Supporting Information

3rd degree of biomimetism: associating cavity effect, Zn^{II} coordination *and* internal base assistance for guest binding and activation

Arnaud Parrot, Solène Collin, Gilles Bruylants, and Olivia Reinaud

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints Pères, 75006 Paris, France.

- 1. Synthesis and Characterization of Rim_4 and Corresponding Zn^{II} Complexes
- 2. DOSY Experiments
- 3. ITC Experiments

NMR experiments for host-guest and hydration studies

1. Synthesis and Characterization of Rim₄ and Corresponding Zn^{II}

Complexes

General: solvents and reagents were obtained commercially. DMF (anhydrous 99.8 %) was stored over 4 Å molecular sieves and under Argon. THF was freshly distilled over sodium/benzophenone under Argon. Resorcinarene tetra(alcohol) **1** and 2-chloromethyl-1-methyl-1*H*-imidazole were synthesized according to literature procedures.^{1,2} NMR spectra were recorded with a Varian VNMRS 600 MHz spectrometer, Bruker ARX 250 MHz spectrometer or an Advance 500 spectrometer (500 MHz). Standard HSQC and HMBC experiments were used for peak assignments. MS (ESI) analyses were obtained with a ThermoFinnigen LCQ Advantage spectrometer using methanol, dichloromethane or acetonitrile as solvents. IR spectra were obtained with a Perkin-Elmer Spectrum on FTIR spectrometer equipped with a MIRacleTM single reflection horizontal ATR unit (germanium crystal).

Safety note. Caution! Although we have not encountered any problems, it is noted that perchlorate salts of metal complexes with organic ligands are potentially explosive and should be handled only in small quantities and with appropriate precautions.

Tetra(imidazole) cavitand Rim4

Tetra(alcohol)cavitand **1** (0.45 mmol; 420 mg) was dissolved in freshly distilled THF (4 mL). The solution was evaporated under vacuum at 80 °C for 1 h in order to eliminate traces of water. This operation was repeated 3 times. Under argon at 0 °C, compound **1** was then dissolved in dry DMF (8 mL) and added dropwise to a suspension of NaH (14 mmol; 544 mg of a 60% dispersion washed with n-pentane) in dry DMF (5 mL). The reaction mixture was then stirred for 30 min at 0 °C and two additional hours at room temperature. At 0 °C, 2-chloromethyl-1-methyl-1*H*-imidazole (3.6 mmol; 606 mg) was added in 4 portions into the mixture every 15 min. The resulting orange suspension was stirred overnight at room temperature. The mixture was hydrolyzed at 0 °C with water (60 mL). The resulting solid was filtered off, washed with water (2 x 20 mL), then ammonia 2% (20 mL) and water (20 mL). The resulting powder was redissolved in dichloromethane (10 mL), dried over Na₂SO₄, filtered and evaporated to yield an off-white solid (511 mg). This solid was purified over silica (DCM/MeOH 9:1 to 8:2 with 0.3 % NH₃). The solid obtained was dissolved in 3 mL chloroform and washed with NaOH 1 M (2 mL) and twice with water (2 mL). The organic layer was dried over Na₂SO₄ and evaporated. The obtained solid was recristallized from EtOH/H₂O 1:1 (4 mL) to yield an off-white powder (389 mg, 64%).

 $R_{\rm f}$ = 0.44 (CH₂Cl₂/MeOH 9:1, 0.3% NH₃).

¹H NMR (600 MHz, CDCl₃, 300 K, TMS): δ =7.03 (s, 4H; H_{Ar,down}), 6.93 (s, 4H; H_{Im, α}), 6.89 (s, 4H; H_{Im, α}), 5.57 (d, ²*J*(H, H) =7.2 Hz, 4H; H_{bridge}), 4.70 (t, ³*J*(H, H) = 8.4 Hz, 4H; CH-CH₂), 4.56 (s, 8H; CH₂-Im), 4.20 (s, 8H; Ar-CH₂-O), 4.16 (d, ²*J*(H, H) =7.2 Hz, 4H; H_{bridge}), 3.62 (s, 12H; NCH₃), 2.13 (m, 8H; CH-CH₂-CH₂), 1.34 (m, 24H; (CH₂)₃-CH₃), 0.88 ppm (t, ³*J*(H, H) =7.2 Hz, 12H; CH₃).

