Synthesis and Applications of Highly Functionalized 1-Halo-3-Substituted Bicyclo[1.1.1]pentanes

Dimitri F. J. Caputo,[†] Carlos Arroniz,[†] Alexander B. Dürr,[†] James J. Mousseau,[§] Antonia F. Stepan,[¶] Steven J. Mansfield[†] and Edward A. Anderson*[†]

[†] Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.

§ Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States

¶ Pfizer Worldwide Research and Development, 600 Main Street, Cambridge, MA 02139, United States

Supporting Information

1. General Experimental Considerations	2
2. General Procedures	3
3. Optimization of triethylborane-promoted ATRA reactions	5
4. Synthesis and characterization of 1-halo-3-substituted BCPs	8
5. Substrate limitations	25
6. Reduction of 1-halo-3-substituted BCPs	26
7. Functionalization of 1-halo-3-substituted BCPs	29
8. Synthesis and characterization of nucleoside, dipeptide, and pharmaceutical BCP analogues	33
9. Synthesis and characterisation of substrates	40
10. Computational Details	62
11. X-ray Crystallography	81
12. References	85
13. NMR spectra	87

1. General Experimental Considerations

NMR Spectroscopy: Proton (¹H), carbon (¹³C) and fluorine (¹⁹F) NMR spectra were recorded on a Bruker AVIIIHD 400 nanobay (400 MHz) spectrometer. Proton, carbon and fluorine chemical shifts are quoted in ppm. ¹H NMR spectra were recorded using an internal deuterium lock for the residual protons in CDCl₃ (δ 7.26), CD₃OD (δ 3.31) and C₆D₆ (δ 7.16). ¹³C NMR spectra were recorded using an internal deuterium lock in CDCl₃ (δ 77.0), CD₃OD (δ 49.0) and C₆D₆ (δ 128.1). Assignments were determined either on the basis of unambiguous chemical shift or coupling patterns, COSY, HMBC, HSQC and/or NOESY experiments. Peak multiplicities are defined as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad; coupling constants (*J*) are reported to the nearest 0.1 Hz.

Infrared Spectroscopy: Infrared spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer with the sample being prepared as a thin film on a diamond ATR module. Absorption maxima (v_{max}) are quoted in wavenumbers (cm^{-1}) .

Mass Spectroscopy: Low resolution mass spectra were recorded on a Micromass LCT Premier Open Access using electrospray ionisation (ESI). Accurate mass (HRMS) data was determined under conditions of ESI, EI and CI on a Bruker MicroTOF. High resolution values are calculated to 4 decimal places from the molecular formula, and all values are within a tolerance of 5 ppm.

Melting Points: Melting points were obtained using a Griffin melting point apparatus and are uncorrected.

X-ray crystallography: Details of instrumentation and techniques are reported in Section 10.

Reagents, solvents and techniques: All reagents were used directly as supplied. Solvents were either used as commercially supplied, or as purified by standard techniques. Anhydrous Et_2O was obtained from solvent dispenser units having been passed through an activated alumina column under argon. Unless otherwise stated, non-aqueous reactions were performed under air.

Reactions were monitored by thin layer chromatography on pre-coated aluminium-backed plates (Merck Kieselgel 60 with fluorescent indicator UV254). Spots were visualised by quenching of UV fluorescence or by staining with potassium permanganate or vanillin, and retention factors are reported with the solvent system in parentheses. Flash column chromatography was performed on silica gel obtained from Merck (Silica gel Si 60, 0.040-0.063 mm) under a positive pressure of nitrogen, using the stated solvent system.

2. General Procedures

General Procedure 1: Atom-transfer radical addition of halides to tricyclo[1.1.1.0^{1,3}]propane.

To a screw-capped vial containing the specified halide (1.0 equiv.) was added tricyclo $[1.1.1.0^{1,3}]$ propane (1.1-2.0 equiv.), solution in Et₂O). The vial was capped and the mixture was stirred at the indicated temperature for 3 min. BEt₃ (1-10 mol %, 1 M in hexane) was then added to the solution via syringe (needle tip in the solution), and the mixture was stirred as specified in the individual procedure. Once complete as judged by ¹H NMR spectroscopic analysis of an aliquot, the reaction mixture was concentrated and purified by column chromatography or recrystallization.

General Procedure 2. Finkelstein reaction.

Adapted from the procedure described by Zhou et al.¹ To a solution of the specified alkyl bromide (1.0 equiv.) in acetone was added sodium iodide (1.5 equiv.). The resulting mixture was stirred in the dark until TLC showed completion. The mixture was diluted with water and Et_2O and the layers were separated. The aqueous layer was extracted twice with Et_2O . The combined organic phases were washed with Na₂S₂O₃ (10 % *aq*.) and brine, dried (MgSO₄) and concentrated *in vacuo*. When specified, the residue was purified by column chromatography or recrystallization.

General Procedure 3. Appel reaction.

To a solution of the specified alcohol in CH_2Cl_2 was added triphenylphosphine and, if specified, imidazole. Iodine was added portionwise and the reaction mixture was stirred under an inert atmosphere at rt (quantities and reaction time specified in each procedure). The mixture was then diluted with water and CH_2Cl_2 , and the aqueous phase was extracted twice with CH_2Cl_2 . The combined organics were washed with $Na_2S_2O_3$ (10% *aq*.) and brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was purified by column chromatography.

General Procedure 4. Copper oxide mediated iodination

According to the procedure described by Yin et $al.^2$ To a solution of the specified methylketone (1.0 equiv.) in MeOH were added CuO (1.0 equiv.) and I₂ (1.0 equiv.). The reaction mixture was stirred for 5 min, then refluxed for 2-3 h, and then concentrated *in vacuo*. The residue was taken up in EtOAc, filtered, and the organic filtrate washed with Na₂S₂O₃

(10% aq.,), dried (MgSO₄) and concentrated *in vacuo*. The residue was purified by column chromatography.

General comments: Halide substrates could generally be prepared in one step from commercial starting materials, via iodination or bromination of the corresponding alcohols, or reaction with enolates or their derivatives. Since many of these substrates are already known in the literature, their synthesis and characterisation are presented at the end of this manuscript.

Tricyclo[1.1.1.0^{1,3}]pentane (TCP), 4

According to the procedure described by Gianatassio et al.³ To a flame-dried round-bottom flask equipped with a stirrer bar was added 1,1-dibromo-2,2-bis(chloromethyl)cyclopropane (5.0 g, 16.9 mmol, 1.0 equiv.). The reaction vessel was evacuated and back-filled with argon three times, and then anhydrous Et₂O (10 mL) was added. The reaction vessel was cooled to -45 °C (dry ice / isopropanol bath). Phenyllithium (17.8 mL, 1.9 M in Bu₂O, 33.7 mmol, 2.0 equiv.) was added dropwise over 15 min at -45 °C, and the resulting mixture was stirred for 15 min at -45 °C. The cooling bath was replaced with an ice bath, and the reaction mixture was warmed to to 0 °C, and then stirred at this temperature for 2 h. The mixture was then distilled at room temperature (10 mbar) using a rotary evaporator, the receiving flask of which was immersed in a dry ice/acetone bath. The TCP-containing distillate (10 mL, TCP concentration 0.91 M in Et₂O, 54%) was transferred in a flame-dried septum-sealed bottle under inert atmosphere, and stored at -20 °C. The yield was determined by ¹H NMR spectroscopy with 1,2-dichloroethane as an internal standard. The concentration of the TCP solution ranged between 0.62 M and 1.10 M, with yields of 45-61%.

3. Optimization of triethylborane-promoted ATRA reactions.

. . . .

	OEt -	Et ₂ O, T, t		EtO – (/	
- 7a				Ę	ōa
Entry	x (equiv.)	y (mol %)	Т	t	Yield (SM / P)
1	2.0	10	rt	20h	90% ^a
2	2.0	10	rt	15 min	n.d. $(0:100)^a$
3	1.3	10	rt	15 min	(17:83)
4	1.3	10	0 °C	15 min	87%
5	1.3	5	0 °C	15 min	89%
6	1.3	1	0 °C	15 min	95%
7	1.3	0.5	0 °C	15 min	(66:33)
8	1.2	1	0 °C	15 min	94%
9	1.1	1	0 °C	15 min	92%
10	2.0	0	rt	20 h	$(61:39)^{a}$
11	2.0	0	rt	20 h	$(36 \cdot 64)$

a. The reaction was carried out in the dark

Table S1: Optimization of ethyl iodoacetate ATRA

Ethyl 2-(3-iodobicyclo[1.1.1]pentan-1-yl)acetate, 5a

Ethyl iodoacetate (59 μ L, 0.50 mmol, 1.0 equiv.), TCP (0.61 mL, 0.903 M in Et₂O, 0.55 mmol, 1.1 equiv.) and BEt₃ (50 μ L, 50 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 15 min at 0 °C. Purification by column chromatography (SiO₂, pentane / Et₂O, 95:5) afforded **5a** (129 mg, 0.46 mmol, 92%) as a yellow oil.

R_f = 0.18 (pentane / Et₂O, 95 :5) ¹**H NMR** (400 MHz, CDCl₃) δ 4.12 (2H, q, J = 7.1 Hz, H6), 2.53 (2H, s, H4), 2.31 (6H, s, H2), 1.25 (3H, t, J = 7.1 Hz, H7). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.3, 60.9, 60.6, 43.6, 37.4, 14.3, 6.1. **HRMS** (CI⁺) Found $[M+H]^+ = 281.0033$; C₉H₁₄IO₂ requires 281.0033. **IR** (film) v_{max}/cm⁻¹ 2979, 1732, 1369, 1280, 1175, 843.

\downarrow	[1.1.1]p Br Bl	Br		
NO ₂		Et ₂ O, T, t		O ₂ N
8b				6b
Entry	x (equiv.)	Т	t	Yield (SM / P)
1	2.0	rt	20h	68% ^a
2	2.0	rt	5 min	$(0:100)^{a}$
3	1.1	rt	5 min	$(8:92)^{a}$
4	1.1	rt	15 min	$(11:89)^{a}$
5	1.5	rt	15 min	$(0:100)^{a}$
6	1.4	rt	15 min	$(0:100)^{a}$
7	1.3	rt	15 min	$(3:97)^{a}$
8	1.3	rt	15 min	(3:97)
9	1.3	0°C	15 min	73%
10	1.2	0°C	15 min	(1:99)

a. The reaction was carried out in the dark

Table S2: Optimization of 2-bromo-2-nitropropane ATRA

1-bromo-3-(2-nitropropan-2-yl)bicyclo[1.1.1]pentane, 6b

2-bromo-2-nitropropane (53 μ L, 0.50 mmol, 1.0 equiv.), TCP (0.70 mL, 0.93 M in Et₂O, 0.65 mmol, 1.3 equiv.) and BEt₃ (50 μ L, 1 M in hexane, 50 μ mol, 10 mol %) were submitted to **General Procedure 4** at 0 °C for 15 min. Recrystallization from hot petroleum ether afforded **6b** (86 mg, 0.37 mmol, 73%) as a white needles. These crystals were suitable for X-ray diffraction (see Section 10).

 $\mathbf{m.p.} = 79-80^{\circ}\text{C}$ $\mathbf{R_{f}} = 0.25 \text{ (petroleum ether / Et_2O, 9:1)}$ ¹**H NMR** (400 MHz, CDCl₃) δ 2.22 (6H, s, H2), 1.56 (6H, s, H5). ¹³**C NMR** (101 MHz, CDCl₃) δ 86.7, 56.4, 46.0, 34.8, 23.4. **HRMS** (ESI^+ , CI^+ , EI^+) Not found.

IR (film) $v_{max}/cm^{-1}3005$, 1549, 1371, 1356, 1200, 861.

The structure of **6b** was unambiguously confirmed by X-ray crystallography.

Note on oxygen content of the reaction mixture:

Reaction of **7a** under N_2 atmosphere, otherwise according to Table S1 Entry 6, proceeded to completion in 15 min. Repetition of this reaction using a freeze-thaw degassed solution of tricyclo[1.1.1.0^{1,3}]pentane also led to complete conversion in 15 min. Although surprising from a reaction initiation perspective, we hypothesize that this reaction is, simply, extremely efficient in the propagation phase.

In contrast, reaction of **7s** (see below) under an N_2 atmosphere, otherwise according to the conditions in Figure S1 (see below), showed a significant retardation compared to the reaction under air (1 h, 76%), instead requiring a 20 h reaction time to reach completion. An equivalent yield of **7s** was obtained. Repetition of this reaction using a freeze-thaw degassed solution of tricyclo[1.1.1.0^{1,3}]pentane proceeded at an equivalent, slower rate – completion again being reached after 20 h reaction time.

We believe that this latter result is indeed supportive of a reaction initiation process requiring oxygen, i.e. reaction of O_2 with BEt₃.

4. Synthesis and characterization of 1-halo-3-substituted BCPs

All reactions performed using 2 equiv. TCP and 10 mol% BEt₃ at room temperature, unless indicated otherwise. [a] 1.1 equiv. TCP, 1 mol% BEt₃, 0 °C. [b] 1.3 equiv. TCP, rt. [c] 1.3 equiv. TCP, 0 °C. [d] Co-solvent added to solubilize the substrate: MeOH for **5m,n**; CH₂Cl₂ for **5h,k,r** and **6e,f**. [e] 5% staffane observed.

Figure S1: Synthesis of 1-halo-3-substituted BCPs

Ethyl 2,2-difluoro-2-(3-iodobicyclo[1.1.1]pentan-1-yl)acetate, 5b

Ethyl iododifluoroacetate **7b** (74 μ L, 0.50 mmol, 1.0 equiv.), TCP (0.76 mL, 0.725 M in Et₂O, 0.55 mmol, 1.1 equiv.) and BEt₃ (5 μ L, 1 M in hexane, 1 mol %, 5 μ mol) were submitted to **General Procedure 1** at 0 °C for 15 min. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 95:5) afforded **5b** (156 mg, 0.49 mmol, 98%) as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.38$ (petroleum ether / Et₂O, 9:1)

¹**H NMR** (400 MHz, CDCl₃) δ 4.26 (2H, q, *J* = 7.1 Hz, H6), 2.37 (6H, s, 3 × H2), 1.28 (3H, t, *J* = 7.1 Hz, H7).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.6 (t, *J* = 32.8 Hz), 110.7 (t, *J* = 252.2 Hz), 63.2, 57.9 (t, *J* = 2.9 Hz), 46.4 (t, *J* = 32.7 Hz), 14.2, 3.8 (t, *J* = 2.4 Hz).

¹⁹**F NMR** (377 MHz, CDCl₃) δ –109.1.

HRMS (CI⁺) Found $[M+H]^+$ = 316.9843; C₉H₁₁F₂IO₂ requires 316.9845.

IR (film) v_{max}/cm^{-1} 2984, 1765, 1372, 1301, 1197, 1155, 1123, 1063, 1027, 918, 862, 828, 713.

This reaction was also conducted on a 5.00 mmol scale using ethyl iododifluoroacetate **7b** (0.74 mL, 5.00 mmol, 1.0 equiv.), TCP (7.6 mL, 0.725 M in Et₂O, 5.50 mmol, 1.1 equiv.) and BEt₃ (50 μ L, 1 M in hexane, 1 mol %, 50 μ mol), for 15 min at 0 °C. This afforded **5b** in 94% yield (1.50 g).

1-iodo-3-phenethylbicyclo[1.1.1]pentane, 5c

7c (72 μ L, 0.50 mmol, 1.0 equiv.), TCP (0.82 mL, 0.79 M in Et₂O, 0.65 mmol, 1.3 equiv.) and BEt₃ (50 μ L, 50.0 μ mol, 10 mol %) were submitted to **General Procedure 1** at 0 °C for 2 h in the dark. Purification by recrystallization from methanol (cooled to -20 °C) afforded **5c** (130 mg, 0.44 mmol, 87%) as white crystals.

m.p. = 51-52°C $\mathbf{R_f} = 0.65$ (petroleum ether / Et₂O / triethylamine, 99:1:1) ¹**H NMR** (400 MHz, C₆D₆) δ 7.15-7.09 (2H, m, H8), 7.08-7.02 (1H, m, H9), 6.91-6.85 (2H, m, H7), 2.21-2.13 (2H, m, H5), 1.87 (6H, s, H2), 1.44-1.35 (2H, m, H4). ¹³**C NMR** (101 MHz, C₆D₆) δ 141.6, 128.6, 128.4, 126.3, 60.4, 48.2, 33.3, 33.1, 7.4. **HRMS** (CI⁺) Found $[M+H]^+ = 299.0295$, C₁₃H₁₆I requires 299.0291. **IR** (film) $\nu_{max}/cm^{-1}3025$, 2988, 2911, 2875, 1603, 1496, 1453, 1172, 1135, 1009, 980, 836,

2-(3-iodobicyclo[1.1.1]pentan-1-yl)ethan-1-ol, 5d

699.

