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S6 Does the hypothetical δ′ structure account for the experimental δ phase? 17

S1 Experimental phase diagram and its uncertainty

Figure S1: Comparison of the α-β phase
boundaries from different experimental stud-
ies. Dotted lines in inset indicate the esti-
mated uncertainty in the experimental data.

Ab initio phase boundaries are difficult to pre-
dict reliably, but experimental measurements of
the phase coexistence curves can also be difficult,
and considerable uncertainty in the experimental
boundaries is common. Three experimental stud-
ies have reported the methanol α-β phase bound-
ary at various pressures.1–3 Figure S1 plots this
boundary along with a conservative estimate of
its uncertainty. On the basis of the scatter of
experimental data points, we estimate the un-
certainty in temperature of phase transition to
be ±5% for data from Ref 2 and ±7% from Ref
3. Moreover, the results obtained from differ-
ent experimental techniques (ultrasonic acoustic
measurements2 and dielectric spectroscopy3) dif-
fer appreciably. For comparison with the calcula-
tions, data from Ref 2 for the low pressure region
and selected data from the high-pressure region
of Ref 3 were combined and smoothed.
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S2 Sample E(V ) and Avib data
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Figure S2: Electronic energy versus volume E(V ) for the α and β polymorphs at the HMBI (a)
MP2/aug-cc-pVTZ, (b) MP2/CBS limit, and (c) CCSD(T)/CBS limit, all with periodic HF/pob-
TZVP many-body contributions. Geometries were optimized at the MP2 + AMOEBA level of
theory.
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Figure S3: Helmholtz vibrational free energy contributions for the α, β, and γ phases at three
representative temperatures, computed at the MP2 + AMOEBA level of theory.
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S3 Hartree-Fock vs. AMOEBA many-body treatment

We recently reported4 prediction of structural and thermodynamic properties of α methanol
using the same general approach as the current work, except the AMOEBA force field
was always used for the many-body contribution in HMBI. In that work, we considered
using geometries from either HMBI MP2/aug-cc-pVTZ + AMOEBA or plane wave PBE-D3
for subsequent HMBI CCSD(T)/CBS + AMOEBA single-point energies. Despite evidence
that MP2 provided a better description of methanol-methanol interactions and that the
MP2-optimized structures were closer to what one would obtain in a CCSD(T) structure
optimization, property predictions based on the PBE-D3 geometries often agreed better
with experiment.4

Since then, we observed that AMOEBA predicts a many-body contribution in crystalline
methanol that is up to 4.5 kJ/mol larger than the one from periodic Hartree-Fock (HF),
suggesting that AMOEBA may be overestimating the polarization energy. Therefore, in
the final single-point energies in the current work, the AMOEBA many-body contribution
was replaced by one calculated from periodic Hartree-Fock (HF) in the pob-TZVP basis5

(a version of def2-TZVP adapted for crystalline systems). This basis set is computationally
affordable, converges well in periodic HF (it does not contain diffuse functions which can
cause numerical problems), and produces many-body interaction energies that are fairly
well converged with respect to basis set incompleteness. Using periodic HF for the long-
range 2-body and the many-body interactions makes HMBI equivalent to the method of
increments.6,7

The E(V ) curves from the two different many-body treatments are compared in Figure S4.
Not only do the crystals become less bound, but the periodic HF many-body contribution
reverses the stability of the α and β forms. Whereas the quasi-harmonic CCSD(T)/CBS +
AMOEBA many-body model predicts the β form to be preferred over all temperatures at
atmospheric pressure, the results with periodic HF correctly predict that the α form is the
low-temperature form. Interestingly, the HF refinement does lead to a somewhat broader
well for the β E(V ) curve that is also observed for MP2 (Figure S2), which in turn facilitates
thermal expansion of that form. That translates to an overly large molar volume increase at
the α-β phase transition: the calculations predict a molar volume increase of 2.07 cm3/mol
versus 0.498 or 0.661 cm3/mol experimentally. We hypothesize that this shape is an artifact
of refining the geometries with AMOEBA many-body terms instead of HF ones.