¹³C NMR (150 MHz, CD₃CN, 300 K, TMS): δ =154.8 (<u>C</u>-O ring), 145.6 (N-<u>C</u>=N imidazole), 139.4 (<u>C</u>-CH ring), 127.9 (<u>C</u>H-N imidazole), 125.7 (<u>C</u>H ring down), 123.3 (<u>C</u>H-NMe imidazole), 122.8 (<u>C</u>-CH₂ ring), 100.7 (O-<u>C</u>H₂-O), 65.1 (<u>C</u>H₂-C Imidazole), 62.2 (<u>C</u>H₂-O), 38.3 (<u>C</u>H), 33.2 (<u>C</u>H₂-CH₃), 32.8 (<u>C</u>H₃-N), 30.5 (<u>C</u>H₂-CH₂-CH), 28.4 (<u>C</u>H₂-CH), 23.3 (CH₂-CH₃), 14.5 ppm (<u>C</u>H₃).

IR: $\nu = 2925.8$, 2856.2, 1654.5, 1590.1, 1499.1, 1458.5, 1400.1, 1347.6, 1284.3, 1241.5, 1149.4, 1066.7, 968.5, 746.9 cm⁻¹.

HR MS (ESI): m/z: [**Rim**₄ + H]⁺ calcd. C₇₆H₉₇N₈O₁₂ 1313.7226, found 1313.7207; [**Rim**₄ + 2H]²⁺ calcd. C₇₆H₉₈N₈O₁₂ 657.3652, found 657.3635.

Figure S1. ¹H NMR spectrum of Rim₄ (600 MHz, CDCl₃, 300 K, TMS).* solvent and grease.

Figure S3. IR spectrum of Rim₄.

Figure S4. High-resolution ESI+ mass spectra of Rim4 in acetonitrile.

Zinc complex [Rim₄Zn(EtOH)](ClO₄)₂

Ligand Rim_4 (0.035 mmol; 46 mg) was dissolved in degassed EtOH (1 mL) under argon and added dropwise to a solution of $Zn(CIO_4)_2.6H_2O$ (0.035 mmol; 13 mg) in degassed EtOH (1 mL). A white solid precipitated during the addition and the resulting mixture was stirred for an additional hour under argon. After centrifugation, the white solid was separated, washed twice with EtOH (1mL) and then dried under vacuum at 60 °C for 2 h, yielding a white solid (48 mg, 85%).

The NMR of the solid revealed the presence of 1 eq EtOH that is likely bound to the Zn^{II} center when the complex precipitates and replaced by acetonitrile when dissolved in this solvent.

¹H NMR (500 MHz, CD₃CN, 300 K, TMS): δ =7.39 (s, 4H; H_{Ar,down}), 7.11 (s, 4H; H_{Im,α}), 6.48 (s, 4H; H_{Im, β}), 5.71 (d, ²*J*(H, H) =7.2 Hz, 4H; H_{bridge}), 4.74 (t, ³*J*(H, H) = 8.2 Hz, 4H; CH-CH₂), 4.58 (s, 8H; CH₂-Im), 4.19 (d, ²*J*(H, H) =7.2 Hz, 4H; H_{bridge}), 4.11 (s, 8H; Ar-CH₂-O), 3.78 (s, 12H; NCH₃), 2.33 (m, 8H; CH-CH₂-CH₂), 1.39 (m, 24H; (CH₂)₃-CH₃), 0.92 ppm (t, ³*J*(H, H) = 6.9 Hz, 12H; CH₃).