2-iodoethanol (39 μ L, 0.50 mmol, 1.0 equiv.), TCP (0.82 mL, 0.79 M in Et₂O, 0.65 mmol, 1.3 equiv.) and BEt₃ (50 μ L, 50 μ mol, 10 mol %) were submitted to **General Procedure 1** at 0 °C for 15 min. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 1:0 to 0:1) afforded **5d** (96 mg, 0.40 mmol, 80%) as a white solid that proved unstable on prolonged storage.

m.p. = 44-45°C $\mathbf{R}_{f} = 0.19$ (petroleum ether / EtOAc, 8:2) ¹H NMR (400 MHz, CDCl₃) δ 3.63 (2H, t, *J* = 6.5 Hz, H5), 2.25 (6H, s, H2), 1.78 (2H, t, *J* = 6.5 Hz, H4). ¹³C NMR (101 MHz, CDCl₃) δ 61.1, 60.9, 46.3, 34.8, 7.3. HRMS (EI⁺) Found [M–I]⁺ = 111.0802; C₇H₁₁O requires 111.0804.

IR (film) v_{max}/cm⁻¹ 3327, 2988, 2912, 2876, 1446, 1424, 1173, 1126, 1101, 1043, 981, 853.

tert-Butyl (2-(3-iodobicyclo[1.1.1]pentan-1-yl)ethyl)carbamate, 5e

7e (271 mg, 1.00 mmol, 1.0 equiv.), TCP (1.22 mL, 1.07 M in Et₂O, 1.30 mmol, 1.3 equiv.) and BEt₃ (100 μ L, 1.0 M in hexane, 100 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 45 min. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 3:1) afforded **5e** (303 mg, 0.90 mmol, 90%) as a white solid.

 $\mathbf{R_{f}} = 0.40 \text{ (petroleum ether / Et}_{2}\text{O}, 3:1)$ $\mathbf{m.p.} = 63-65 \text{ °C}$ ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\text{H}} 4.44 \text{ (1H, br s, NH)}, 3.15-3.01 \text{ (2H, m, H5)}, 2.23 \text{ (6H, s, H2)}, 1.71 \text{ (2H, t}, J = 7.3 \text{ Hz}, \text{H4}), 1.43 \text{ (9H, s, t-Bu)}.$ ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\text{C}} 155.8, 79.5, 60.7, 46.5, 38.4, 32.3, 28.5, 7.1.$ **HRMS** (ESI⁺) Found [2M+H]⁺ = 675.1154; C₂₄H₄₁I₂N₂O₄ requires 675.1150 **IR** (film) v_{max}/cm⁻¹ 3317, 1683, 1172, 835, 752.

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)-1-phenylethan-1-one, 5f

7f (74 mg, 0.30 mmol, 1.0 equiv.), TCP (0.80 mL, 0.73 M in Et₂O, 0.60 mmol, 2.0 equiv.) and BEt₃ (30 μ L, 1.0 M in hexane, 30 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 2 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 98:2 \rightarrow 96:4) afforded **5f** (80 mg, 0.26 mmol, 85%) as a white solid.

 $\mathbf{R_{f}} = 0.16 \text{ (petroleum ether / Et}_{2}\text{O}, 97:3)$ $\mathbf{m.p.} = 68-70 \text{ °C}$ ¹H NMR (400 MHz, CDCl₃) & 7.91-7.84 (2H, m, H7), 7.61-7.54 (1H, m, H9), 7.49-7.43 (2H, m, H8), 3.20 (2H, s, H4), 2.34 (6H, s, H2). ¹³C NMR (101 MHz, CDCl₃) & 197.3, 136.8, 133.5, 128.8, 128.3, 61.4, 44.1, 40.8, 6.6. HRMS (Cl⁺) Found [M+H]⁺ = 313.0081; C₁₃H₁₄IO requires 313.0084. IR (film) v_{max}/cm⁻¹ 3007, 1686, 1170, 1101, 835.

1-(Furan-2-yl)-2-(3-iodobicyclo[1.1.1]pentan-1-yl)ethan-1-one, 5g

7g (70 mg, 0.30 mmol, 1.0 equiv.), TCP (0.80 mL, 0.73 M in Et₂O, 0.60 mmol, 2.0 equiv.) and BEt₃ (30 μ L, 1.0 M in hexane, 30 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 95:5 \rightarrow 90:10) afforded **5g** (72 mg, 0.24 mmol, 79%) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.32$ (petroleum ether / Et₂O, 7:3)

m.p. = 51-53 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (1H, dd, J = 1.7, 0.8 Hz, H9), 7.16 (1H, dd, J = 3.6, 0.8 Hz, H7), 6.54 (1H, dd, J = 3.6, 1.7 Hz, H8), 3.04 (2H, s, H4), 2.32 (6H, s, H2). ¹³**C NMR** (101 MHz, CDCl₃) δ 186.1, 152.6, 146.8, 117.6, 112.6, 61.3, 44.0, 41.1, 6.3. **HRMS** (CI⁺) Found [M+H]⁺ = 302.9873; C₁₁H₁₂IO₂ requires 302.9876. **ID** (CI⁺) Found [M+H]⁺ = 302.9873; C₁₁H₁₂IO₂ requires 302.9876.

IR (film) v_{max}/cm^{-1} 2981, 1668, 1468, 1160, 836, 788.

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)-1-(1H-pyrrol-2-yl)ethan-1-one, 5h

7h (35 mg, 0.15 mmol, 1.0 equiv.), TCP (0.37 mL, 0.82 M in Et₂O, 0.30 mmol, 2.0 equiv.) and BEt₃ (15 μ L, 1.0 M in hexane, 15 μ mol, 0.1 equiv.) in CH₂Cl₂ (0.3 mL) were submitted to **General Procedure 1** at room temperature for 6 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 8:2) afforded **5h** (26 mg, 0.09 mmol, 58%) as a white solid.

 $\mathbf{R_f} = 0.39 \text{ (petroleum ether / Et_2O, 7:3)}$ $\mathbf{m.p.} = 105-107 \,^{\circ}\mathbf{C}$ ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 9.83 (1H, br s, NH), 7.11-7.01 (1H, m, H9), 6.87-6.78 (1H, m, H7), 6.28 (1H, dt, *J* = 3.7, 2.5 Hz, H8), 2.98 (2H, s, H4), 2.32 (6H, s, H2). ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 187.1, 131.9, 125.5, 117.2, 111.0, 61.4, 44.5, 40.7, 6.5. **HRMS** (CI⁺) Found [M+H]⁺ = 302.0024; C₁₁H₁₃INO requires 302.0036. **IR** (film) $v_{\rm max}/{\rm cm}^{-1}$ 3287, 1629, 1172, 833, 727.

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)-1-(thiophen-2-yl)ethan-1-one, 5i

7i (76 mg, 0.30 mmol, 1.0 equiv.), TCP (0.80 mL, 0.73 M in Et₂O, 0.60 mmol, 2.0 equiv.) and BEt₃ (30 μ L, 1.0 M in hexane, 30 μ mol, 0.1 equiv.) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 95:5 \rightarrow 90:10) afforded **5i** (86 mg, 0.27 mmol, 90%) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.37$ (petroleum ether / Et₂O, 8:2)

m.p. = 70-72 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (1H, dd, J = 5.0, 1.1 Hz, H9), 7.62 (1H, dd, J = 3.8, 1.1 Hz, H7), 7.13 (1H, dd, J = 5.0, 3.8 Hz, H8), 3.12 (2H, s, H4), 2.34 (6H, s, H2). ¹³**C NMR** (101 MHz, CDCl₃) δ 189.9, 144.2, 134.4, 132.4, 128.4, 61.3, 44.1, 41.9, 6.2. **HRMS** (CI⁺) Found [M+H]⁺ = 318.9647; C₁₁H₁₁IOS requires 318.9648. **IR** (film) v_{max}/cm^{-1} 2910, 1660, 1421, 1221, 1170, 828, 741.

1-(Benzofuran-2-yl)-2-(3-iodobicyclo[1.1.1]pentan-1-yl)ethan-1-one, 5j

7j (72 mg, 0.25 mmol, 1.0 equiv.), TCP (0.70 mL, 0.73 M in Et₂O, 0.50 mmol, 2.0 equiv.) and BEt₃ (25 μ L, 1.0 M in hexane, 25 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 2 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 95:5) afforded **5j** (76 mg, 0.22 mmol, 87%) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.60$ (petroleum ether / Et₂O, 7:3)

m.p. = 82-84 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (1H, dt, *J* = 8.0, 1.0 Hz, H9), 7.57 (1H, dd, *J* = 8.4, 1.0 Hz, H12), 7.52-7.46 (2H, m, H11, H7), 7.33 (1H, ddd, *J* = 8.0, 7.1, 1.0 Hz, H10), 3.19 (2H, s, H4), 2.37 (6H, s, H2).

¹³**C NMR** (101 MHz, CDCl₃) δ 188.1, 155.8, 152.4, 128.7, 127.1, 124.2, 123.5, 113.3, 112.6, 61.3, 43.9, 41.4, 6.2.

HRMS (CI⁺) Found $[M+H]^+ = 353.0041$; C₁₅H₁₄IO₂ requires 353.0033.

IR (film) v_{max} /cm⁻¹ 1671, 1550, 1180, 1166, 759.

tert-Butyl 3-(2-(3-iodobicyclo[1.1.1]pentan-1-yl)acetyl)-1H-indole-1-carboxylate, 5k

7k (58 mg, 0.15 mmol, 1.0 equiv.), TCP (0.37 mL, 0.82 M in Et₂O, 0.30 mmol, 2.0 equiv.) and BEt₃ (15 μ L, 1.0 M in hexane, 15 μ mol, 10 mol %) in CH₂Cl₂ (0.3 mL) were submitted to **General Procedure 1** at room temperature for 15 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 95:5) afforded **5k** (46 mg, 0.10 mmol, 68%) as a white solid.

 $\mathbf{R_f} = 0.44$ (petroleum ether / Et₂O, 7:3)

m.p. = 130-132 °C

¹H NMR (400 MHz, CDCl₃) δ 8.38-8.33 (1H, m, H8), 8.14 (1H, s, H14), 8.12-8.07 (1H, m, H11), 7.42-7.32 (2H, m, H10, H9), 3.10 (2H, s, H4), 2.37 (6H, s, H2), 1.72 (9H, s, *t*-Bu).
¹³C NMR (101 MHz, CDCl₃) δ 193.1, 149.2, 135.7, 132.3, 127.5, 125.8, 124.7, 122.8, 120.3, 115.1, 85.8, 61.4, 44.4, 42.4, 28.3, 6.5.
HRMS (CI⁺) Found [M+H]⁺ = 452.0717; C₂₀H₂₃INO₃ requires 452.0717.

IR (film) v_{max}/cm⁻¹ 1744, 1451, 1130, 844, 761.

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)acetamide, 5l

2-iodoacetamide (92 mg, 0.50 mmol, 1.0 equiv.), TCP (0.82 mL, 0.79 M in Et₂O, 0.65 mmol, 1.3 equiv.) and BEt₃ (50 μ L, 1.0 M in hexane, 50 μ mol, 10 mol %) in MeOH (0.3 mL) were submitted to **General Procedure 1** at room temperature for 1.5 h. Purification by column chromatography (SiO₂, EtOAc) afforded **5l** (111 mg, 0.44 mmol, 88%) as a white solid.

 $\mathbf{R_{f}} = 0.19 \text{ (EtOAc)}$ $\mathbf{m.p.} = 118-120 \text{ °C}$ ¹H NMR (400 MHz, CDCl₃) δ 5.61 (1H, br s, NH), 5.34 (1H, br s, NH), 2.44 (2H, s, H4), 2.33 (6H, s, H2). ¹³C NMR (101 MHz, CDCl₃) δ_{C} 171.7, 61.0, 44.2, 39.2, 5.9. HRMS (CI⁺) Found [M+H]⁺ = 251.9876; C₇H₁₁INO requires 251.9880. IR (film) v_{max}/cm⁻¹ 3353, 3167, 1658, 1629, 1404, 1177, 842, 661.

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)propanamide, 5m

7m (60 mg, 0.30 mmol, 1.0 equiv.), TCP (0.50 mL, 0.79 M in Et₂O, 0.39 mmol, 1.3 equiv.) and BEt₃ (30 μ L, 1.0 M in hexane, 30 μ mol, 10 mol %) in MeOH (0.5 mL) were submitted to **General Procedure 1** at room temperature for 1.5 h. Purification by column chromatography (SiO₂, EtOAc) afforded **5m** as a white solid (79 mg, 0.30 mmol, 99%). Recrystallization by slow evaporation of a solution in CDCl₃ afforded crystals that were suitable for X-ray diffraction (see Section 10).

 $\mathbf{R}_{f} = 0.28 \text{ (EtOAc)}$ $\mathbf{m.p.} = 108\text{-}110 \text{ °C}$ $^{1}\mathbf{H} \text{ NMR} (400 \text{ MHz, CDCl}_{3}) \delta 5.29 (2\text{H, br s, NH}_{2}), 2.50 (1\text{H, q}, J = 6.9 \text{ Hz, H4}), 2.26 (6\text{H, s, H2}), 1.10 (3\text{H, d}, J = 6.9 \text{ Hz, H5}).$ $^{13}\mathbf{C} \text{ NMR} (101 \text{ MHz, CDCl}_{3}) \delta 174.8, 59.2, 48.9, 42.7, 14.2, 6.0.$ $\mathbf{HRMS} (\text{CI}^{+}) \text{ Found } [\text{M}+\text{H}]^{+} = 266.0035; \text{ C}_{8}\text{H}_{13}\text{INO requires } 266.0036.$ $\mathbf{IR} \text{ (film) } v_{\text{max}}/\text{cm}^{-1} 3424, 3170, 1657, 1172, 834.$

1-Iodo-3-((phenylsulfonyl)methyl)bicyclo[1.1.1]pentane, 5n

7n (142 mg, 0.50 mmol, 1.0 equiv.), TCP (0.82 mL, 0.79 M in Et₂O, 0.65 mmol, 1.3 equiv.) and BEt₃ (50 μ L, 50.0 μ mol, 10 mol %) were submitted to **General Procedure 1** at 0 °C for 3 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 1:0 to 0:1) afforded **5n** (107 mg, 0.31 mmol, 61%) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.16$ (petroleum ether / Et₂O, 7:3)

m.p. = 111-112 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.92-7.86 (2H, m, H6), 7.71-7.64 (1H, m, H8), 7.61-7.54 (2H, m, H7), 3.34 (2H, s, H4), 2.32 (6H, s, 3 × H2).

¹³C NMR (101 MHz, CDCl₃) δ 139.8, 134.1, 129.6, 127.9, 61.2, 57.1, 40.6, 5.0.

HRMS (ESI⁺) Found $[M+Na]^+ = 370.9573$; $C_{12}H_{13}O_2^{127}I^{23}Na^{32}S$ requires 370.9573.

IR (film) v_{max}/cm⁻¹ 2995, 2912, 1446, 1302, 1282, 1184, 1145, 1082, 857, 743, 688.

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)-3-phenylpropanal, 50

71 (78 mg, 0.30 mmol, 1.0 equiv.), TCP (0.76 mL, 0.79 M in Et₂O, 0.60 mmol, 2.0 equiv.) and BEt₃ (30 μ L, 1.0 M in hexane, 30 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 9:1) afforded **50** (37 mg, 0.11 mmol, 38%) as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.32$ (petroleum ether / Et₂O, 9:1)

¹**H NMR** (400 MHz, CDCl₃) δ 9.64 (1H, d, *J* = 2.3 Hz, H5), 7.33-7.26 (2H, m, H8), 7.26-7.20 (1H, m, H9), 7.20-7.12 (2H, m, H7), 3.04 (1H, dd, *J* = 13.9, 8.5 Hz, H6), 2.95 (1H, ddd, *J* = 8.5, 5.9, 2.3 Hz, H4), 2.73 (1H, dd, *J* = 13.9, 5.9 Hz, H6), 2.30 (3H, dd, *J* = 9.4, 1.6 Hz, H2), 2.25 (3H, dd, *J* = 9.4, 1.6 Hz, H2).