Repeating several of the α methanol property predictions with the periodic HF many-
body contributions, we find improvement over the earlier predictions relative to experiment
and clear superiority for the MP2 geometries over the PBE-D3 ones. As shown in Ta-
ble S1, using periodic HF instead of AMOEBA for the many-body terms reduces the error
in the predicted ∆Hsub(0K) from 1.9 kJ/mol to 0.7 kJ/mol when using MP2 geometries (cf
2.7–2.9 kJ/mol errors from the PBE-D3 geometries).∗ Periodic HF many-body contribu-
tions lead to considerably improved predictions for the molar volume and thermal expansion

∗For further comparison, a very early study which used periodic HF plus small-basis MP2 corrections
predicted a lattice energy of -63 kJ/mol,9 while a more recent one with point-charge embedding plus a
handful of key three-body corrections obtained a lattice energy for α methanol of 53.78 kJ/mol.10 compared
to the 51.33 kJ/mol (from Table 1 in the main paper) obtained with the periodic HF treatment here. Clearly
the specific treatment of many-body effects matters in methanol when striving for sub-kJ/mol accuracy.
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(Figure S5). Accordingly, all other calculations reported here employ MP2 + AMOEBA ge-
ometries/phonons (for computational affordability) and then MP2 or CCSD(T) + periodic
HF single-point energies.

As a side note: although the AMOEBA force field includes van der Waals parameters
which were fitted against experimental data,11 their contributions to the overall results here
are negligible. For the α form, for instance, the long-range van der Waals term amounts to
less than 5% of the AMOEBA contribution, or less than 1% of the overall lattice energy.
The crystal energetics are dominated by the ab initio MP2 and CCSD(T) energies and the
AMOEBA electrostatics and polarization terms whose parameters are derived from electronic
structure theory, without any specific fitting to experimental data on methanol.
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Figure S4: Switching the HMBI many-
body treatment paired with CCSD(T)/CBS
monomers and dimers from AMOEBA (dotted
lines) to periodic HF/pob-TZVP (solid lines)
decreases the overall binding of the methanol
polymorphs by up to 4.5 kJ/mol and reverses
the relative stability ordering of the α and β
forms. The periodic HF many-body case repro-
duces the experimental result that α is a low-
temperature polymorph, while β is the high-
temperature form.

Table S1: Comparison of experimental and predicted quasi-harmonic sublimation enthalpies
∆Hsub(0K) for α methanol (kJ/mol). The calculations employ extrapolated CCSD(T)/CBS 1+2-
body contributions plus many-body contributions computed at either the AMOEBA or periodic
HF/pob-TZVP level of theory.

Source MP2/aTZ geometry PBE-D3 geometry

CCSD(T) + AMOEBA (Ref 4) 47.6 43.0
CCSD(T) + periodic HF (this work) 45.0 42.8

Experiment (Ref 12) 45.7 ± 0.3
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Figure S5: Comparison of experimental and predicted molar volumes for α methanol at ambient
pressure with (a) AMOEBA or (b) periodic HF many-body contributions. Plane wave PBE-D3
and HMBI MP2/aug-cc-pVTZ geometries were taken from Ref 4.
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S4 Predicted crystal structures

S4.1 Comparisons with experiment

To compare the predicted and experimental crystal structures, optimal volumes for the exper-
imental temperature and pressure were determined from the quasi-harmonic CCSD(T)/CBS
+ periodic HF/pob-TZVP model. Individual lattice constants and fractional coordinates
were then obtained via interpolation of the MP2 + AMOEBA geometries (i.e. the structures
used to construct the E(V ) curves) to the predicted volume. Figure S6 overlays the pre-
dicted and experimental crystal structures for the α, β, and γ phases. Lattice parameters
are compared in Table 1 of the main paper. Note that the experimental γ structure omits
hydrogen atoms, and those were added here.