¹³C NMR (150 MHz, CD₃CN, 300 K, TMS): $\delta = 154.7$ (<u>C</u>-O Ring); 146.7 (N-<u>C</u>=N Imidazole); 139.8 (<u>C</u>-CH Ring); 126.7 (<u>C</u>H-N Imidazole); 124.7 (<u>C</u>H-NMe Imidazole); 123.3 (<u>C</u>H ring); 100.8 (O-<u>C</u>H₂-O); 65.0 (<u>C</u>H₂-Imidazole); 63.0 (<u>C</u>H₂-O); 38.4 (<u>C</u>H); 34.9 (<u>C</u>H₃-N); 32.9 (<u>C</u>H₂CH₂CH₃CH₃); 30.2 (<u>C</u>H₂(CH₂)₃CH₃); 28.4 (<u>C</u>H₂(CH₂)₂CH₃); 23.4 (<u>C</u>H₂CH₃); 14.6 ppm (<u>C</u>H₃).

IR: $\nu = 2929.2$, 2861.0, 1634.5, 1591.8, 1506.0, 1457.0, 1287.8, 1242.5, 1151.5, 1087.3, 1019.6, 970.3, 755.0, 667.7, 623.6 (CIO₄⁻), 587.0 cm⁻¹.

HR-MS (ESI): m/z: [**Rim**₄ZnCl]⁺ calcd. 1411.6128, found 1411.6113; [**Rim**₄Zn(HCOO)]⁺ calcd. 1421.6416, found 1421.6372; [**Rim**₄Zn(OAc)]⁺ calcd. 1435.6572, found 1435.6541. *Note:* the anions bound to the detected Zn^{II} complex come from the electrospray apparatus.

Figure S5. ¹H NMR spectrum (CD₃CN, 300 K, 500 MHz) of [**Rim**₄Zn(S)](ClO₄)₂, as isolated (S = EtOH in the solid, S = MeCN in MeCN).

Figure S7. IR spectrum of [Rim₄Zn(EtOH)](ClO₄)₂.

Figure S8. HR-MS ESI+ spectra of [Rim₄Zn(S)](ClO₄)₂ in acetonitrile.

Acetato Zinc complex [Rim₄Zn(OAc)](ClO₄)

 $[\mathbf{Rim}_4 Zn(EtOH)](ClO_4)_2$ (0.0057 mmol; 9 mg) was dissolved in acetonitrile (2 mL) and NaOAc (excess, ca. 1 mg as a solid) was added to the solution. The resulting suspension was sonicated then stirred for 20 minutes. The suspension was filtered via a syringe filter, evaporated, washed with water (2 mL), then dried under vacuum yielding a tanned powder (8.7 mg, 99%).

¹H NMR (500 MHz, CD₃CN, 300 K, TMS): δ = 7.43 (s, 4H; H_{Ar,down}), 7.08 (s, 4H; H_{Im, α}), 6.68 (s, 4H; H_{Im, α}), 5.62 (d, ²*J*(H, H) = 7.3 Hz, 4H; H_{bridge}), 4.72 (t, ³*J*(H, H) = 8.2 Hz, 4H; CH-CH₂), 4.45 (s, 8H; CH₂-Im), 4.40 (d, ²*J*(H, H) = 7.3 Hz, 4H; H_{bridge}), 4.32 (s, 8H; Ar-CH₂-O), 3.69 (s, 12H; NCH₃), 2.37 (m, 8H; CH-CH₂-CH₂), 1.40-1.37 (m, 24H; (CH₂)₃-CH₃), 0.93 (t, ³*J*(H, H) = 7.0 Hz, 12H; CH₃), -2.40 ppm (s, 3H; endo-bound CH₃COO⁻).