¹³C NMR (101 MHz, CDCl₃) δ_{C} 201.2, 138.2, 128.8, 128.8, 126.8, 59.8, 54.6, 46.5, 33.0, 6.4. HRMS (CI⁺) Found [M+H]⁺ = 327.0242; C₁₄H₁₆IO requires 327.0240. IR (film) v_{max}/cm⁻¹ 2915, 1724, 1177, 838, 699.

Methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3-iodobicyclo [1.1.1]pentan-1yl)propanoate, 5p

7p (165 mg, 0.50 mmol, 1.0 equiv.), TCP (1.32 mL, 0.76 M in Et₂O, 1.00 mmol, 2.0 equiv.) and BEt₃ (50 μ L, 1 M in hexane, 50 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 8:2) and recrystallization from petroleum ether afforded **5p** (142 mg, 0.36 mmol, 72%) as a white fluffy solid.

 $R_f = 0.13$ (petroleum ether / Et₂O, 9:1) m.p. = 83-84°C ¹**H NMR** (400 MHz, CDCl₃) δ 4.98 (1H, d, *J* = 8.4 Hz, NH), 4.29 (1H, td, *J* = 7.9, 4.4 Hz, H5), 3.73 (3H, s, H7), 2.29-2.20 (6H, m, H2), 2.12 (1H, dd, J = 14.6, 4.0 Hz, H4), 1.86 (1H, dd, *J* = 14.6, 7.6 Hz, H4), 1.44 (9H, s, *t*-Bu). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.8, 155.1, 80.3, 61.0, 52.6, 52.0, 45.5, 34.5, 28.5, 6.4. **HRMS** (CI⁺) Found [M+H]⁺ = 396.0679; C₇H₉O₂ requires 396.0666. **IR** (film) v_{max}/cm⁻¹3358, 2978, 1744, 1713, 1509, 1366, 1176. [*a*]²⁵_{*p*}-0.8 (c = 3.0, MeOH)

Methyl (*R*)-2-((tert-butoxycarbonyl)amino)-3-(3-iodobicyclo [1.1.1]pentan-1-yl)propanoate, 5p'

7p' (165 mg, 1.0 equiv., 0.50 mmol), TCP (1.27 mL, 0.79 M in Et₂O, 2.0 equiv., 1.00 mmol) and BEt₃ (50 uL, 1 M in hexane, 10 mol%, 50 μ mol) were submitted to **General Procedure 1**. Purification by column chromatography (pentane / Et₂O, 1:0 to 8:2) and recrystallisation from pentane at -20 °C afforded **5p'** (92 mg, 46%) as a white fluffy solid.

 $\mathbf{R}_{\mathbf{f}} = 0.13$ (petroleum ether / Et₂O, 9:1)

¹**H NMR** (400 MHz, CDCl₃) δ 4.98 (1H, d, J = 8.5 Hz, NH), 4.29 (1H, td, J = 8.0, 4.5 Hz, H5), 3.73 (3H, s, H7), 2.28 – 2.19 (6H, m, H2), 2.12 (1H, dd, J = 14.6, 4.4 Hz, H4), 1.86 (1H, dd, J = 14.6, 7.6 Hz, H4), 1.44 (9H, s, *t*-Bu). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.8, 155.1, 80.3, 61.0, 52.6, 52.0, 45.5, 34.5, 28.5, 6.4. **HRMS** (ESI⁺) Found [M+Na]⁺ = 418.0480; C₁₄H₂₂O₄N¹²⁷I²³Na requires 418.0486 **IR** (film) v_{max}/cm⁻¹ 3360, 2976, 1747, 1715, 1507, 1366, 1178.

 $[a]_D^{25} 0.7 \circ (C = 3.0, MeOH)$

HPLC trace for **5p** (Chiralpak IB, 5% IPA in hexane, flow rate = 1.3 mL/min, 254 nm)

HPLC trace for **5p'** (Chiralpak IB, 5% IPA in hexane, flow rate = 1.3 mL/min, 254 nm)

HPLC trace for a mixture of **5p** and **5p'** (Chiralpak IB, 5% IPA in hexane, flow rate = 1.3 mL/min, 254 nm)

1-Iodo-3-(chloromethyl)bicyclo[1.1.1]pentane, 5q

Chloroiodomethane (36 μ L, 0.50 mmol, 1.0 equiv.), TCP (1.1 mL, 0.79 M in Et₂O, 0.65 mmol, 31.3 equiv.) and BEt₃ (50 μ L, 1 M in hexane, 50 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, pentane) afforded **5q** (87 mg, 0.36 mmol, 72%) as a white solid.

 $\mathbf{R_f} = 0.43$ (pentane) $\mathbf{m.p.} = 34-35 \text{ °C}$ ¹H NMR (400 MHz, CDCl₃) δ 3.53 (2H, s, H4), 2.30 (6H, s, H2). ¹³C NMR (101 MHz, CDCl₃) δ 59.3, 47.3, 44.1, 6.1. HRMS (CI⁺) Found [M–I]⁺ = 115.0309; C₆H₈Cl requires 115.0309. IR (film) v_{max}/cm⁻¹ 2996, 2915, 1265, 1178, 850, 721.

1-Iodo-3-(4-nitrobenzyl)bicyclo[1.1.1]pentane, 5r

7r (132 mg, 0.50 mmol, 1.0 equiv.), TCP (0.90 mL, 0.90 M in Et₂O, 1.00 mmol, 2.0 equiv.) and BEt₃ (50 μ L, 50 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, pentane / Et₂O, 95:5) afforded **5r** (148 mg, 0.45 mmol, 90%) as white crystals. Recrystallization from petroleum ether / CH₂Cl₂ afforded crystals that were suitable for X-ray diffraction (see Section 10).

$$\begin{split} & \mathbf{R_{f}} = 0.25 \text{ (pentane / Et}_{2}\text{O}, 95:5) \\ & \mathbf{m.p.} = 76 \ ^{\circ}\text{C} \text{ (dec.)} \\ ^{1}\text{H NMR} \text{ (400 MHz, CDCl}_{3} \text{ } \delta \text{ } 8.19\text{-}8.13 \text{ (2H, m, H7)}, 7.24\text{-}7.20 \text{ (2H, m, H6)}, 2.92 \text{ (2H, s, H4)}, 2.16 \text{ (6H, s, H2)}. \\ & ^{13}\text{C NMR} \text{ (101 MHz, CDCl}_{3} \text{ } \delta \text{ } 146.9, 145.9, 129.7, 124.0, 60.2, 47.5, 39.2, 7.0. \\ & \text{HRMS} \text{ (CI}^{+}\text{) Found [M+NH_4]}^{+} = 347.0256; \text{C}_{12}\text{H}_{16}\text{IN}_2\text{O}_2 \text{ requires } 347.0251. \\ & \text{IR} \text{ (film) } \nu_{\text{max}}/\text{cm}^{-1}\text{2997}, 1596, 1514, 1343, 1174, 1105, 854, 831, 700. \end{split}$$

1-iodo-3-(4-(trifluoromethyl)benzyl)bicyclo[1.1.1]pentane, 5s

7s (143 mg, 0.50 mmol, 1.0 equiv.), TCP (1.27 mL, 0.79 M in Et₂O, 1.00 mmol, 2.0 equiv.) and BEt₃ (50 μ L, 50 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, petroleum ether) afforded **5s** (134 mg, 0.38 mmol, 76%) as white crystals. Recrystallization with petroleum ether from CH₂Cl₂ afforded crystals that were suitable for X-ray diffraction (see Section 10).

 $\mathbf{R_{f}} = 0.48 \text{ (petroleum ether)}$ $\mathbf{m.p.} = 84-86 \,^{\circ}\text{C}$ ¹H NMR (400 MHz, CDCl₃) & 7.55 (2H, d, *J* = 8.0 Hz, H7), 7.17 (2H, d, *J* = 8.0 Hz, H6), 2.87 (2H, s, H4), 2.16 (6H, s, H2). ¹³C NMR (101 MHz, CDCl₃) & 142.4, 129.2, 128.9 (q, *J* = 32.4 Hz), 125.5 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 271.9 Hz), 60.3, 47.9, 39.1, 7.6. ¹⁹F NMR (376 MHz, CDCl₃) & -62.41. HRMS (CI⁺) Found [M+NH₄]⁺ = 370.0280; C₁₃H₁₆F₃IN requires 370.0274. IR (film) ν_{max}/cm^{-1} 2915, 1320, 1157, 1107, 1063, 1016, 843.

1-(3,5-bis(trifluoromethyl)benzyl)-3-iodobicyclo[1.1.1]pentane, 5t

7t (177 mg, 0.50 mmol, 1.0 equiv.), TCP (1.27 mL, 0.79 M in Et₂O, 1.00 mmol, 2.0 equiv.) and BEt₃ (50 μ L, 50 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, petroleum ether) afforded **5t** (176 mg, 0.42 mmol, 84%) as a yellowish solid.

 $\mathbf{R}_{\mathbf{f}} = 0.30$ (petroleum ether)

m.p. = 45-46 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.84-7.64 (1H, m, H8), 7.57-7.40 (2H, m, H6), 2.96 (2H, s, H4), 2.17 (6H, s, H2).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.7, 132.0 (q, *J* = 33.2 Hz), 128.9 (q, *J* = 3.0 Hz), 123.4 (d, *J* = 272.6 Hz), 120.7 (m), 60.1, 47.5, 39.0, 6.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.88.

HRMS (EI⁺) Found $[M-I]^+ = 293.0762$; C₁₄H₁₁F₆ requires 293.0759.

IR (film) $\nu_{max}/cm^{-1}2993, 2917, 1378, 1276, 1171, 1128, 981, 923, 895, 844, 729, 707, 682.$

2-((3-iodobicyclo[1.1.1]pentan-1-yl)methyl)benzonitrile, 5u

7**u** (366 mg, 1.50 mmol, 1.0 equiv.), TCP (3.81 mL, 0.79 M in Et₂O, 4.50 mmol, 2.0 equiv.) and BEt₃ (150 μ L, 150 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 1:0 \rightarrow 1:1) afforded **5u** (423 mg, 1.37 mmol, 91%) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.37$ (Petroleum ether: Et₂O, 9:1)

m.p. = 99-101 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (1H, d, J = 7.7 Hz, H9), 7.53 (td, J = 7.7, 1.3 Hz, H7), 7.33 (td, J = 7.7, 1.3 Hz, H8), 7.19 (1H, d, J = 7.7 Hz, H6), 3.07 (2H, s, H4), 2.19 (6H, s, H2). ¹³**C NMR** (101 MHz, CDCl₃) δ 142.2, 133.1, 133.0, 130.1, 127.2, 118.0, 112.6, 60.4, 47.7, 37.7, 7.0.

HRMS (CI⁺) Found $[M+NH_4]^+ = 327.0355$; C₁₃H₁₆IN₂ requires 327.0352. **IR** (film) v_{max}/cm⁻¹ 2914, 2877, 2221, 1482, 1444, 1173, 979, 840, 760.

1-(But-3-en-1-yl)-3-iodobicyclo[1.1.1]pentane, 5v

7v (182 mg, 1.00 mmol, 1.0 equiv.), TCP (1.50 mL, 0.89 M in Et₂O, 1.30 mmol, 1.3 equiv.) and BEt₃ (100 μ L, 1.0 M in hexane, 100 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 1 h. Purification by column chromatography (SiO₂, pentane) afforded **5v** (199 mg, 0.800 mmol, 80%) as a colorless liquid.

 $\mathbf{R}_{f} = 0.62 \text{ (pentane)}$ ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 5.76 (1H, ddt, J = 16.8, 10.2, 6.5 Hz, H6), 5.03-4.91 (2H, m, H7), 2.20 (6H, s, H2), 2.07-1.96 (2H, m, H5), 1.66-1.57 (2H, m, H4). ¹³**C NMR** (101 MHz, CDCl₃) δ_{C} 138.1, 115.0, 60.7, 48.4, 31.4, 31.1, 7.9. **HRMS** (ESI) Found [M+NH₄]⁺ = 266.0406; C₉H₁₇IN requires 266.0400. **IR** (film) v_{max}/cm^{-1} 2987, 1172, 834.

Dimethyl 2-(3-bromobicyclo[1.1.1]pentan-1-yl)malonate, 6c

8c (132 μ L, 1.00 mmol, 1.0 equiv.), TCP (1.4 mL, 0.90 M in Et₂O, 1.30 mmol, 1.3 equiv.) and triethylborane (100 μ L, 1 M in hexane, 100 μ mol, 10 mol %) were submitted to **General Procedure 1** at 0 °C for 15 min. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 9:1) afforded **6c** (244 mg, 0.88 mmol, 88%) as a colourless oil.

 $R_{f} = 0.14 \text{ (petroleum ether/Et2O, 9:1)}$ ¹H NMR (400 MHz, CDCl₃) δ 3.76 (6H, s, H6), 3.66 (1H, s, H4), 2.33 (6H, s, H2). ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 58.5, 52.7, 52.3, 38.1, 35.9. HRMS (CI⁺) Found [M+H]⁺ = 210.9604; C₁₀H₁₄⁷⁹BrO₄ requires 277.0070 IR (film) v_{max}/cm⁻¹2955, 1735, 1219, 1052, 1022, 868.

Diethyl 2-(3-bromobicyclo[1.1.1]pentan-1-yl)-2-methylmalonate, 6d

8d (165 mg, 0.5 mmol, 1.0 equiv.), TCP (0.90 mL, 0.725 M in Et₂O, 0.50 mmol, 1.3 equiv.) and BEt₃ (50 μ L, 1 M in hexane, 0.05 mmol, 10 mol %) were submitted to **General Procedure 1**. Purification by column chromatography (SiO₂, petroleum ether/Et₂O, 95:5) afforded **6d** (119 mg, 0.37 mmol, 74%) as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.28$ (petroleum ether / Et₂O, 9:1)

¹**H NMR** (400 MHz, CDCl₃) δ 4.18 (4H, m, H6), 2.27 (6H, s, H2), 1.38 (3H, s, H8), 1.25 (6H, t, *J* = 7.1 Hz, H7).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 61.6, 57.4, 54.2, 43.0, 36.4, 18.9, 14.3.

HRMS (CI⁺) Found $[M+H]^+ = 319.0528$; C₁₃H₁₉⁷⁹BrO₄ requires 319.0540.

IR (film) v_{max}/cm⁻¹ 2981, 1730, 1258, 1188, 1154, 1094, 861.

2-(3-bromobicyclo[1.1.1]pentan-1-yl)-1,3-diphenylpropane-1,3-dione, 6e

2-bromo-1,3-diphenylpropane-1,3-dione (152 mg, 0.500 mmol, 1.0 equiv.), TCP (0.720 mL, 0.90 M in Et₂O, 1.00 mmol, 1.3 equiv.) and BEt₃ (50 μ L, 1 M in hexane, 50 μ mol, 10 mol %) were submitted to **General Procedure 1** at 0 °C for 1 h. Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 95:5) afford **6e** (112 mg, 0.30 mmol, 59%) as an off-white solid.

R_f = 0.45 (petroleum ether / EtOAc, 8:2) **m.p.** =119-120 °C ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (4H, dd, J = 8.4, 1.4 Hz, H7), 7.63-7.54 (2H, m, H9), 7.51-7.41 (4H, m, H8), 5.53 (1H, s, H4), 2.35 (6H, s, H2). ¹³**C NMR** (101 MHz, CDCl₃) δ 193.7, 136.0, 134.0, 129.1, 128.6, 59.2, 56.2, 39.1, 36.5. **HRMS** (CI⁺) Found [M+H]⁺ = 369.0491; C₂₀H₁₈⁷⁹BrO₂ requires 369.0412. **IR** (film) ν_{max}/cm⁻¹2920, 1691, 1672, 1331, 1274, 1174, 866, 822, 756, 691.