Interestingly, unconstrained geometry optimization of the experimentally determined γ
structure at ambient pressure using HMBI MP2/aug-cc-pVDZ + AMOEBA yields a consid-
erably altered structure that differs from the experimental γ structure in cell volume, cell
parameters, and packing motif. To optimize the γ polymorph, an external pressure con-
straint is required, represented either as a fixed-volume optimization or through minimizing
the total enthalpy per cell under the pressure instead of its total energy. Applying an exter-
nal pressure of 3–5 GPa led to an optimized structure which retains the structural motif of
the γ polymorphs and exhibits all real vibrational frequencies. The resulting structures were
found to be thermodynamically stable in terms of the Gibbs free energy at low temperatures
and high pressures at the CCSD(T)/CBS level of theory, as discussed in Figure 6 of the main
paper.

S4.2 Disorder in the β phase

To investigate the nature of the disorder of the β polymorph, we performed multiple unit-
cell optimizations of the two β structures: i) with disorder averaged out with all carbon and
oxygen atoms in a planar arrangement (as in all of the other results presented here); and ii)
with the oxygen atoms distorted from the carbon planes to mimic the limiting positions of
the disorder for the experimental crystal structure METHOL05. Unit cell parameters were
held fixed during the optimizations, and only the atomic positions were allowed to vary. We
compared HMBI MP2/aug-cc-pVDZ + AMOEBA and periodic PBE-D3(BJ)/PAW using
VASP (see Ref 4 for discussion of the DFT computational parameters).

MP2 predicts the averaged structure to be more stable than the distorted ones by about
1.5 kJ/mol, which supports the hypothesis about the dynamical disorder and justifies the
averaging procedure used for the disorder throughout this paper. Interestingly, however, the
periodic DFT calculations favor the distorted structures by 0.3 kJ/mol over the averaged
one, suggesting a double-well potential that might point toward a static orientational disorder
picture. Because the MP2+AMOEBA geometries overall yield thermodynamic properties
in better agreement with experiment, we conclude that the dynamic disorder is the more
probable option. This suggests that the β phase disorder should probably be modeled using
an anharmonic treatment of the relevant degree(s) of freedom rather than by adding a
configurational entropy term.
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(a)

(b)

(c)

Figure S6: Overlays between predicted and experimental structures crystal for (a) α at 122 K
and ambient pressure (RefCode METHOL04), (b) β at 160 K and ambient pressure (METHOL05),
and (c) γ methanol at room temperature and 4.0 GPa (METHOL03). Expt: O=red, C=gray,
H=white. Pred: O=gold, C=green, H=gray.
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S5 Sensitivity analysis for the predicted phase diagram

The predicted phase diagram derives from a complex interplay of the electronic structure
method and phonon treatment. To disentangle how some of these factors impact the pre-
dicted phase diagram, the sensitivity of the predicted phase boundaries to several different
model features was investigated, as described in the following sections. Most of the anal-
ysis centers on the α-β coexistence curve, which exhibits clear pressure and temperature
dependence and is sensitive to small perturbations in the models. Unless otherwise stated,
results presented here are based on the CCSD(T)/CBS + periodic HF single point energies
combined with geometries and phonons computed at the MP2 + AMOEBA level.

S5.1 Harmonic versus quasi-harmonic approximation

One might simplify the computational model by using harmonic instead of quasi-harmonic
estimates for the phonon contributions. Harmonic free energy estimates are often used
in crystal structure prediction13 and polymorph discrimination,14 for example. A recent
computational survey by Nyman and Day found that thermal expansion typically alters
relative polymorph stabilities by only a fraction of a kJ/mol, and never more than 2 kJ/mol.15

Indeed, the harmonic and quasi-harmonic 0 K sublimation enthalpies in Table 1 in the main
paper differ by only 0.3 kJ/mol. Nevertheless, given the small energy differences involved in
phase diagram predictions, even small changes can have an appreciable impact.

To investigate the impact of the quasi-harmonic treatment here, we recomputed the
phase diagram under a harmonic approximation in which the lattice energy, cell volume,
and phonon frequencies were assumed to be independent of temperature and pressure.†

Accordingly, temperature enters the Gibbs free energy G(T, P ) only through the Helmholtz
vibrational free energy Avib(T ), while pressure enters via the pV term.