¹³C NMR (150 MHz, CD₃CN, 300 K, TMS): δ = 155.6 (<u>C</u>-O Ring), 146.8 (N-<u>C</u>=N), 138.6 (<u>C</u>-CH Ring), 126.2 (<u>C</u>H-N), 125.3 (<u>C</u>H-NMe), 124.5 (<u>C</u>H_Ar), 123.8 (<u>C</u>-CH₂O), 101.6 (O-<u>C</u>H₂-O), 64.3 (C-<u>C</u>H₂-O), 63.8 (<u>C</u>H₂-Imidazole), 38.5 (<u>C</u>H), 34.3 (N-<u>C</u>H₃), 32.9 (<u>C</u>H₂-CH₂-CH₃), 30.7 (CH-<u>C</u>H₂-(CH₂)₃-CH₃), 28.6 (<u>C</u>H₂-(CH₂)₂-CH₃), 23.4 (<u>C</u>H₂-CH₃), 14.5 ppm (<u>C</u>H₃); IR: ν =2935.8, 2865.3, 1590.3, 1458.7, 1290.1, 1241.2, 1150.6, 1087.8, 1018.6, 965.9, 882.3, 756.8, 680.8, 623.6 (CIO₄⁻), 586.5 cm⁻¹. HR-MS (ESI): *m/z*: calcd. 1435.6572, found 1435.6555 [**Rim**₄Zn(OAc)]⁺.

Figure S9. ¹H NMR spectrum (CD₃CN, 300 K, 500 MHz) of [Rim₄Zn(OAc)](ClO₄).

Figure S10. ¹³C NMR spectrum (150 MHz, CD₃CN, 300 K) of [Rim₄Zn(OAc)](ClO₄).

Figure S11. IR spectrum of [Rim₄Zn(OAc)](ClO₄), KBr pellet.

Figure S12. ESI+ Mass spectrum of [Rim₄Zn(OAc)](ClO₄) in acetonitrile.

Acetamido Zinc complex [Rim₄Zn(NHAc)](ClO₄)

The acetamido complex was generated in MeCN solution by addition of acetamide and Et₃N (1 eq of each or more) to a solution of the **Rim**₄Zn dicationic complex in MeCN.

Heating a MeCN solution of the **Rim**₄Zn dicationic complex at 70°C for 6 days produces the acetamido adduct with one protonated imidazole arm, [**Rim**₄HZn(NHAc)]²⁺, which is quantitatively transformed into the monocationic complex [**Rim**₄Zn(NHAc)]⁺ upon addition of 1 eq of Et₃N. It was characterized by ¹H NMR (in acetonitrile, see the main text, Figure 6 and Figures S29-S35) by

It was characterized by ¹H NMR (in acetonitrile, see the main text, Figure 6 and Figures S29-S35) by the peak at -2.40 ppm accounting for the presence of one equivalent relative to the resorcinarene core of acetamide bound in the cavity. The latter is readily displaced by acetate through addition of AcOH.

2. DOSY Experiments

Figure S13. NMR DOSY spectrum of Rim₄ (600 MHz, CD₃CN, 300 K).

Figure S14. NMR DOSY spectrum of [Rim₄ZnS](ClO₄)₂ (600 MHz, CD₃CN, 300 K).

Figure S15. NMR DOSY experiment on Rim₃ (600 MHz, CD₃CN, 300 K).

Figure S16. NMR DOSY spectrum of [Rim₃ZnS](ClO₄)₂ (600 MHz, CD₃CN, 300 K).

3. ITC Experiments

Standard procedure: Standard solution (1 mL, 0.05 mM) in dry CH₃CN was titrated by an analyte solution (240 μ L, 0.5 mM) in dry CH₃CN and monitored via ITC. 30 injections of 8 μ L with an interval of 300 s were made. Thermodynamic parameters were calculated using an independent model. The first injection was not taken into account.

Note: all precautions that were taken to avoid the presence of water, including at the level of the ITC equipment (drying with argon, filling under argon flux, ...).

Figure S17. Titration of **Rim**₃ (0.05 mM) with Zn(ClO₄)₂.6H₂O (0.5 mM). $\Delta H^{\circ} = -67 \pm 5 \text{ kJmol}^{-1}$, $\Delta S^{\circ} = -102 \pm 26 \text{ JK}^{-1}\text{mol}^{-1}$, $n = 0.9 \pm 0.2$, $K = (6 \pm 4) \times 10^{6} \text{ M}^{-1}$.

Figure S18. Reverse titration: $Zn(CIO_4)_2.6H_20$ (0.05 mM) with **Rim**₃ (0.5 mM). $\Delta H^\circ = -67 \pm 3$ kJmol⁻¹, $\Delta S^\circ = -98 \pm 35$ JK⁻¹mol⁻¹, $n = 1.0 \pm 0.1$, $K = (4 \pm 3) \times 10^6$ M⁻¹.