2-(3-bromobicyclo[1.1.1]pentan-1-yl)-1-phenyl-2-tosyl-ethan-1-one, 6f

8f (177 mg, 0.50 mmol, 1.0 equiv.), TCP (0.73 mL, 0.90 M in Et₂O, 0.65 mmol, 1.3 equiv.) and BEt₃ (50 μ L, 1M in hexane, 50 μ mol, 10 mol %) in CH₂Cl₂ (2 mL) were submitted to **General Procedure 1** at 0 °C for 1h. Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 9:1) and recrystallization from CH₂Cl₂ with pentane afforded **6f** (132 mg, 0.31 mmol, 42% yield as determined by 'H NMR spectroscopy, 95:5 mixture with the corresponding staffane derivative) as white crystals.

 $\mathbf{R}_{\mathbf{f}} = 0.18$ (Petroleum ether / EtOAc, 8:2)

m.p. = 136-137 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.78-7.74 (2H, m, H12), 7.72-7.67 (2H, m, H6), 7.61-7.55 (1H, m, H14), 7.45-7.39 (2H, m, H13), 7.28-7.23 (2H, m, H7), 5.30 (1H, s, H4), 2.39 (3H, s, H9), 2.37 (3H, dd, *J* = 9.4, 1.9 Hz, H2), 2.30 (3H, dd, *J* = 9.4, 1.9 Hz, H2).

¹³**C NMR** (101 MHz, CDCl₃) δ 190.5, 145.7, 136.5, 135.2, 134.3, 129.8, 129.7, 129.0, 128.7, 69.3, 59.4, 37.1, 35.8, 21.8.

HRMS (ESI⁺) Found $[M+H]^+ = 419.0298$; C₂₀H₂₀⁷⁹BrO₃S requires 419.0311.

IR (film) $\nu_{max}/cm^{-1}3011$, 2922, 1683, 1596, 1579, 1402, 1324, 1149, 1018, 996, 749, 729, 706.

Staffane derivative: **HRMS** (ESI⁺) Found $[M+Na]^+ = 507.0585$; C₂₅H₂₅O₃BrNaS requires 507.0600.

5. Substrate limitations

The following substrates proved unreactive to ATRA reaction conditions:

The following substrates failed to reach complete conversion. For bromoethylacetate, a 1:7 ratio of starting material (SM) to product (P) was observed after two iterations of the procedure (40 h in total). For TMS propargyl bromide, a 1:3 ratio of SM:P was observed after 20 h.

Attempts to effect TCP ring opening as a final step in the synthesis of fentanyl (using the piperidine substrate shown below) were also unsuccessful. We suspect that amine coordination to triethylborane may inhibit the intitation process, as this result contrasts with the successful formation of products **5e**, **5p** and **5x**, which feature Boc-protected amines; and also the tolerance of amides (**5l**, **5m**).

6. Reduction of 1-halo-3-substituted BCPs

2-(Bicyclo[1.1.1]pentan-1-yl)acetamide, 9l

To a solution of **5l** (178 mg, 0.710 mmol, 1.0 equiv.) in MeOH (1.8 mL) at room temperature were added tris(trimethylsilyl)silane (284 μ L, 0.920 mmol, 1.3 equiv.) and triethylborane (70 μ L, 1.0 M in hexane, 70 μ mol, 10 mol %). After stirring for 2 h, the reaction mixture was concentrated and the crude product was washed with pentane (0.5 mL). Purified by column chromatography (SiO₂, EtOAc) afforded **9l** (76 mg, 0.61 mmol, 86%) as a brown solid.

 $\begin{aligned} \mathbf{R}_{f} &= 0.22 \text{ (petroleum ether / Et}_{2}O, 95:5) \\ \mathbf{m.p.} &= 142\text{-}144 \ ^{\circ}\text{C} \\ ^{1}\text{H NMR} (400 \text{ MHz, CDCl}_{3}) \ \delta \ 5.66 \text{ (br s, 1H, NH), 5.41 (br s, 1H, NH), 2.51 (s, 1H, H1),} \\ 2.39 (s, 2H, H4), 1.81 (s, 6H, H2). \\ ^{13}\text{C NMR} (101 \text{ MHz, CDCl}_{3}) \ \delta \ 173.4, 51.3, 41.5, 40.7, 27.9. \\ \text{HRMS} (\text{CI}^{+}) \text{ Found [M+H]}^{+} &= 126.0914; \text{C}_{7}\text{H}_{12}\text{NO} \text{ requires } 126.0913. \\ \text{IR} (\text{film}) \ \nu_{\text{max}}/\text{cm}^{-1} 3358, 3184, 2963, 1656, 1627, 1432, 1270, 710. \end{aligned}$

Methyl (S)-3-(bicyclo[1.1.1]pentan-1-yl)-2-((tert-butoxycarbonyl)amino)propanoate, 9p

To a solution of iodide **5p** (790 mg, 2.00 mmol, 1.0 equiv.) and 2,6-lutidine (0.700 mL, 6.00 mmol, 3.0 equiv.) in THF (4 mL) was added tris(trimethylsilyl)silane (1.23 mL, 4.00 mmol, 2.0 equiv.) and BEt₃ (200 μ L, 1 M in hexane, 200 μ mol, 10 mol %). The resulting mixture was stirred for 15 min at room temperature and then concentrated. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 9:1) and recrystallization from pentane (–20 °C) afforded **9p** (406 mg, 1.51 mmol, 75%) as white crystals.

 $\mathbf{R_f} = 0.23$ (petroleum ether / Et₂O, 8:2) m.p. = 67-68 °C ¹**H NMR** (400 MHz, CDCl₃) δ 4.93 (1H, d, *J* = 8.5 Hz, NH), 4.29 (1H, td, *J* = 8.1, 4.5 Hz, H5), 3.72 (3H, s, H7), 2.44, (1H, s, H1), 1.97 (1H, dd, *J* = 14.6, 4.5 Hz, H4), 1.76 (1H, dd, *J* = 14.6, 7.9 Hz, H4), 1.71 (6H, s, H2), 1.44 (9H, s, *t*-Bu).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 155.2, 79.9, 52.3, 52.3, 51.2, 42.8, 35.0, 28.5, 28.3.

HRMS (ESI⁺) Found $[M+Na]^+ = 292.1517$; $C_{14}H_{23}O_4N^{23}Na$ requires 292.1519.

IR (film) v_{max}/cm⁻¹3352, 2979, 2952, 2905, 2870, 1736, 1689, 1677, 1536, 1246, 1208, 1195, 1156.

 $[a]_{D}^{25}$ -15.1 (c = 3.0, MeOH)

2-(Bicyclo[1.1.1]pentan-1-yl)ethan-1-aminium 2,2,2-trifluoroacetate, 9e

To a solution of **5e** (242 mg, 0.720 mmol, 1.0 equiv.) in methanol (1.8 mL) at room temperature was added tris(trimethylsilyl)silane (288 μ L, 0.940 mmol, 1.3 equiv.) and triethylborane (70 μ L, 1.0 M in hexane, 70 μ mol, 10 mol %). After stirring for 30 min, the reaction mixture was concentrated. The residue dissolved with CH₂Cl₂ (1 mL) and trifluoroacetic acid (1 mL) was added dropwise at room temperature. After stirring for 14 h, the reaction mixture was concentrated *in vacuo* and the crude product was washed with pentane (5 x 0.25 mL). The resulting oil was dried under vacuum at 100 °C for 1 h to afford **9e** (158 mg, 0.70 mmol, 97%) as a thick colourless oil.

¹**H NMR** (400 MHz, CD₃OD) δ 2.89-2.84 (2H, m, H5), 2.48 (1H, s, H1), 1.81-1.78 (2H, m, H4), 1.75 (6H, s, H2).

¹³**C NMR** (101 MHz, CD₃OD) δ 162.5 (q, J_{CF} = 35.4 Hz), 117.9 (q, J_{CF} = 291.8 Hz), 51.2, 43.4, 38.5, 31.3, 28.7.

¹⁹**F NMR** (376 MHz, CDCl₃) $\delta_{\rm F}$ –77.0.

HRMS (ESI⁺) Found $[M]^+$ = 112.1119; C₇H₁₄N requires 112.1121.

IR (film) v_{max} /cm⁻¹2967, 1668, 1198, 1137, 756, 667.

2-(Bicyclo[1.1.1]pentan-1-yl)acetic acid, 9a

To a solution of 7a (296 µL, 2.50 mmol, 1.0 equiv.) and TCP (3.44 mL, 0.80 M in Et₂O,

2.75 mmol, 1.1 equiv.) at 0 °C was added BEt₃ (25 μ L, 1 M in hexane, 25 μ mol, 1 mol %), and the resulting mixture was stirred at 0 °C for 15 min. Tris(trimethylsilyl)silane (1.00 mL, 3.25 mmol, 1.3 equiv.) and BEt₃ (250 μ L, 1 M in hexane, 250 μ mol, 10 mol %) were added, and the mixture was stirred at room temperature for 15 min (caution: exotherm). Sodium hydroxide (500 mg, 5.0 equiv., 12.5 mmol) in methanol (5 mL) was added (caution: exotherm) and the mixture was refluxed for 30 min, and then concentrated. Water (5 mL) was added and the mixture was extracted with Et₂O (3 × 10 mL). The aqueous phase was acidified to pH 1 with conc. HCl, extracted with Et₂O (3 × 20 mL), and the combined organics were dried (MgSO₄) and concentrated. Purification by column chromatography (SiO₂, CH₂Cl₂ / methanol, 95:5) afforded **9a** (204 mg, 1.62 mmol, 64%) as a pungent colourless oil.

 $\mathbf{R_f} = 0.25 (CH_2Cl_2 / methanol, 9:1)$

¹**H NMR** (400 MHz, CDCl₃) δ 2.51 (2H, s, H4), 2.49 (1H, s, H1), 1.82 (6H, s, H2).

¹³C NMR (101 MHz, CDCl₃) δ 178.1, 51.3, 40.7, 38.3, 28.2.

HRMS (ESI-) Found [M-H] = 125.0608; C₇H₉O₂ requires 125.0608.

IR (film) v_{max}/cm⁻¹ 2968, 2909, 2874, 1706, 1509, 1407, 1300, 1258, 1229, 1201.

7. Functionalization of 1-halo-3-substituted BCPs

Phenyl(3-(4-(trifluoromethyl)benzyl)bicyclo[1.1.1]pentan-1-yl)methanol, 11

Adapted from the procedure described by Messner et al.⁴ To a solution of **5s** (50 mg, 0.14 mmol, 1.0 equiv.) in Et₂O (0.5 mL) at -78 °C was added *tert*-BuLi (0.18 mL, 1.7 M in pentane, 0.31 mmol, 2.2 equiv.) dropwise. The resulting yellow solution was stirred for 1 h at -78 °C, then benzaldehyde (43 µL, 0.43 mmol, 3.0 equiv.) was added at -78 °C. The resulting solution was stirred at -78 °C for 1 h, and then quenched with HCl (1 mL, 1 M aq.,). The aqueous phase was extracted with Et₂O (3 × 3 mL). The combined organics were washed with NaHCO₃ (3 mL, aq., sat.), and brine, and then dried (MgSO₄) and concentrated *in vacuo*. Purification by column chromatography (SiO₂, pentane / Et₂O, 8:2) afforded the title compound as a white solid (38 mg, 0.114 mmol, 80%).

 $R_f = 0.13$ (pentane / Et₂O, 8:2)

m.p. = 62-63 °C

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (2H, d, *J* = 8.0 Hz, H7), 7.36-7.31 (2H, m, Ar*H*), 7.30-7.26 (1H, m, H14), 7.25-7.22 (2H, m, Ar*H*), 7.18 (2H, d, *J* = 8.0 Hz, H6), 4.70 (1H, s, H10), 2.83 (2H, s, H4), 1.89 (1H, s, O*H*), 1.50 (3H, dd, *J* = 9.6, 1.6 Hz, H2), 1.45 (3H, dd, *J* = 9.6, 1.6 Hz, H2).

¹³C NMR (126 MHz, CDCl₃) δ 143.6, 141.7, 128.3 (q, *J* = 32.2 Hz), 128.2, 127.5, 126.0, 125.3 (q, *J* = 3.8 Hz), 124.5 (q, *J* = 271.8 Hz), 73.9, 48.0, 43.9, 40.2, 39.2.

¹⁹**F NMR** (377 MHz, CDCl₃) δ –62.23.

HRMS (ESI-) Found [M-H] = 331.1317; C₂₀H₁₈OF₃ requires 331.1315.

IR (film) v_{max}/cm⁻¹ 3406, 2967, 1324, 1255, 1162, 1118, 1066, 1019, 704.

3-(4-(Trifluoromethyl)benzyl)bicyclo[1.1.1]pentane-1-carbaldehyde, 12

Adapted from the procedure described by Messner et al.⁵ To a solution of **5s** (50 mg, 0.14 mmol, 1.0 equiv.) in Et₂O (0.5 mL) at -78 °C was added *tert*-BuLi (0.18 mL, 1.7 M in pentane, 0.31 mmol, 2.2 equiv.) dropwise. The resulting yellow solution was stirred for 1 h at -78 °C, and then added dropwise by syringe into a stirred solution of ethyl formate (34 µL, 0.43 mmol, 3.0 equiv.) in Et₂O (0.5 mL) at -78 °C. The resulting solution was stirred at -78 °C for 1 h, and then quenched with HCl (1 mL, 1 M aq.). The aqueous phase was extracted with Et₂O (3 × 3 mL). The combined organic phases were washed with NaHCO₃ (3 mL, aq., sat.) and brine, dried (MgSO₄) and concentrated *in vacuo*. Purification by column chromatography (SiO₂, pentane / Et₂O, 8:2) afforded the title compound as a pale yellow oil (27 mg, 0.106 mmol, 74%).

 $R_f = 0.31$ (pentane / Et₂O, 8:2)

¹**H NMR** (500 MHz, CDCl₃) δ 9.52 (1H, s, C*H*O), 7.55 (2H, d, *J* = 8.0 Hz, H7), 7.20 (2H, d, *J* = 8.0 Hz, H6), 2.87 (2H, s, H4), 1.86 (6H, s, H2).

¹³**C NMR** (126 MHz, CDCl3) δ 198.8, 142.7, 129.3, 128.7 (q, *J* = 32.4 Hz), 125.5 (q, *J* = 3.7 Hz), 124.4 (q, *J* = 271.8 Hz), 50.4, 44.9, 40.9, 38.9.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.32.

HRMS (EI⁺) Found $[M+H]^+ = 255.0995$; C₁₄H₁₄OF₃ requires 255.0991.

IR (film) v_{max}/cm⁻¹ 2977, 1711, 1323, 1163, 1116, 1066, 1019.

2-(3-(4-(trifluoromethyl)benzyl)bicyclo[1.1.1]pentan-1-yl)pyridine, 13

Adapted from the procedure described by Messner et al.⁴ To a solution of **5s** (106 mg, 0.300 mmol, 1.0 equiv.) in Et₂O (1 mL) at -78 °C was added *tert*-BuLi (0.45 mL, 1.7 M in pentane, 0.75 mmol, 2.5 equiv.) dropwise. The resulting yellow solution was stirred for 1 h at -78 °C, then ZnCl₂ (0.40 mL, 1.9 M in 2-MeTHF, 0.75 mmol, 2.5 equiv.) was added dropwise. The resulting mixture was warmed to 0 °C and stirred for 30 min. In a separate vessel was added Pd(dppf)Cl₂ (11 mg, 15 µmol, 5 mol%), 2-bromopyridine (60 µL, 0.63 mmol, 2.1 equiv.) and THF (1 mL). The resulting suspension was sonicated for 3 min and added quickly to the stirred solution of the organozinc reagent at 0 °C. The solution turned dark green instantly. The vial was heated at 60 °C for 15 h (upon heating, the solution quickly turned olive green,

then yellow). After this time, the reaction mixture was cooled to rt and quenched with NH₄Cl (2 mL, aq., sat.). The aqueous phase was extracted with EtOAc (3×5 mL), and the combined organics were washed with NH₄Cl (5 mL, aq., sat.), and brine, then they were dried (MgSO₄) and concentrated *in vacuo*. Purification by column chromatography (SiO₂, pentane / EtOAc, 1:0 \rightarrow 0:1) afforded the title compound as an orange waxy solid (57 mg, 0.188 mmol, 64%).