Figure S7 compares the resulting phase diagram against the quasi-harmonic one. The
harmonic phase diagram completely transforms the regions of phase stability. The α-β
coexistence curve now rises too steeply, while the α-γ coexistence shifts to higher pressures.
More significantly, the α-β-γ triple point disappears. The β-γ coexistence curve (indicated as
the dotted blue line) would occur in the region where the α form is the preferred polymorph.
Quasi-harmonic thermal expansion clearly plays a significant role in the successful phase
diagram prediction.

†More elaborate harmonic models might recompute the crystal cell volume and/or harmonic phonons at
multiple pressures and use those to evaluate the free energy as a function of temperature, but those are not
considered here. Repeated phonon calculations in particular would require computational effort comparable
to that of the quasi-harmonic approach.

9



 50

 100

 150

 200

 250

 300

 350

 400

 0  1  2  3  4  5  6

(a) Quasi-Harmonic Phase Diagram

α

β

γ
Liquid

T
e

m
p

e
ra

tu
re

 (
K

)

Pressure (GPa)

 50

 100

 150

 200

 250

 300

 350

 400

 0  1  2  3  4  5  6

α

β

γ

β-γ
coexist.

T
e

m
p

e
ra

tu
re

 (
K

)

Pressure (GPa)

(b) Harmonic Phase Diagram

Figure S7: Comparison of predicted CCSD(T)/CBS + periodic HF phase diagrams with (a) quasi-
harmonic (identical to Figure 2b in the main paper) and (b) harmonic treatments of the phonons.
The dotted blue line in the harmonic phase diagram indicates where the β–γ coexistence curve
would occur, but the α polymorph is thermodynamically favored in that temperature/pressure
regime.
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S5.2 Impact of electron-electron correlation treatment

One might also consider using a lower-level electronic structure methods for the quantum me-
chanical monomers and dimers in HMBI. As discussed in Section S2 and shown in Figure S8a,
MP2/CBS generates E(V ) curves that are very similar to those from CCSD(T)/CBS. That is
unsurprising, since MP2 generally performs well for hydrogen bonded systems like methanol
which do not exhibit strong van der Waals dispersion interactions. However, in the smaller
aug-cc-pVTZ basis, MP2 predicts β to be more stable and shifts its electronic energy min-
imum to a larger cell volume. See also our earlier work on α methanol4 and other crystals
for more details on how basis set impacts molar volume and other crystal properties.16–18

Figure S8b shows how these variations impact the predicted α-β coexistence curve. In
the CBS limit, MP2 and CCSD(T) predict a largely similar phase coexistence curve, though
details such as the temperature of the ambient pressure phase transition differ appreciably.
Interestingly, the prominent “bump” in the MP2/CBS coexistence curve near 0.5 GPa arises
from the seemingly subtle differences between the MP2/CBS and CCSD(T)/CBS energy
curves. In contrast to the complete basis set results, MP2/aug-cc-pVTZ erroneously predicts
that at ambient pressure the β phase will always be thermodynamically more stable than the
α form at pressures below ∼0.7 GPa. This data highlights the importance of using electronic
structure results that are well-converged with respect to the electron correlation and basis
set.
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body contributions were used in all cases.
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S5.3 Impact of electronic energy well steepness

Changing basis set and the treatment of electron-electron correlation as in Section S5.2
impacts both the relative energies of the different polymorphs as well as the shape of the
potential energy wells. To help disentangle these effects, we scale just the steepness of
the compression and expansion branches of the electronic energy wells. This is done by
multiplying the α and/or β wells by by ±5% (with each well minimum set to 0 kJ/mol
for scaling purposes). The resulting α-β phase boundaries were predicted and plotted in
Figure S9a. Scaling a well by 0.95 softens the expansion and compression branch, which in
turn increases the thermal expansivity and compressibility. Scaling E(V ) by 1.05 has the
opposite effect. The change in volume induced by scaling the well will also impact the size
of the Avib contribution, which is smaller at larger volumes (Figure S3).