4. NMR experiments for host-guest and hydration studies

Standard procedure

Titration. [Rim₄Zn(EtOH)](ClO₄)₂ (2 mg, 1.3 10^{-3} mmol) was dissolved in CD₃CN (0.4 mL, 3.25 mM) in an NMR tube. Small injections of analytes (10 µL, 1.3 10^{-3} mmol) were made using a 10 µL Hamilton syringe and monitored via NMR.

Figure S19. ¹H NMR titration (500 MHz, CD₃CN, 300 K) of Rim₄ (2 mM) with perchloric acid.

Figure S20 (corresponding to Figure 4). ¹H NMR titration (500 MHz, CD₃CN, 300 K) of $[Rim_4Zn(S)](CIO_4)_2$ (2 mM) with picric acid. Blue dots: imidazole protons.

Figure S22. ¹H NMR (600 MHz, CD₃CN, 298 K) of [Rim₄Zn(OAc)](ClO₄)₂ (3 mM) with various water contents (addition of 1 μ L up to 30 μ L).

Figure S23. ¹H NMR (500 MHz, CD₃CN, 300 K) of [Rim₄Zn] (3 mM) with 1 equivalent AcOH and various water contents (addition of 4 μ L up to 28 μ L).

Figure S24. Titration of [**Rim**₄Zn(OAc)](ClO₄) (2 mM) with picric acid (¹H NMR, 500 MHz, 300 K, CD₃CN). Addition of 0.2 eq of picric acid up to 1 eq. The signal at - 2.40 ppm (included acetate) retains the same integration throughout the titration. Blue dots: one imidazole proton, particularly affected by the acidity of the medium.

Figure S25. Titration of $[Rim_4Zn(S)](ClO_4)_2$ (2 mM) with acetylacetone. Addition of 0.2 eq of acetylacetone up to 1 eq (red dots: selected resonances for $[Rim_4Zn(acetylacetonate)](ClO_4)$. ¹H NMR (250 MHz, CD₃CN, 300 K). Right: zoom (x 10) on the – 2 to – 3 ppm region.

Figure S26. ¹H NMR spectra at various *T* of $[Rim_4Zn(acetylacetonate)]^+$ (2 mM) obtained after addition of 1 eq acetylacetone and 1 eq NEt₃ to $[Rim_4Zn(S)](CIO_4)_2$. From bottom to top: 240 K, 260 K, 280 K,

300 K (500 MHz, CD₃CN). The red dots indicate the signal corresponding to the *endo*-bound methyl group of acetylacetonate coordinated to the metal center, and the pink dots indicate the corresponding *exo*-bound methyl group.

Figure S27. Titration of [**Rim**₄Zn(S)](ClO₄)₂ (2 mM) with benzoylacetone then NEt₃. From bottom to top: [**Rim**₄Zn(S)](ClO₄)₂, +0.5 eq benzoylacetone, + 1.5 eq, +1.5 eq benzoylacetone/+1 eq NEt₃, +3 eq benzoylacetone/2.5 eq NEt₃, +5 eq benzoylacetone/4.5 eq NEt₃ (500 MHz, CD₃CN, 300 K). Inset: zoomed intracavity region.

Figure S28. Titration of $[Rim_4Zn(S)](ClO_4)_2$ (2 mM) with formic acid then NEt₃. Bottom to top: $[Rim_4Zn(S)](ClO_4)_2$, +0.5 eq formic acid, +1.5 eq formic acid, +1.5 eq formic acid/+1 eq NEt₃ (250 MHz, CD₃CN, 300 K). Red dots indicate the signal for included formate.

Figure S29. Titration of [**Rim**₄Zn(S)](ClO₄)₂ (2 mM) with propionic acid then NEt₃. From bottom to top: [**Rim**₄Zn(S)](ClO₄)₂, +0.5 eq propionic acid, +1.5 eq propionic acid, +2.7 eq propionic acid, +2.7 eq propionic acid/+1 eq NEt₃ (250 MHz, CD₃CN, 300 K). Red dots indicate included propionate.