 $\mathbf{R}_{\mathbf{f}} = 0.10$ (pentane / EtOAc, 9:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (1H, ddd, *J* = 4.9, 1.8, 1.0 Hz, H14), 7.60-7.53 (3H, m, H7, H12), 7.25 (2H, d, *J* = 7.6 Hz, H6), 7.14-7.06 (2H, m, H11, H13), 2.93 (2H, s, H4), 1.97 (6H, s, H2).

¹³**C NMR** (126 MHz, CDCl₃) δ 159.7, 149.4, 143.6, 136.3, 129.4, 128.4 (q, *J* = 32.3 Hz), 125.3 (q, *J* = 3.8 Hz), 124.5 (q, *J* = 271.8 Hz), 121.6, 120.7, 51.9, 43.3, 39.2, 38.9.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.27.

HRMS (ESI⁺) Found $[M+H]^+$ = 304.1306; C₁₈H₁₇NF₃ requires 304.1308.

IR (film) v_{max}/cm⁻¹ 2969, 1589, 1323, 1268, 1163, 1116, 1066, 1019, 859, 823, 747.

3-(4-(trifluoromethyl)benzyl)bicyclo[1.1.1]pentan-1-ol, 14

To a solution of **5s** (50 mg, 0.142 mmol, 1.0 equiv.) in PhMe/THF (4:1, 1 mL) at -78° C was added 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (32 µL, 0.156 mmol, 1.1 equiv.) and dropwise *t*BuLi (96 µL, 1.7 M in pentane, 0.163 mmol, 1.15 equiv.). After stirring for 1 h, the reaction mixture was quenched with H₂O (1 mL), extracted three times with Et₂O, dried (MgSO₄) and concentrated. The residue dissolved with THF/H₂O (1:1, 2.8 mL) and sodium perborate monohydrate (43 mg, 0.426 mmol, 3 equiv.) was added at room temperature. After stirring for 21 h, the reaction mixture was quenched with H₂O (2 mL), extracted three times with Et₂O, dried (MgSO₄) and concentrated. Purification by column chromatography (SiO₂, pentane / Et₂O, 7:3) afforded **14** (21 mg, 0.87 mmol, 61%) as a colourless oil.

 $R_f = 0.47$ (pentane / Et₂O, 1:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (2H, d, *J* = 7.9 Hz, H7), 7.19 (2H, d, *J* = 7.9 Hz, H6), 2.91 (2H, s, H4), 2.41 (1H, br s, H8), 1.73 (6H, s, H2).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.9, 129.3, 128.6 (q, J = 32.1 Hz), 125.4 (q, J = 3.9 Hz),

124.5 (q, *J* = 271.7 Hz), 63.6, 53.8, 36.4, 31.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.30.

HRMS (EI⁺) Found $[M]^+$ = 242.0912; C₁₃H₁₃F₃O requires 242.0913.

IR (film) v_{max}/cm⁻¹ 3278, 2974, 1323, 1246, 1114, 1065, 634.

8. Synthesis and characterization of nucleoside, dipeptide, and pharmaceutical BCP analogues

3'-O-(Tert-butyldimethylsilyl)-2'-(3-iodobicyclo[1.1.1]pentan-1-yl)-2'-deoxyuridine, 5w and

3'-O-(*Tert*-butyldimethylsilyl)-2'-(3-iodobicyclo[1.1.1]pentan-1-yl)-2'deoxyarabinouridine, 5w'

7w (234 mg, 0.500 mmol, 1.0 equiv.), TCP (1.27 mL, 0.79 M in Et₂O, 1.00 mmol, 2.0 equiv.) and BEt₃ (50 μ L, 1 M in hexane, 50 μ mol, 10 mol %) in MeOH (4 mL) were submitted to **General Procedure 1** at room temperature for 2 h. ¹H NMR spectroscopic analysis of the crude material indicated a 5:1 dr of **5w** : **5w'**. Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 1:1 \rightarrow 0:1) afforded **5w** (203 mg, 0.380 mmol, 75%) as a white foam and **5w'** (16 mg, 30 μ mol, 6%) as a white foam.

Data for **5w**:

 $\mathbf{R}_{\mathbf{f}} = 0.15$ (petroleum ether / EtOAc, 1:1)

¹**H NMR** (400 MHz, CD₃OD) δ 7.96 (1H, d, J = 8.2 Hz, H3), 6.13 (1H, d, J = 8.6 Hz, H1'), 5.69 (1H, d, J = 8.2 Hz, H4), 4.45 (1H, dd, J = 5.0, 1.7 Hz, H3'), 3.92 (1H, td, J = 3.3, 1.7 Hz, H4'), 3.76-3.63 (2H, m, H5'), 2.54 (1H, dd, J = 8.6, 4.9 Hz, H2'), 2.30 (3H, dd, J = 9.3, 1.5 Hz, H2), 2.24 (3H, dd, J = 9.3, 1.6 Hz, H2)., 0.96 (9H, s, Si*t*-Bu), 0.16 (3H, s, SiMe), 0.15 (3H, s, SiMe).

¹³C NMR (101 MHz, CD₃OD) δ 165.8, 152.2, 142.2, 103.3, 88.9, 87.4, 75.8, 62.6, 61.9, 50.7, 45.6, 26.4, 18.7, 7.6, -3.9, -4.4.

HRMS (ESI⁺) Found $[M+Na]^+ = 557.0936$; C₂₀H₃₁O₅N₂¹²⁷I²⁸SiNa requires 557.0939. **IR** (film) v_{max}/cm^{-1} 2981, 2887, 1686, 1462, 1383, 1253, 1182, 1091, 946, 832, 775. [*a*]_D²⁵ -5.6 (c = 1.0, MeOH) The stereochemistry of C2' was determined by 2D ¹H NOESY data. Correlations were observed between H2' and H5', H2' and H3, H2 and H1'.

Data for 5w':

 $\mathbf{R}_{\mathbf{f}} = 0.18$ (petroleum ether / EtOAc, 1:1), [UV, vanillin]

¹**H NMR** (400 MHz, CD₃OD) δ 7.94 (1H, d, *J* = 8.1 Hz, H3), 5.99 (1H, d, *J* = 6.7 Hz, H1'), 5.75 (1H, d, *J* = 8.1 Hz, H4), 4.33 (1H, t, *J* = 5.5 Hz, H3'), 3.87 (1H, dd, *J* = 13.6, 4.1 Hz, H4'), 3.82-3.74 (2H, m, H5'), 2.78 (1H, dd, *J* = 6.7, 5.4 Hz, H2'), 2.22-2.11 (6H, m, H2), 0.91 (9H, s, Sit-Bu), 0.16 (6H, s, SiMe₂).

¹³**C NMR** (101 MHz, CD₃OD) δ 166.0, 152.0, 143.3, 102.1, 87.2, 86.8, 74.2, 61.7, 61.0, 53.9, 47.0, 26.3, 18.8, 6.9, -3.7, -4.0.

HRMS (ESI⁺) Found $[M+H]^+ = 535.1119$; C₂₀H₃₂O₅N₂¹²⁷I²⁸Si requires 535.1120.

IR (film) v_{max}/cm⁻¹ 3400, 3000, 2954, 2928, 2857, 1686, 1464, 1187, 1139, 1086, 838, 777.

 $[a]_D^{25}$ 64.2 (c = 1.0, MeOH).

The stereochemistry of C2' was determined by 2D ¹H NOESY data. Correlations were observed between H2 and H3.

3'-O-(Tert-butyldimethylsilyl)-2'-(bicyclo[1.1.1]pentan-1-yl)-2'-deoxyuridine, 9w

To a solution of **5w** (18.2 mg, 0.034 mmol, 1.0 equiv.) in MeOH/Et₂O (1:1, 1 mL) was added tris(trimethylsilyl)silane (21 μ L, 68 μ mol, 2.0 equiv.), then BEt₃ (3.4 μ L, 3.4 μ mol, 10 mol %) was added via syringe into the solution. The resulting mixture was stirred for 15 min at room temperature, and then concentrated. Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 1:1 \rightarrow 0:1) afforded **9w** (10.2 mg, 0.025 mmol, 73%) as an off-white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.15$ (petroleum ether / EtOAc, 1:1) **m.p.** = 180 °C (decomp.) ¹**H NMR** (400 MHz, MeOD) δ 7.91 (1H, d, *J* = 8.1 Hz, H3), 6.14 (1H, d, *J* = 8.9 Hz, H1'), 5.68 (1H, d, *J* = 8.1 Hz, H4), 4.41 (1H, dd, *J* = 4.9, 1.6 Hz, H3'), 3.87 (1H, td, *J* = 3.6, 1.6 Hz, H4'), 3.64 (2H, dd, *J* = 3.6, 1.2 Hz, H5'), 2.40 (1H, s, H1), 2.34 (1H, dd, *J* = 8.9, 4.9 Hz, H2'), 1.81 (3H, dd, *J* = 9.5, 1.6 Hz, H2), 1.76 (3H, dd, *J* = 9.5, 1.6 Hz, H2), 0.92 (9H, s, Si*t*-Bu), 0.11 (3H, s, SiMe), 0.10 (3H, s, SiMe).

¹³C NMR (101 MHz, MeOD) δ 165.9, 152.3, 142.5, 103.1, 89.1, 87.8, 76.1, 62.9, 52.1, 50.5, 42.5, 30.6, 26.4, 18.7, -3.9, -4.3.

HRMS (ESI⁺) Found $[M+Na]^+ = 431.1971$; $C_{20}H_{32}O_5N_2^{23}Na^{28}Si$ requires 431.1973. **IR** (film) v_{max}/cm^{-1} 3412, 2960, 2928, 2858, 1688, 1464, 1259, 1203, 1059, 834, 811, 777. $[a]_D^{25}$ 24.3 (c = 0.86, MeOH)

Boc-Asp(OtBu)-β-(3-iodobicyclo[1.1.1]pentan-1-yl)Ala-OMe, 5x

Adapted from the procedure described by Koseki et al.⁶ To a solution of **15** (570 mg, 1.46 mmol, 1.0 equiv.) in CH₂Cl₂ (10 mL) was added imidazole (149 mg, 2.19 mmol, 1.5 equiv.) and PPh₃ (574 mg, 2.19 mmol, 1.5 equiv.). The resulting solution was cooled to 0 °C and iodine (556 mg, 2.19 mmol, 1.5 equiv.) was added in five portions. The resulting mixture was stirred at 0 °C for 1 h, and then diluted with water (10 mL). The phases were separated, and the aqueous phase was extracted with CH₂Cl₂ (2 × 15 mL). The combined organic phases were washed with Na₂S₂O₃ (aq., 10 wt%, 20 mL), dried (Na₂SO₄) and concentrated. The resulting solid was washed with pentane (2 × 10 mL) and Et₂O (2 × 10 mL), and the combined filtrates were concentrated to afforded a 0.41:1 mixture of Ph₃PO and iodinated dipeptide as an orange oil (386 mg, ~52%), which was used without further purification.

The resulting oil (386 mg, ~771 µmol, 1.0 equiv.), TCP (1.93 mL, 0.8 M in Et₂O, 1.54 mmol, 2.0 equiv.) and BEt₃ (77 µL, 1 M in hexane, 77 µmol, 10 mol %) were submitted to **General Procedure 1** for 1 h at room temperature. Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 1:0 \rightarrow 7:3) afforded **5x** (312 mg, 0.55 mmol, 38% over two steps) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.19$ (petroleum ether/EtOAc, 8:2)

m.p. = 105-106 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (1H, d, J = 7.9 Hz, NH), 5.73 (1H, d, J = 8.5 Hz, NH), 4.53 (td, J = 7.5, 4.3 Hz, H5), 4.45 (q, J = 5.5 Hz, H9), 3.71 (3H, s, H7), 2.88 (1H, dd, J =17.1, 4.5 Hz, H13), 2.57 (1H, dd, J = 17.1, 6.3 Hz, H13), 2.22 (6H, s, H2), 2.12 (1H, dd, J =14.8, 4.3 Hz, H4), 1.93 (1H, dd, J = 14.7, 7.3 Hz, H4), 1.47 (9H, s, *t*-Bu), 1.45 (9H, s, *t*-Bu). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.9, 171.5, 170.8, 155.7, 82.0, 80.7, 61.0, 52.6, 50.9, 50.7, 45.3, 37.0, 34.0, 28.5, 28.2, 6.3. **HRMS** (ESI⁺) Found [M+H]⁺ = 567.1544; C₂₂H₃₆O₇N₂¹²⁷I requires 567.1562.

IR (film) v_{max}/cm⁻¹ 3320, 2978, 2919, 1721, 1666, 1520, 1437, 1392, 1367, 1295, 1248, 1179, 1158, 1049, 1024, 842, 734

 $[a]_D^{25} = 29.3$ (c 1.0, CHCl₃).

Boc-Asp(OtBu)-β-(bicyclo[1.1.1]pentan-1-yl)Ala-OMe, 9x

To a solution of **5x** (56.6 mg, 100 μ mol, 1.0 equiv.) in THF (0.2 mL) was added tris(trimethylsilyl)silane (62 μ mol, 0.20 mmol, 2.0 equiv.). BEt₃ (10 μ L, 1 M in hexane, 10 μ mol, 10 mol %) was added and the resulting mixture was stirred at room temperature for 15 min. Further triethylborane (2 x 10 mol %) was added at 15 minute intervals until the reaction was judged complete by TLC. The reaction mixture was then diluted with Et₂O (5 mL), and the organic phase was washed with NaHCO₃ (aq., sat., 5 mL). The aqueous phase was extracted with Et₂O (2 × 5 mL) and the combined organics were washed with brine (10 mL), dried (Na₂SO₄) and concentrated. Purification by column chromatography (SiO₂, petroleum ether / EtOAcc, 9:1→8:2) afforded **9x** (36.5 mg, 83 μ mol, 83%) as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.22$ (petroleum ether / EtOAc, 8:2)

¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (1H, d, *J* = 6.8 Hz, NH), 5.72 (1H, d, *J* = 7.4 Hz, NH), 4.51 (2H, m, H5, H9), 3.70 (3H, s, H7), 2.85 (1H, dd, *J* = 17.0, 4.6 Hz, H13), 2.58 (1H, dd, *J*
= 17.0, 6.6 Hz, H13), 2.43 (1H, s, H1), 1.97 (1H, dd, J = 14.7, 4.5 Hz, H4), 1.84 (1H, dd, J = 14.7, 7.3 Hz, H4), 1.71 (6H, s, H2), 1.45 (9H, s, *t*-Bu), 1.44 (9H, s, *t*-Bu). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 171.5, 170.7, 155.6, 81.8, 80.4, 52.4, 51.2, 50.7, 42.6, 37.4, 34.4, 29.8, 28.5, 28.2, 24.0. HRMS (ESI⁺) Found [M+H]⁺ = 441.2593; C₂₂H₃₇O₇N₂ requires 441.2595. IR (film) v_{max}/cm⁻¹ 3324, 2970, 2908, 2871, 1721, 1668, 1520, 1456, 1437, 1392, 1367, 1281,

1248, 1202, 1155, 1049, 1025, 847, 777.

 $[a]_{D}^{25} = 12.9 \text{ (c } 1.0, \text{CHCl}_3)$

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)ethyl 4-methylbenzenesulfonate, 5y

7y (1.10 g, 3.37 mmol, 1.0 equiv.), TCP (5.48 mL, 0.8 M in Et₂O, 4.38 mmol, 1.3 equiv.) and BEt₃ (337 μ L, 1 M in hexane, 337 μ mol, 10 mol %) were submitted to **General Procedure 1** at room temperature for 3 h. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 1:0 \rightarrow 1:1) afforded **5**y (1.23 g, 3.14 mmol, 92%) as a white solid.

 $\mathbf{R_f} = 0.20$ (petroleum ether/Et₂O, 9:1)

m.p. = 66-67 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (2H, d, J = 8.0 Hz, H7), 7.36 (2H, d, J = 8.0 Hz, H8), 4.00 (2H, t, J = 6.2 Hz, H5), 2.46 (3H, s, H10), 2.19 (6H, s, H2), 1.88 (2H, t, J = 6.2 Hz, H4). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.1, 133.0, 130.1, 128.0, 68.0, 60.7, 45.4, 31.2, 21.8, 6.4. **HRMS** (ESI⁺) Found [M+Na]⁺ = 414.9835; C₁₄H₁₇O₃¹²⁷I²³Na³²S requires 414.9835. **IR** (film) v_{max}/cm^{-1} 2989, 2915, 1598, 1448, 1360, 1307, 1176, 1097, 1022, 963, 936, 896, 837, 816, 778, 733, 663.