Because different electronic structure models might impact the α and β E(V ) curves
differently, Figure S9 considers different possible scaling combinations. The largest impacts
on the α-β coexistence curve from scaling the energy wells occurs at higher pressures and
temperatures, where the energy changes are most significant. Either increasing the steepness
of the β well or softening the α potential raises the temperature of the α-β phase coexistence
curve at higher pressures. Increasing the α curve steepness and/or softening the β curve
has the opposite effect, lowering the transition temperature appreciably. On the other hand,
scaling the two curves in the same direction (both steeper or both softer) has relatively little
impact on the potential. As for the MP2 vs CCSD(T) results above, the minor perturbations
to E(V ) here impact the presence of the “bump” in coexistence curve near 0.5 GPa. Overall,
the results in Figure S9 indicate that errors in the slope of the α-β phase coexistence curve
can result from subtle errors in the steepness of the potential energy curves.
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S5.4 Impact of phonon frequency scaling

Harmonic phonons provide the input frequencies for the quasi-harmonic model. It is well
known that harmonic frequencies overestimate the observed vibrational frequencies. Our
previous study4 compared the predicted and experimental phonons for α methanol and con-
sidered several possible empirical scaling approaches that might improve agreement between
the predicted and experimental frequencies. One approach is to minimize the difference
between the calculated and observed frequencies by scaling all frequencies to by 0.92. Alter-
natively, one might fit separate scale factors to frequencies within different sub-domains of the
phonon spectrum: 0.9302 for high frequencies (above 2000 cm−1), 0.9682 for low-frequency
intramolecular modes (below 2000 cm−1), and values ranging 0.6–0.8 for the lattice phonons.
Because the lattice phonon assignments are more ambiguous, we simply explored several dif-
ferent scaling factors in the 0.6–0.8 range to understand the range of possible outcomes. See
Ref 4 for details.

Scaling the frequencies in this manner decreases the magnitude of the zero-point energy
and makes the slope of the Helmholtz vibrational free energy Avib versus volume slightly
steeper (Figure S10a–b). The zero-point contribution dominates here and leads to a modest
contraction in the molar volumes (See Figure 8 in Ref 4). However, because the frequencies
for both polymorphs are scaled identically, the changes largely cancel in the vibrational free
energy difference between the α and β forms (Figure S10c). This translates to frequency
scaling having only a small impact on the predicted α-β coexistence curve (Figure S10d), in
marked contrast to the other variables.

On the other hand, non-uniform errors in the phonon frequencies between the polymorphs
could have a larger impact on the predicted phase boundaries. As shown in Figure S11,
if one scales only the β phase phonons by 0.5% or 1%, the phase transition boundaries
move considerably. The slopes of the β form Helmholtz vibrational free energy curves in
Figure S11a are nearly identical with different scalings, but they are offset by the difference
in zero-point vibrational energy. The ±0.5% scaling alters the zero-point energy by 0.7
kJ/mol, effectively shifting the relative stabilities of the two energy wells akin to Figure 4 in
the main article.

As noted in the main paper, the calculations underestimate the experimental heat capac-
ity (Figure 3). Earlier analysis on the α polymorph4 indicated that underestimation of the
heat capacity at temperatures below ∼60 K likely stems from overestimation of the lattice
mode phonon frequencies. The underestimation of the thermal expansivity contributes to
this problem. At higher temperatures, the neglected anharmonicity in the higher-frequency
modes, particularly the methyl rotations, probably becomes more significant. Because the
heat capacity is underestimated in both the α and β phases, some of the resulting error in
the predicted α-β enthalpy difference will cancel. Nevertheless, the residual impact of the
heat capacity errors on the phase diagram can be inferred from the sensitivity to phonon
scaling discussed here.
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vibrational free energies at 200 K, and (b) the resulting α-β coexistence curves.
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S5.5 Sensitivity analysis summary

Overall, the sensitivity analysis suggests that the error in the predicted α-β phase transition
temperature at ambient pressure can largely be attributed to small (∼0.5 kJ/mol) errors
in the relative energies of the two phases, while errors in the slopes of the coexistence
curve probably stem more from errors in the curvature of the electronic energy wells. The
relative stabilities of the minima and the curvature of the electronic energy expansion and
compression branches for each phase are sensitive to the electronic structure method used
and the zero point vibrational energy. In contrast, the predicted phase diagram appears
less sensitive to the thermal contribution from the phonons and/or consistent errors between
phases (e.g. scaling the harmonic phonons to approximate anharmonicity). The latter result
suggests it might be possible to reduce the computational costs in the future by employing
more approximate phonon treatments.
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S6 Does the hypothetical δ′ structure account for the

experimental δ phase?

