	-2.219939
29	1	0	2.809551	-3.240834	-0.659203
30	1	0	1.894649	-3.933514	-2.004478
31	6	0	-0.195385	-3.189301	0.055018
32	1	0	-1.121678	-2.712129	0.356290
33	1	0	-0.416438	-4.115624	-0.469236
34	1	0	0.384481	-3.413804	0.945108
35	6	0	-0.267084	-1.918855	-2.525180
36	1	0	0.262992	-1.338862	-3.274888
37	1	0	-0.483530	-2.904756	-2.928998
38	1	0	-1.195391	-1.409867	-2.289478
39	9	0	2.995552	1.679058	-1.647068
40	9	0	-5.836364	-1.779675	1.539746
41	9	0	-8.503914	-1.770646	1.532150

Table S19 Calculated Geometry for [*trans*-NiF(2,3,5,6-C₆F₄I)(PMe₃)₂] + (2,3,5,6-C₆F₄I)

6	0	-6.460433	-0.894002	0.773750
6	0	-7.841928	-0.902561	0.781178
53	0	-3.635346	0.000003	0.000015
6	0	-5.741444	-0.000001	0.000026
6	0	-8.535667	-0.000007	0.000040
6	0	-6.460445	0.893996	-0.773691
6	0	-7.841939	0.902550	-0.781105
9	0	-5.836387	1.779672	-1.539694
9	0	-8.503937	1.770633	-1.532070
9	0	-9.857779	-0.000009	0.000047
	6 53 6 6 6 9 9 9	$\begin{array}{cccc} 6 & 0 \\ 53 & 0 \\ 6 & 0 \\ 6 & 0 \\ 6 & 0 \\ 6 & 0 \\ 9 &$	6 0 -6.460433 6 0 -7.841928 53 0 -3.635346 6 0 -5.741444 6 0 -8.535667 6 0 -6.460445 6 0 -7.841939 9 0 -5.836387 9 0 -8.503937 9 0 -9.857779	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

References

- 1. J. Cosier and A. M. Glazer, *J. Applied Crystallogr.*, 1986, **19**, 105-107.
- 2. L. Palatinus and G. Chapuis, J. Applied Crystallogr., 2007, 40, 786-790
- 3. P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, *J. Applied Crystallogr.*, 2003, **36**, 1487-1487.