2-(Bicyclo[1.1.1]pentan-1-yl)ethyl 4-methylbenzenesulfonate, 9y

To a solution of **5y** (1.23 g, 3.14 mmol, 1.0 equiv.) in THF (6 mL) were added tris(trimethylsilyl)silane (1.93 mL, 6.28 mmol, 2.0 equiv.) and then BEt₃ (314 μ L, 1 M in hexane, 314 μ mol, 10 mol %, syringed inside the reaction mixture). After stirring for 15 min, Et₂O (20 mL) was added, the organic phase was washed with NaHCO₃ (aq., sat., 15 mL) and the phases were separated. The aqueous was extracted with Et₂O (2 × 5 mL) and the combined organic phases were washed with brine (20 mL), dried (Na₂SO₄) and concentrated. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 100:0→95:5) afforded **9**y (1.01 g, 3.79 mmol, 64%) as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.36$ (petroleum ether/Et₂O, 9:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (2H, d, *J* = 7.9 Hz, H8), 7.34 (2H, d, *J* = 7.9 Hz, H7), 4.01 (2H, t, *J* = 6.7 Hz, H5), 2.44 (3H, s, H10), 2.41 (1H, s, H1), 1.76 (2H, t, *J* = 6.7 Hz, H4), 1.64 (6H, s, H2).

¹³C NMR (101 MHz, CDCl₃) δ 144.8, 133.2, 129.9, 128.0, 68.9, 50.8, 42.4, 31.6, 28.1, 21.8. HRMS (ESI⁺) Found [M+Na]⁺ = 289.0867; C₁₄H₁₈O₃²³Na³²S requires 289.0869. IR (film) v_{max}/cm^{-1} 2964, 2908, 2870, 1598, 1358, 1189, 1176, 975, 941, 921.

N-(1-(2-(bicyclo[1.1.1]pentan-1-yl)ethyl)piperidin-4-yl)-*N*-phenylpropionamide (BCP-fentanyl), 17

To a vial containing **9**y (93 mg, 0.35 mmol, 1.0 equiv.) was added a solution of norfentanyl **18** (89 mg, 0.35 mmol, 1.1 equiv.) in CH₃CN (1.5 mL). K₂CO₃ (96 mg, 0.70 mmol, 2.0 equiv.) was added and the resulting mixture was refluxed for 24 h. The mixture was cooled to room temperature and concentrated. The residue was dissolved in CH₂Cl₂ (5 mL) and water (5 mL), and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (3×5 mL) and the combined organic phases were dried (Na₂SO₄) and concentrated. Purification by column chromatography (SiO₂, CH₂Cl₂ / CH₃OH, 8:2) afforded **17** as a pale yellow solid (64 mg, 0.20 mmol, 53%). Recrystallization form hot petroleum ether afforded pale yellow crystals that were suitable for X-ray diffraction (see Section 8, p 52).

 $R_f = 0.23$ (CH₂Cl₂/EtOAc, 1:1)

m.p. = 84-85 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.42-7.28 (3H, m, H13, H12), 7.05 (2H, dd, *J* = 7.8, 1.7 Hz, H11), 4.64 (1H, tt, *J* = 12.2, 4.0 Hz, H8), 2.88 (2H, dt, *J* = 12.4, 3.1 Hz, H6), 2.41 (1H, s, H1), 2.27-2.17 (2H, m, H5), 2.08-1.97 (2H, m, H6), 1.91 (2H, q, *J* = 7.4 Hz, H15), 1.81-1.70 (2H, m, 2 × H7), 1.60 (6H, s, H2), 1.55-1.46 (2H, m, H4), 1.37 (2H, qd, *J* = 12.4, 4.0 Hz, H7), 1.00 (3H, t, *J* = 7.4 Hz, H16).

¹³C NMR (101 MHz, CDCl₃) δ 173.6, 139.0, 130.5, 129.4, 128.3, 55.9, 53.2, 52.3, 50.4, 44.0, 30.7, 30.0, 28.6, 27.8, 9.7.

HRMS (ESI⁺) Found $[M+H]^+$ = 327.2425; C₂₁H₃₁ON₂ requires 327.2431.

IR (film) v_{max}/cm⁻¹ 2959, 2867, 2766, 2360, 1659, 1596, 1495, 1450, 1375, 1340, 1260, 1194, 1093, 1056, 1018, 776, 746, 705.

9. Synthesis and characterisation of substrates

Ethyl iodoacetate, 7a

Ethyl bromoacetate (330 μ L, 3.00 mmol, 1.0 equiv.) and sodium iodide (673 mg, 4.50 mmol, 1.5 equiv.) in acetone (10 mL) were submitted to **General Procedure 2** (12 h), which afforded **7a** (568 mg, 2.65 mmol, 88%) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.46$ (Petroleum ether / EtOAc, 9:1), [UV].

¹**H NMR** (400 MHz, CDCl₃) δ 4.19 (2H, q, *J* = 7.1 Hz, H3), 3.67 (2H, s, H2), 1.27 (3H, t, *J* = 7.1 Hz, H4).

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 62.2, 14.0, -5.1.

HRMS (CI⁺) Found $[M+NH_4]^+ = 231.9833$; C₄H₁₁IO₂N requires 231.9828.

Spectroscopic data in agreement with that reported previously.⁷

1-Iodo-2-phenylethane, 7c

2-phenylethanol (490 μ L, 4.09 mmol, 1.0 equiv.), triphenylphosphine (1.40 g, 5.32 mmol, 1.3 equiv.) iodine (1.45 g, 5.73 mmol, 1.4 equiv.) and imidazole (418 mg, 6.14 mmol, 1.5 equiv.) in CH₃CN (4 mL) and Et₂O (5 mL) were submitted to **General Procedure 3** (12 h). Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 9:1) afforded **7c** (881 mg, 3.79 mmol, 93%) as a yellowish oil.

 $\mathbf{R}_{\mathbf{f}} = 0.90$ (petroleum ether / EtOAc, 9:1), [UV].

¹**H NMR** (400 MHz, CDCl₃) δ 7.28-7.22 (2H, m, H5), 7.22-7.16 (1H, m, H6), 7.14-7.10 (2H, m, H4), 3.28 (2H, t, J = 8.0 Hz, H2), 3.11 (2H, t, J = 8.0 Hz, H1). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.7, 128.8, 128.5, 127.0, 40.5, 5.8. **HRMS** (CI⁺) Found [M+NH₄]⁺ = 250.0090; C₈H₁₃IN requires 250.0087.

Spectroscopic data in agreement with that reported previously.⁸

tert-Butyl (2-iodoethyl)carbamate, 7e

To a solution of 2-aminoethanol (1.00 mL, 16.3 mmol, 1.0 equiv.) in CH₂Cl₂ (20 mL) at room temperature was added dropwise a solution of di-*tert*-butyl dicarbonate (3.90 g, 18.0 mmol, 1.1 equiv.) in CH₂Cl₂ (5 mL). After stirring for 3 h, the reaction was quenched with NaHCO₃ (25 mL, aq., sat.). The organic layer was separated, dried (MgSO₄) and concentrated. The resulting residue, triphenylphosphine (5.10 g, 19.4 mmol, 1.2 equiv.) and iodine (4.90 g, 19.4 mmol, 1.2 equiv.) in CH₂Cl₂ (25 mL) were submitted to **General Procedure 3** (3 h). Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 97:3→90:10) afforded 7e (1.49 g, 5.50 mmol, 34%) as a pale yellow solid.

 $\mathbf{R}_{\mathbf{f}} = 0.62$ (petroleum ether / Et₂O, 2:1)

m.p. = 38-40 °C

¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 4.95 (1H, br s, NH), 3.51-3.37 (2H, m, H2), 3.22 (2H, t, J =

6.5 Hz, H1), 1.43 (9H, s, *t*-Bu).

¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 155.6, 79.9, 43.1, 28.5, 6.1.

HRMS (ESI⁺) Found $[M+H]^+ = 272.0151$; C₇H₁₅INO₂ requires 247.0147.

IR (film) v_{max}/cm^{-1} 3340, 1687, 1506, 1249, 1160.

Spectroscopic data in agreement with that reported previously.⁹

2-Iodo-1-phenylethan-1-one, 7f

2-bromo-1-phenylethan-1-one (199 mg, 1.00 mmol, 1.0 equiv), sodium iodide (225 mg, 1.50 mmol, 1.5 equiv.) in acetone (1 mL) were submitted to **General Procedure 2** (18 h) to afford **7f** (227 mg, 0.93 mmol, 93%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.02-7.97 (2H, m, H4), 7.64-7.57 (1H, m, H6), 7.52-7.46 (2H, m, H5), 4.37 (2H, s, H2)

¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 193.0, 133.9, 133.6, 129.1, 128.9, 1.9

HRMS (EI⁺) Found $[M]^+$ = 245.9541; C₈H₇IO requires 245.9536.

IR (film) v_{max}/cm⁻¹ 1670, 1269, 984, 700.

Spectroscopic data in agreement with that reported previously.¹⁰

1-(Furan-2-yl)-2-iodoethan-1-one, 7g

2-acetylfuran (300 μ L, 3.00 mmol, 1.0 equiv.), CuO (240 mg, 3.00 mmol, 1.0 equiv.) and I₂ (762 mg, 3.00 mmol, 1.0 equiv.) in MeOH (12 mL) were submitted to **General Procedure 4**. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 8:2) afforded **7g** (605 mg, 2.56 mmol, 85%) as a brown oil.

R_f = 0.36 (petroleum ether / Et₂O, 7:3) ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.62 (1H, dd, *J* = 1.7, 0.8 Hz, H6), 7.31 (1H, dd, *J* = 3.6, 0.8 Hz, H4), 6.58 (1H, dd, *J* = 3.6, 1.7 Hz, H5), 4.23 (2H, s, H2). ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 182.2, 150.0, 147.1, 119.0, 113.0, 0.7. **HRMS** (EI⁺) Found [M]⁺ = 235.9323; C₆H₅IO₂ requires 235.9329. **IR** (film) ν_{max}/cm⁻¹ 2980, 1660, 1461, 1292, 762.

2-Iodo-1-(1H-pyrrol-2-yl)ethan-1-one, 7h

To a solution of 2-acetylpyrrole (500 mg, 4.58 mmol, 1.0 equiv.) and di-*tert*-butyl dicarbonate (1.10 g, 5.04 mmol, 1.1 equiv.) in THF (60 mL) at room temperature, was added NaH (350 mg, 8.75 mmol, 1.9 equiv.) as a suspension in THF (40 mL) dropwise. After stirring for 4 h, the suspension was diluted with EtOAc (100 mL) and the reaction was quenched with NH₄Cl (aq., sat., 30 mL). The organic layer was washed with NH₄Cl (aq., sat., 3×30 mL), dried (MgSO₄) and concentrated. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 7:3) afforded *tert*-butyl 2-acetyl-1H-pyrrole-1-carboxylate **S1** (848 mg, 4.05 mmol, 89%) as a colourless oil.

S1 (209 mg, 1.00 mmol, 1.0 equiv.), CuO (80 mg, 1.0 mmol, 1.0 equiv.) and I_2 (254 mg, 1.00 mmol, 1.0 equiv.) in MeOH (4 mL) were submitted to General Procedure 4.

Purification by column chromatography (SiO₂, petroleum ether / Et_2O , 9:1 to 7:3) afforded **7h** (118 mg, 0.500 mmol, 50%) as a yellow solid.

Data for S1:

 $\mathbf{R}_{\mathbf{f}} = 0.49$ (petroleum ether / Et₂O, 7:3)

¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.31 (1H, ddd, J = 3.0, 1.6, 0.7 Hz, H6), 6.85 (1H, ddd, J = 3.6, 1.6, 0.7 Hz, H4), 6.16 (1H, ddd, J = 3.6, 3.0, 0.7 Hz, H5), 2.44 (3H, s, H2), 1.57 (9H, s, *t*-Bu).

¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 188.6, 149.1, 134.3, 128.1, 121.3, 110.1, 85.0, 28.1, 27.7. Spectroscopic data in agreement with that reported previously.¹¹

Data for 7h: $\mathbf{R}_{f} = 0.22$ (petroleum ether / Et₂O, 7:3) $\mathbf{m.p.} = 122-124 \ ^{\circ}C$ ¹H NMR (400 MHz, CDCl₃) δ_{H} 9.82 (1H, br s, NH), 7.10 (1H, td, J = 2.5, 1.3 Hz, H6), 7.02 (ddd, J = 3.9, 2.5, 1.3 Hz, H4), 6.32 (1H, dt, J = 3.9, 2.5 Hz, H5), 4.21 (2H, s, H2). ¹³C NMR (101 MHz, CDCl₃) δ_{C} 183.5, 128.6, 126.6, 118.0, 111.4, 1.0. HRMS (CI⁺) Found [M+H]⁺ = 235.9564; C₆H₇INO requires 235.9567. IR (film) v_{max}/cm^{-1} 3256, 1624, 1395, 1050, 747.

2-Iodo-1-(thiophen-2-yl)ethan-1-one, 7i

2-bromo-1-(thiophen-2-yl)ethan-1-one (205 mg, 1.00 mmol, 1.0 equiv.), sodium iodide (225 mg, 1.50 mmol, 1.5 equiv.) in acetone (1 mL) were submitted to **General Procedure 2** (18 h) to afford **7i** (226 mg, 0.90 mmol, 90%) as a brown oil.

¹**H** NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.80 (1H, dd, J = 3.9, 1.1 Hz, H6), 7.69 (1H, dd, J = 5.0, 1.1 Hz, H4), 7.16 (1H, dd, J = 5.0, 3.9 Hz, H5), 4.30 (3H, s, H2). ¹³**C** NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 186.1, 140.5, 135.2, 133.6, 128.5, 1.5. HRMS (EI⁺) Found [M]⁺ = 251.9099; C₆H₅IOS requires 251.9100. IR (film) $\nu_{\rm max}/{\rm cm}^{-1}$ 1645, 1409, 1278, 721. Spectroscopic data in agreement with that reported previously.¹⁰

1-(Benzofuran-2-yl)-2-iodoethan-1-one, 7j

1-(benzofuran-2-yl)-2-bromoethan-1-one (239 mg, 1.0 mmol, 1.0 equiv.), sodium iodide (225 mg, 1.5 mmol, 1.5 equiv.) in acetone (1 mL) were submitted to **General Procedure 2** (18 h) to afford **7j** (207 mg, 0.72 mmol, 72%) as a pale yellow solid.

m.p. = 103-105 °C

¹**H** NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.72 (1H, dt, J = 8.0, 1.0 Hz, H5), 7.64 (1H, d, J = 1.0 Hz, H4), 7.59 (1H, dq, J = 8.4, 1.0 Hz, H8), 7.51 (1H, ddd, J = 8.4, 7.1, 1.0 Hz, H7), 7.33 (1H, ddd, J = 8.0, 7.1, 1.0 Hz, H6), 4.36 (2H, s, H2).

¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 184.1, 155.9, 149.9, 129.0, 127.2, 124.3, 123.6, 114.7, 112.7, 0.8.

HRMS (EI⁺) Found $[M]^+$ = 285.9190; C₁₀H₇IO₂ requires 285.9485.

IR (film) v_{max}/cm⁻¹ 1658, 1552, 1299, 1022, 747.

Spectroscopic data in agreement with that reported previously.¹²

tert-Butyl 3-(2-iodoacetyl)-1H-indole-1-carboxylate, 7k

To a solution of 3-acetylindole (729 mg, 4.58 mmol, 1.0 equiv.) and di-*tert*-butyl dicarbonate (1.10 g, 5.04 mmol, 1.1 equiv.) in THF (60 mL) at room temperature was added a suspension of NaH (350 mg, 8.75 mmol, 1.9 equiv.) in THF (40 mL) dropwise. After stirring for 3 h, the suspension was diluted with EtOAc (100 mL) and quenched with NH₄Cl (aq., sat., 30 mL). The organic phase was washed with NH₄Cl (aq., sat., 3×30 mL), dried (MgSO₄) and concentrated. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 7:3) afforded *tert*-Butyl 3-acetyl-1H-indole-1-carboxylate **S2** (982 mg, 3.79 mmol, 83%) as a white solid.