Figure S12: Overlay between the DFT δ′ struc-
ture from Ref 19 and the one optimized here, both
at 0 K and 4.5 GPa. Lin et al: O=red, C=gray,
H=white. This work: O=gold, C=green, H=gray.

As discussed in the main paper, γ poly-
morph is not stable on the electronic energy
surface without significant external pres-
sure. Closer investigation of the structure
obtained from optimizing the γ form at at-
mospheric pressure indicates that it is tri-
clinic and overlays very well with the candi-
date δ′ structure suggested by Lin et al,19 es-
pecially if the structure obtained here struc-
ture is then refined under external pressure
4.5 GPa. Both HMBI and periodic PBE-D3
calculations also identify this structure as a
stationary point on the potential energy sur-
face with all real phonon frequencies.

However, preliminary‡ comparison of
Gibbs free energy calculations at the
CCSD(T)/CBS + AMOEBA level suggest
that this δ′ polymorph is energetically less
stable than the other three methanol poly-
morphs in the range of thermodynamic conditions considered here. The δ′ form lies 1.7
kJ/mol above α at absolute zero and ambient pressure, and increasing temperature or pres-
sure destabilizes δ′ further relative to α. While this temperature trend for δ′ agrees qual-
itatively with experiment, the pressure dependence is incorrect—the experimental δ phase
becomes more stable at higher pressures, not less. The large molar volume of the δ′ structure
relative to the other phases leads to this incorrect pressure-dependent behavior.

With regard to the γ phase, δ′ is 3.5 kJ/mol less stable at 4 GPa and 0 K. The δ′

structure is further destabilized by increasing pressure and temperature (both contrary to
the behavior of the experimental δ phase). Test calculations replacing the AMOEBA many-
body contribution with one from periodic HF reduces the 0 K cohesive energy difference
between γ and δ′ from 3.5 kJ/mol to 2.5 kJ/mol, but this change is insufficient to make the
δ′ structure thermodynamically preferred.

Together, this evidence suggests that the δ′ phase is not likely to account for the exper-
imentally observed δ phase. Nevertheless, the δ′ structure does appear to be dynamically
stable (it exhibits all real phonon frequencies), so it might reflect an as yet experimentally
unknown thermodynamically metastable polymorph.

‡The preliminary δ′ calculations approximated E(V ) from constant-volume isotropic calculations, instead
of anisotropic constant-pressure ones, and included only two CCSD(T)/CBS single-point energies. This was
sufficient to show that the δ′ structure is less stable than the others and that it will not be preferred at the
thermodynamic conditions where the δ phase exists experimentally.
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(4) Červinka, C.; Beran, G. J. O. Ab initio thermodynamic properties and their uncertain-
ties for crystalline α-methanol. Phys. Chem. Chem. Phys. 2017, 19, 29940–29953.

(5) Peintinger, M. F.; Oliveira, D. V.; Bredow, T. Consistent Gaussian basis sets of triple-
zeta valence with polarization quality for solid-state calculations. J. Comp. Chem.
2013, 34, 451–459.

(6) Müller, C.; Paulus, B. Wavefunction-based electron correlation methods for solids. Phys.
Chem. Chem. Phys. 2012, 14, 7605–7614.

(7) Beran, G. J. O. Modeling polymorphic molecular crystals with electronic structure
theory. Chem. Rev. 2016, 116, 5567–5613.

(8) Staveley, L. A. K.; Hogg, M. A. P. A dilatometric study of the transition in methyl
alcohol. J. Chem. Soc. 1954, 1013–1016.

(9) Nagayoshi, K.; Kitaura, K.; Koseki, S.; Re, S.; Kobayashi, K.; Choe, Y.-K.; Nagase, S.
Calculation of packing structure of methanol solid using ab initio lattice energy at the
MP2 level. Chem. Phys. Lett. 2003, 369, 597–604.
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