Figure S30. Titration of [**Rim**₄Zn(S)](ClO₄)₂ (2 mM) with acetamide then NEt₃. From bottom to top: [**Rim**₄Zn(S)](ClO₄)₂, +2.5 eq acetamide, after 2 h at RT, +1.2 eq NEt₃. ¹H NMR (250 MHz, CD₃CN, 300 K). Red dots indicate included acetamide.

Figure S31. Titration of [**Rim**₄Zn(S)](ClO₄)₂ (1 mM) with acetamide (with DMF as reference for quantification) and determination of the associated binding constant (the concentrations were determined by integration of the peaks corresponding to included acetamide, free acetamide and DMF). ¹H NMR (500 MHz, CD₃CN/D₂O 95:5, 300 K). Red dots indicate included acetamide.

Kinetic measurements. [Rim₄Zn(EtOH)](ClO₄)₂ (2.1 mg, 3 mM) was dissolved in 0.5 mL of CH₃CN/CD₃CN (8:2) and water (5 to 35%) in an NMR tube with DMF (5.2 mM) as a reference for integrations. The tube was rapidly introduced in a 500 MHz NMR spectrometer set at 343 K and spectra (6 scans) were recorded every 30 s. The growing intracavity signal at -2.40 ppm was integrated to follow and quantify acetamide formation.

The tube was then heated for 8 days at 343 K and NMR spectra (32 scans) were recorded twice a day. The integration of the amide NH protons allowed to quantify acetamide formation over time.

A previously reported equation for catalysis inhibited by product displacement³ was used to fit the kinetic data and extract reaction rates:

$$[AcNH_2](t) = v_2 t - \frac{(v_2 - v_1)(1 - e^{-\kappa t})}{1 - e^{-\kappa t}}$$

with v_1 and v_2 the reaction rates characteristic for the first and second phase, respectively, and k the rate constant characteristic for the burst (first) phase.

Figure S32 (corresponding to the full spectra of Figure 6). a) $[Rim_4Zn(S)](ClO_4)_2$ (2 mM), b) after 14 days at 70 °C, c) $[Rim_4Zn(S)](ClO_4)_2$ after 14 days at 70 °C +1.5 eq NEt₃, d) $[Rim_4Zn(S)](ClO_4)_2$ + 1.5 eq acetamide. ¹H NMR (500 MHz, CH₃CN/CD₃CN 95:5, 300 K).

Evidences for the accumulation of acetamide in the acetonitrile solution of the $[Rim_4Zn(S)](ClO_4)_2$ complex after heating at 70°C.

Figure S33. ¹H NMR spectrum of [**Rim**₄Zn(S)](ClO₄)₂ after 6 days at 70 °C. [**Rim**₄Zn(AcNH)]⁺ has formed (blue arrow), and signals corresponding to free acetamide have appeared (red arrows). ¹H NMR (500 MHz, CD₃CN, 300 K).

Figure S34. IR spectrum of $[Rim_4Zn(S)](CIO_4)_2$ heated for 14 days at 70 °C, KBr pellet. The red arrows indicate the presence of free acetamide.

Figure S36. HSQC NMR of the formed acetamido species after 14 days at 70 °C. The acetamido complex formation is confirmed by the presence of a high-field signal characteristic of included acetamide (highlighted in pink) and of a singlet of free acetamide (highlighted in green).

Figure S37. HMBC NMR spectrum of the formed acetamido species after 14 days at 70 °C. The acetamido complex formation is confirmed by the presence of a high-field signal characteristic of included acetamide (highlighted in pink).

¹ C. B. Reese, Z. Pei-Zhuo, *J. Chem. Soc. Perkin Trans 1* **1993**, 2291-2301. ² H. El Moll, D. Semeril, D. Matt, M.-T. Youinoub, L. Toupet, *Org. Biomol. Chem.*, **2009**, 7, 495-501.

³ C. Frieden. J. Biol. Chem., **1970**, 245, 5788-5799.