S2 (259 mg, 1.00 mmol, 1.0 equiv.), CuO (80 mg, 1.0 mmol, 1.0 equiv.) and I_2 (254 mg, 1.00 mmol, 1.0 equiv.) in MeOH (4 mL) were submitted to **General Procedure 4**. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 7:3 to 1:1) afforded **7k** (247 mg, 0.64 mmol, 64%) as a yellow oil.

Data for S2: $\mathbf{R}_{f} = 0.44$ (petroleum ether / Et₂O, 7:3) **m.p.** = 142–144 °C ¹**H** NMR (400 MHz, CDCl₃) δ_{H} 8.40-8.35 (1H, m, H8), 8.23 (1H, s, H2), 8.15-8.08 (1H, m, H5), 7.42-7.32 (2H, m, H7, H6), 2.57 (3H, s, H2), 1.72 (9H, s, *t*-Bu). ¹³**C** NMR (101 MHz, CDCl₃) δ_{C} 194.0, 149.3, 135.7, 132.5, 127.5, 125.6, 124.5, 122.8, 120.8, 115.1, 85.5, 28.3, 27.9. **HRMS** (Cl⁺) Found [M+H]⁺ = 260.1290; C₁₅H₁₈NO₃ requires 260.1281. **IR** (film) v_{max}/cm^{-1} 1656, 1169, 749.

Data for 7k:

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (petroleum ether / Et₂O, 95:5)

m.p. = 140-142 °C

¹**H NMR** (400 MHz, CDCl₃) *δ*_H 8.35-8.31 (2H, m, H2, H8), 8.15-8.07 (1H, m, H5), 7.44-7.33 (2H, m, H7, H6), 4.30 (2H, s, H2), 1.72 (9H, s, *t*-Bu).

¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 188.9, 149.1, 135.7, 132.9, 127.6, 126.0, 124.8, 122.9, 116.9, 115.2, 86.0, 28.3, 3.1.

HRMS (CI⁺) Found $[M+H]^+$ = 386.0233; C₁₅H₁₇INO₃ requires 386.0248.

IR (film) v_{max}/cm^{-1} 1730, 1653, 1367, 1157, 748.

2-Iodopropanamide, 7m

To a solution of sodium iodide (450 mg, 3.00 mmol, 1.5 equiv.) in acetone (2 mL) at room temperature was added 2-bromopropionamide (304 mg, 2.00 mmol, 1.0 equiv.). After stirring for 17 h, the reaction mixture was concentrated and the residue taken up in 1:1 H₂O / EtOAc (10 mL). The resulting layers were separated and the aqueous phase was extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with Na₂S₂O₃ (10% aq., 10

mL), dried (MgSO₄) and concentrated afforded 7m (307 mg, 1.54 mmol, 77%) as a white solid, which required no further purification.

m.p. = 150-152 °C ¹**H NMR** (400 MHz, CD₃OD) $\delta_{\rm H}$ 4.57 (1H, q, J = 7.0 Hz, H2), 1.87 (3H, d, J = 7.0 Hz, H3). ¹³**C NMR** (101 MHz, CD₃OD) $\delta_{\rm C}$ 176.8, 24.2, 16.6. **HRMS** (CI⁺) Found [M+H]⁺ = 199.9567; C₃H₇INO requires 199.9567. **IR** (film) $v_{\rm max}/{\rm cm}^{-1}$ 3335, 3165, 1686, 1410, 1060, 626.

((Iodomethyl)sulfonyl)benzene, 7n

According to the procedure of Pospisil et al.⁸ To a suspension of sodium benzenesulfinate (821 mg, 5.00 mmol, 1.0 equiv.) in DMF (10 mL) was added diiodomethane (484 μ L, 6.00 mmol, 1.2 equiv.) dropwise. The resulting mixture was stirred at room temperature for 17 h. Brine (100 mL) was added and the aqueous phase was extracted with EtOAc (3 × 20 mL). The combined organic phases were washed with brine (50 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 10:1–2:1) afforded **7n** (893 mg, 3.17 mmol, 63%) as a yellow solid.

 $\mathbf{R}_{\mathbf{f}} = 0.45$ (petroleum ether / EtOAc, 7:3)

m.p. = 49-50°C

¹**H NMR** (400 MHz, CDCl₃) δ 8.00-7.95 (2H, m, H3), 7.74-7.68 (1H, m, H5), 7.63-7.57 (2H, m, H4), 4.47 (2H, s, H1).

¹³C NMR (101 MHz, CDCl₃) δ 136.1, 134.7, 129.5, 129.1, 16.9.

HRMS (ESI⁺) Found $[M+Na]^+ = 304.9104$; $C_7H_7O_2^{127}I^{23}Na^{32}S$ requires 304.9104.

Spectroscopic data in agreement with that reported previously.¹³

2-Iodo-3-phenylpropanal, 70

To a solution of L-proline (254 mg, 2.20 mmol, 20 mol %) and *N*-iodosuccinimide (1.60 g, 14.2 mmol, 1.3 equiv.) in dichloromethane (22 mL) was added hydrocinnamaldehyde (1.45 mL, 11.0 mmol, 1.0 equiv.). After stirring the solution for 1 h at room temperature, the reaction mixture was filtered through a short pad of silica (CH₂Cl₂ eluent, 150 mL) and then concentrated *in vacuo* to afforde **70** (1.94 g, 7.46 mmol, 68%) as a brown oil.

¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 9.25 (1H, d, J = 2.6 Hz, ArH), 7.33-7.19 (3H, m, ArH), 7.19-7.11 (2H, m, H5), 4.66 (1H, td, J = 7.5, 2.6 Hz, H2), 3.45 (1H, dd, J = 14.6, 7.5 Hz, H3), 3.16 (1H, dd, J = 14.6, 7.5 Hz, H3).

¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 191.1, 138.2, 129.1, 128.9, 127.4, 38.7, 36.0. Spectroscopic data in agreement with that reported previously.⁹

Methyl (R)-2-((tert-butoxycarbonyl)amino)-3-iodopropanoate, 5p

According to the procedure described by Koseki et al.⁶ To a solution of triphenylphosphine (1.97 g, 7.50 mmol, 1.5 equiv.) and imidazole (511 mg, 7.5 mmol, 1.5 equiv.) in CH₂Cl₂ (5 mL) at 0 °C was added iodine (1.90 g, 7.50 mmol, 1.5 equiv.) portionwise. The resulting mixture was stirred for 10 min at room temperature and then cooled to 0 °C. Boc-Ser-OMe (1.10 g, 5.00 mmol, 1.0 equiv.) in CH₂Cl₂ (5 mL) was added dropwise, and the resulting mixture was stirred at 0 °C for 2 h, and then concentrated. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 9:1) afforded **5p** (1.35 g, 4.10 mmol, 81%) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.10$ (petroleum ether / Et₂O, 9:1)

 $m.p. = 41-42^{\circ}C$

¹**H NMR** (400 MHz, CDCl₃) δ 5.36 (1H, d, *J* = 7.7 Hz, NH), 4.51 (1H, dt, *J* = 7.7, 3.9 Hz, H2), 3.78 (3H, s, H4), 3.63-3.48 (2H, m, H3), 1.44 (9H, s, *t*-Bu).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 154.9, 80.6, 53.8, 53.1, 28.4, 8.0.

HRMS (CI⁺) Found $[M+H]^+ = 330.0201$; C₉H₁₇INO₄ requires 330.0197.

IR (film) v_{max}/cm⁻¹ 3370, 2977, 1748, 1712, 1498, 1366, 1345, 1210, 1159.

 $[a]_{D}^{25}$ - 3.7 (c = 3.0, MeOH).

Methyl (R)-2-((tert-butoxycarbonyl)amino)-3-iodopropanoate, 5p'

$$\begin{array}{c} \mathsf{HCI:}\mathsf{H}_2\mathsf{N} \underbrace{\bigcirc}_{\mathsf{OH}} & \underbrace{\mathsf{Boc}_2\mathsf{O},\,\mathsf{NEt}_3}_{\mathsf{THF},\,60\ ^\circ\mathsf{C},\,2\ \mathsf{h}} \\ \mathsf{OH} & \underbrace{\mathsf{HF},\,60\ ^\circ\mathsf{C},\,2\ \mathsf{h}}_{\mathsf{S7\%}} \\ \end{array} \underbrace{\longrightarrow}_{\mathsf{Boc}\text{-D-Ser-OMe}} & \underbrace{\mathsf{I}_2,\,\mathsf{PPh}_3,\,\mathsf{Im}}_{\mathsf{DCM},\,0\ ^\circ\mathsf{C}\ \mathsf{to}\ \mathsf{rt}} \\ \underbrace{\longrightarrow}_{\mathsf{Im}} & \underbrace{\mathsf{Im}}_{\mathsf{Im}} \\ \underbrace{\mathsf{Im}}_{\mathsf{Im}} \\ \mathsf{Im}}_{\mathsf{Im}} \\ \mathsf{Im}}_{\mathsf{Im}} \\ \mathsf{Im}} \\ \mathsf{Im}}_{\mathsf{Im}} \\ \mathsf{Im}} \\ \mathsf{Im}} \\ \mathsf{Im}}_{\mathsf{Im}} \\ \mathsf{Im}} \\ \mathsf{Im} \\ \mathsf{Im}} \\ \mathsf{Im}} \\ \mathsf{Im} \\ \mathsf{Im} \\ \mathsf{Im}} \\ \mathsf{Im}} \\ \mathsf{Im} \\ \mathsf{Im}} \\ \mathsf{Im} \\ \mathsf{Im}} \\ \mathsf{Im} \\ \mathsf{Im} \\ \mathsf{Im}} \\ \mathsf{Im} \\$$

Adapted from the procedure described by Danner et al. ¹⁴ To a solution of HCI⁺H-D-Ser-OMe (1.10 g, 1.0 equiv., 7.1mmol) in THF (25 mL) was added triethylamine (2.1 mL, 2.1 equiv., 15 mmol) and the resulting mixture was cooled to 0 °C. Di-*tert*-butyl-di-carbonate (1.6 mL, 0.99 equiv., 7.0 mmol) was added dropwise at 0 °C and the reaction was stirred at 60 °C for 2 h and at rt for 24 h. The reaction mixture was concentrated and diluted with Et₂O (20 mL) and water (20 mL). The phases were separated and the aqueous was extracted with Et₂O (2 × 20 mL). The combined organics were washed with HCl (aq., 1 M, 20 mL), NaHCO₃ (aq., sat., 20 mL) and brine (20 mL), dried (MgSO₄) and concentrated *in vacuo*. The residue was purified by column chromatography (pentane / ethyl acetate, 4:6) to afford Boc-D-Ser-OMe (1.36 g, 6.20 mmol, 87%) as a colourless oil.

To a solution of Boc-D-Ser-OMe (1.25 g, 1.0 equiv., 5.70 mmol), triphenylphosphine (2.24 g, 1.5 equiv., 8.55 mmol) and imidazole (582 mg, 1.5 equiv., 8.55 mmol) in CH₂Cl₂ (20 mL) at 0 °C was added iodine (2.17 g, 1.5 equiv., 8.55 mmol) in three portions. The resulting mixture was stirred at 0 °C for 15 min and rt for 2 h. Water (20 mL) was added, the phases were separated and the aqueous was extracted with CH₂Cl₂ (2 × 20 mL). The combined organics were washed with Na₂S₂O₃ (aq., 10 %, 20 mL) and brine (20 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by column chromatography (pentane / Et₂O, 9:1 to 8:2) and recrystallisation from pentane at -20 °C afforded **7p'** (1.10 g, 3.34 mmol, 58%) as white fluffy crystals.

Data for Boc-D-Ser-OMe:

¹**H NMR** (400 MHz, CDCl₃) δ 5.55 (1H, d, *J* = 8.0 Hz, NH), 4.36 (1H, dt, *J* = 8.4, 3.9 Hz, H2), 4.00 – 3.89 (1H, m, H3), 3.89 – 3.81 (1H, m, H3), 3.75 (3Hs, H4), 2.89 (1H, br t, *J* = 5.9 Hz, OH), 1.43 (9H, s, *t*-Bu). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 155.8, 80.3, 63.4, 55.7, 52.6, 28.3. **MS** (ESI+) 242.0 [M+Na⁺]

 $[a]_{p}^{25}$ 15.7 ° (c = 3.0, MeOH)

Spectroscopic data in agreement with that reported previously.¹⁵

Data for **7p'**:

 $\mathbf{R}_{f} = 0.10 \text{ (petroleum ether / Et}_{2}\text{O}, 9:1)$ $\mathbf{m.p.} = 48-49 \text{ °C}$ ¹H NMR (400 MHz, CDCl₃) δ 5.35 (1H, d, J = 6.1 Hz, NH), 4.51 (1H, dt, J = 7.9, 4.0 Hz, H2), 3.79 (3H, d, J = 1.0 Hz, H4), 3.62 – 3.50 (2H, m, H3), 1.45 (9H, s, *t*-Bu). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 155.0, 80.6, 53.8, 53.1, 28.4, 8.0. HRMS (ESI⁺) Found [M+Na]⁺ = 352.0014; C₉H₁₆O₄N¹²⁷I²³Na requires 352.0016 IR (film) v_{max} /cm⁻¹ 3377, 2977, 2915, 2878, 1748, 1714, 1500, 1346, 1366, 1162. [a]²⁵_D 3.8 ° (c = 3.0, MeOH)

1-(iodomethyl)-4-nitrobenzene, 7r

4-Nitrobenzyl bromide (664 mg, 3.07 mmol, 1.0 equiv.) and sodium iodide (691 mg, 4.61 mmol, 1.5 equiv.) in acetone (5 mL) were submitted to **General Procedure 2** (12 h). Recrystallisation from CH_2Cl_2 / pentane afforded **7r** (350 mg, 1.33 mmol, 43%) as pale yellow crystals.

 $\mathbf{R}_{\mathbf{f}} = 0.22$ (petroleum ether / Et₂O, 9:1)

m.p. = 121-122 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (2H, d, *J* = 8.7 Hz, H3), 7.52 (2H, d, *J* = 8.8 Hz, H2), 4.48 (2H, s, H5).

¹³C NMR (101 MHz, CDCl₃) δ 147.4, 146.9, 129.7, 124.2, 2.2.

HRMS (CI⁺) Found $[M+NH_4]^+ = 280.9787$; C₇H₁₀IN₂O₂ requires 280.9781.

Spectroscopic data in agreement with that reported previously.¹⁶

1-(iodomethyl)-4-(trifluoromethyl)benzene, 7s

4-(Trifluoromethyl)benzyl bromide (1.20 g, 5.00 mmol, 1.0 equiv.) and sodium iodide (1.12 g, 7.50 mmol, 1.5 equiv.) in acetone (10 mL) were submitted to **General Procedure 2** (12 h).

Purification by column chromatography (SiO₂, pentane) afforded **7s** as a white solid (1.37 g, 4.79 mmol, 95%).

R_f = 0.42 (pentane) **m.p.** = 38-39 °C ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (2H, d, *J* = 8.2 Hz, H3), 7.48 (2H, d, *J* = 8.2 Hz, H2), 4.46 (2H, s, H5). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.3 (q, *J* = 1.6 Hz), 129.9 (q, *J* = 32.6 Hz), 129.0, 125.8 (q, *J* = 3.8 Hz), 123.9 (q, *J* = 272.1 Hz), 3.2. Spectroscopic data in agreement with that reported previously.¹⁷

1-(iodomethyl)-3,5-bis(trifluoromethyl)benzene, 7t

1-(bromomethyl)-3,5-bis(trifluoromethyl)benzene (916 μ L, 5.00 mmol, 1.0 equiv.) and sodium iodide (1.12 g, 7.50 mmol, 1.5 equiv.) in acetone (5 mL) were submitted to **General Procedure 2** (12 h) to afford **7t** (1.68 g, 4.75 mmol, 94%) as a yellowish solid.

R_f = 0.32 (pentane) **m.p.** = 27-28 °C ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (2H, s, H2), 7.76 (1H, s, H4), 4.49 (2H, s, H5). ¹³**C NMR** (101 MHz, CDCl₃) δ 142.1, 132.4 (q, J = 33.5 Hz), 128.9 (q, J = 3.1 Hz), 123.1 (q, J = 273 Hz), 121.9 (m), 1.4. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -63.03.

HRMS (EI⁺) Found $[M-I]^+=227.0294$; C₉H₅F₆ requires 227.0290.

IR (film) $v_{max}/cm^{-1}1375, 1275, 1183, 1156, 1117, 924, 897, 855, 730, 702, 682, 648.$

2-(Iodomethyl)benzonitrile, 7u

2-(Bromomethyl)benzonitrile (273 mg, 1.39 mmol, 1.0 equiv.) and sodium iodide (313 mg, 2.09 mmol, 1.5 equiv.) in acetone (5 mL) were submitted to **General Procedure 2** (12 h). Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 1:0 \rightarrow 1:1) afforded **7u** (287 mg, 1.18 mmol, 84%) as a white solid.

 $\mathbf{R_{f}} = 0.37 \text{ (petroleum ether / Et_{2}O, 9:1)}$ $\mathbf{m.p.} = 71-72 \ ^{\circ}C \text{ (lit. 76.5-78.5 \ ^{\circ}C)}^{18}$ $^{1}H \text{ NMR} (400 \text{ MHz, CDCl}_{3}) \delta 7.62 (1H, d, J = 7.6 \text{ Hz, H6}), 7.57-7.50 (2H, m, H4, H5), 7.36 (1H, ddd, J = 7.7, 6.3, 2.5 \text{ Hz, H3}). 4.60 (2H, s, H7).$ $^{13}C \text{ NMR} (101 \text{ MHz, CDCl}_{3}) \delta 143.0, 133.4, 133.4, 130.1, 128.5, 117.0, 111.9, 0.4.$ $\mathbf{HRMS} (CI^{+}) \text{ Found } [M+NH_{4}]^{+} = 260.9890; C_{8}H_{10}IN_{2} \text{ requires } 280.9883.$ $\mathbf{IR} \text{ (film) } v_{max}/cm^{-1}2981, 2225, 1485, 1450, 1432, 1220, 1156, 1072, 962, 771, 743.$

(Iodomethyl)cyclopropane, 7v

(Bromomethyl)cyclopropane (1.00 g, 7.41 mmol, 1.0 equiv), sodium iodide (6.00 g, 40.0 mmol, 5.4 equiv.) in acetone (10 mL) were submitted to **General Procedure 2** (17 h) to afford **5v** (629 mg, 3.46 mmol, 47%) as a colourless oil.

 $\mathbf{R_f} = 0.66$ (pentane)

¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.13 (2H, d, J = 7.7 Hz, H1), 1.38-1.23 (1H, m, H2), 0.87-0.77 (2H, m, H3), 0.35-0.26 (2H, m, H3).

¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 16.1, 14.2, 11.1.

HRMS (CI⁺) Found $[M+H]^+ = 182.9666$; C₄H₈I requires 182.9665.

IR (film) v_{max}/cm^{-1} 3002, 1427, 1174, 1017, 825.

Spectroscopic data in agreement with that reported previously.¹⁹

Dimethyl bromomalonate, 8c

According to the procedure described by Wolfe et al.²⁰ To a solution of dimethyl malonate (3.40 mL, 30.0 mmol, 1.0 equiv.) in CHCl₃(50 mL) was added *N*-bromosuccinimide (5.90 g,

33.0 mmol, 1.1 equiv.) and *p*-toluenesulfonic acid monohydrate (1.10 g, 6.00 mmol, 0.2 equiv.), and the resulting mixture was stirred for 2 h at 70 °C. The reaction was then cooled to room temperature, water was added, and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 50 mL), and the combined organic phases were washed with Na₂S₂O₃ (10% aq., 50 mL) and brine, dried (MgSO₄) and concentrated *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 9:1) afforded **8c** (2.00 g, 9.48 mmol, 31%) as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.15$ (petroleum ether / Et₂O, 9:1)

¹**H NMR** (400 MHz, CDCl₃) δ 4.85 (1H, s, H2), 3.82 (6H, s, OMe).

¹³C NMR (101 MHz, CDCl₃) δ 165.1, 54.1, 41.7.

IR (film) v_{max}/cm⁻¹2959, 1738, 1436, 1289, 1248, 1213, 1017, 915, 893, 787, 721, 652.

HRMS (ESI⁺) Found $[M+H]^+ = 210.9604$; C₅H₈O₄⁷⁹Br requires 210.9601.

Spectroscopic data in agreement with that reported previously.²⁰

Diethyl 2-bromo-2-methylmalonate, 8d

According to the procedure described by Curran et al.²¹ To a solution of diethyl methylmalonate (852 μ L, 5.00 mmol, 1.0 equiv.) in CCl₄ (10 mL) was added N-bromosuccinimide (1.33 g, 7.50 mmol, 1.5 equiv.). The mixture was refluxed for 12 h, then cooled to 0 °C and filtered. The filtrate was concentrated. Distillation of the residue (2.0 mbar, 115 °C) afforded **8d** as a colourless oil (846 mg, 3.34 mmol, 66%).

 $\mathbf{R}_{\mathbf{f}} = 0.36$ (petroleum ether / Et₂O, 9:1)

¹**H NMR** (400 MHz, CDCl₃) δ 4.27 (4H, q, *J* = 7.1 Hz, H4), 2.07 (3H, s, H3), 1.29 (6H, t, *J* = 7.1 Hz, H5).

¹³C NMR (101 MHz, CDCl₃) δ 167.6, 63.2, 56.8, 26.9, 14.0.

HRMS (CI⁺) Found $[M+H]^+ = 253.0066$; C₈H₁₄⁷⁹BrO₄ requires 253.0070.

IR (film) v_{max}/cm⁻¹ 2986, 1741, 1446, 1378, 1300, 1259, 1223, 1115, 1069, 1017, 859, 646.

2-Bromo-1,3-diphenylpropane-1,3-dione, 8e

According to the procedure described by Izumisawa et al.²² To a solution of 1,3diphenylpropane-1,3-dione (2.24 g, 10.0 mmol, 1.0 equiv.) in CH₂Cl₂ (50 mL) was added *N*bromosuccinimide (1.96 g, 11.0 mmol, 1.1 equiv.) and *p*-toluenesulfonic acid monohydrate (380 mg, 2.00 mmol, 0.2 equiv.) and the resulting mixture was stirred for 15 min at rt. Water was added and the phases were separated. The aqueous phase was extracted twice with CH₂Cl₂ and the combined organics were washed with Na₂S₂O₃ (10% *aq*.) and brine, dried (MgSO₄) and concentrated. Recrystallisation from hot cyclohexane afforded **8e** (2.02 g, 6.66 mmol, 74%) as white crystals.

m.p. = 86-87 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.37$ (petroleum ether / EtOAc, 7:3)

¹**H NMR** (400 MHz, CDCl₃) δ 8.04-7.94 (4H, m, H5), 7.65-7.55 (2H, m, H7), 7.54-7.42 (4H, m, H6), 6.57 (1H, s, H2).

¹³C NMR (101 MHz, CDCl₃) δ 189.1, 134.4, 133.9, 129.4, 129.1, 52.8.

HRMS (ESI⁺) Found $[M+H]^+$ = 303.0017; $C_{15}H_{12}^{79}BrO_2$ requires 303.0015.

Spectroscopic data in agreement with that reported previously.²³

2-Bromo-1-phenyl-2-tosylethan-1-one, 8f

According to the procedure described by Suryakiran et al.²⁴ To a suspension of sodium toluenesulfinate (1.00 g, 5.60 mmol, 1.0 equiv.) in DMF (10 mL) was added 2-bromoacetophenone (1.10 g, 5.60 mmol, 1.0 equiv.). The mixture was stirred at room temperature for 36 h. Water (150 mL) was added and the aqueous layer was extracted three times with CH_2Cl_2 . The combined organic phases were washed with water and brine, dried (MgSO₄) and concentrated afforded **S3** (1.42 g, 5.18 mmol, 92%) as a white powder that required no further purification.

According to the procedure described by Suryakiran et al.²⁵ To a suspension of **S3** (400 mg, 1.46 mmol, 1.0 equiv.) and potassium bromide (191 mg, 1.60 mmol, 1.1 equiv.) in AcOH (1.5 mL) and water (0.5 mL) was added hydrogen peroxide (710 μ L, 47 wt% solution in water, 11.6 mmol, 8.0 equiv.) and the resulting mixture was stirred at room temperature for 18 h. Water (20 mL) was added and the aqueous layer was extracted three times with EtOAc. The combined organic phases were washed with water and brine, dried (MgSO₄) and concentrated. Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 8:2) afforded **8f** (464 mg, 1.31 mmol, 90%) as a white powder.

Data for **S3**:

m.p. = 103-104°C

 $\mathbf{R}_{\mathbf{f}} = 0.23$ (Petroleum ether / EtOAc, 8:2)

¹**H NMR** (400 MHz, CDCl₃) δ 7.96-7.90 (2H, m, H9), 7.76 (2H, d, *J* = 8.4 Hz, H4), 7.64-7.58 (1H, m, H11), 7.50-7.43 (2H, m, H10), 7.32 (2H, d, *J* = 8.1 Hz, H5), 4.72 (2H, s, H2), 2.43 (3H, s, H7).

¹³C NMR (101 MHz, CDCl₃) δ 188.2, 145.4, 135.8, 134.4, 129.9, 129.4, 128.9, 128.7, 77.2, 63.6, 21.8.

MS (ESI+): 297.0 $[M + Na]^+$, 571.1 $[2M + Na]^+$.

Spectroscopic data in agreement with that reported previously.²⁶

Data for **8f**:

m.p. = 154-155 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.22$ (petroleum ether / Et₂O, 8:2), [UV, vanillin]

¹H NMR (400 MHz, CDCl₃) δ 8.02-7.97 (2H, m, H9), 7.87-7.82 (2H, m, H4), 7.68-7.62 (1H, m, H11), 7.54-7.48 (2H, m, H10), 7.40-7.35 (2H, m, H5), 6.23 (1H, s, H2), 2.47 (3H, s, H7).
 ¹³C NMR (101 MHz, CDCl₃) δ 186.8, 146.6, 134.9, 134.4, 131.8, 131.1, 129.7, 129.6, 129.1, 60.2, 22.0.

HRMS (ESI+) Found $[M+Na]^+ = 374.9657$; $C_{15}H_{13}O_3^{79}BrNaS$ requires 374.9661.

IR (film) $v_{max}/cm^{-1}3067$, 2974, 1688, 1595, 1449, 1329, 1269, 1153, 1084, 974, 818, 748, 685, 556.

Scheme S1: Synthesis of 7w

2'-iodo-2'-deoxyuridine, S4

According to the procedure described by Haugland et al.²⁷ To a solution of O2,2'-cyclouridine (1.13 g, 5.00 mmol, 1.0 equiv.) in acetone (50 mL) was added sodium iodide (1.12 g, 7.50 mmol, 1.5 equiv.) and para-toluenesulfonic acid (1.43 g, 7.50 mmol, 1.5 equiv.). The resulting mixture was stirred at 50 °C for 5h, then cooled to room temperature and filtered. The solid was washed with acetone, and the filtrate was concentrated. The residue was diluted with acetone (7 mL) and washed with Na₂S₂O₃ (aq. sat., 7 mL). The aqueous phase was extracted with acetone (2 × 5 mL) and the combined organic phases were concentrated. Purification by column chromatography (SiO₂, CH₂Cl₂ / MeOH, 95:5→80:20) afforded **S4** (1.28 g, 3.61 mmol, 72%) as an off-white foam.

¹**H NMR** (400 MHz, MeOD) δ 7.97 (1H, d, *J* = 8.1 Hz, H1), 6.31 (1H, d, *J* = 7.4 Hz, H1'), 5.70 (1H, d, *J* = 8.1 Hz, H2), 4.49 (1H, dd, *J* = 7.4, 5.1 Hz, H2'), 4.08 (1H, q, *J* = 3.0 Hz, H4'), 3.92 (1H, dd, *J* = 5.1, 3.2 Hz, H3'), 3.79 (1H, dd, *J* = 12.2, 3.0 Hz, H5'), 3.72 (1H, dd, *J* = 12.2, 2.9 Hz, H5').

¹³C NMR (101 MHz, MeOD) δ 165.9, 152.3, 141.8, 103.2, 91.9, 87.2, 72.2, 62.3, 32.4. HRMS (ESI⁺) Found [M+Na]⁺ = 376.9614; C₉H₁₁O₅N₂¹²⁷I²³Na requires 376.9505. Spectroscopic data in accordance to that reported previously.²⁷

3',5'-di(O-(tert-butyldimethylsilyl))-2'-iodo-2'-deoxyuridine, S5

Adapted from the procedure described by Seamon et al.²⁸ To a solution of **S4** (1.10 g, 3.11 mmol, 1.0 equiv.) in DMF (15 mL) was added *tert*-butylchlorodimethylsilane (2.34 g, 15.6

mmol, 5.0 equiv.) and imidazole (1.06 g, 15.6 mmol, 5.0 equiv.), and the resulting mixture was stirred at room temperature for 24 h. Water (200 mL) was added and the aqueous phase was extracted with Et₂O (3 x 50 mL). The combined organics were washed LiCl (10% aq., 2 x 50 mL) and brine (50 mL), dried (MgSO₄) and concentrated. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 1:0 \rightarrow 0:1) afforded **S5** (1.43 g, 2.45 mmol, 79%) as a white foam.

 $\mathbf{R_f} = 0.23$ (petroleum ether / Et₂O, 1:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.96 (1H, s, NH), 7.86 (1H, d, J = 8.2 Hz, H1), 6.38 (1H, d, J = 5.6 Hz, H1'), 5.71 (1H, dd, J = 8.2, 2.2 Hz, H2), 4.28 (1H, t, J = 5.6 Hz, H2'), 4.11 (1H, dt, J = 4.0, 2.0 Hz, H4'), 3.95 (1H, dd, J = 11.7, 2.4 Hz, H5'), 3.82 (app t, J = 4.5 Hz, H3'), 3.75 (1H, dd, J = 11.7, 1.8 Hz, H5'), 0.93 (9H, s, Sit-Bu), 0.92 (9H, s, Sit-Bu), 0.17 (3H, s, SiMe), 0.12 (3H, s, SiMe), 0.11 (3H, s, SiMe), 0.10 (3H, s, SiMe).

¹³C NMR (101 MHz, CDCl₃) δ 163.1, 150.3, 139.5, 102.8, 91.2, 86.0, 71.3, 62.1, 32.4, 26.0, 25.9, 18.5, 18.3, -4.2, -4.4, -5.4, -5.4.

HRMS (CI⁺) Found $[M+Na]^+ = 605.1327$; C₂₁H₃₉O₅N₂¹²⁷I²³NSi₂ requires 605.1334. **IR** (film) v_{max}/cm⁻¹ 2955, 2929, 2858, 1698, 1625, 1461, 1254, 1112, 835, 779.

3'-O-(tert-butyldimethylsilyl)-2'-iodo-2'-deoxyuridine, 7w

Adapted form the procedure described by Sun et al.²⁹ To a solution of **S5** (1.43 g, 2.45 mmol, 1.0 equiv.) in THF (20 mL) was added a solution of trifluoroacetic acid (5 mL) in water (5 mL) at 0 °C. The resulting mixture was allowed to stir at room temperature for 2 h, and then quenched cautiously with solid NaHCO₃. Water (50 mL) was added, and the aqueous phase was extracted with Et₂O (3 x 25 mL). The combined organic phases were washed with NaHCO₃ (aq. sat., 25 mL) and brine, dried (MgSO₄) and concentrated. Purification by column chromatography (SiO₂, CH₂Cl₂/ EtOAc, 1:0→0:1) afforded **7w** (825 mg, 1.76 mmol, 71%) as a white solid.

 $\mathbf{R_f} = 0.27 (CH_2Cl_2 / EtOAc, 1:1)$

m.p. = 190 °C (decomp.)

¹**H NMR** (400 MHz, MeOD) δ 7.99 (1H, d, *J* = 8.1 Hz, H1), 6.35 (1H, d, *J* = 7.4 Hz, H1'), 5.75 (1H, d, *J* = 8.1 Hz, H2), 4.58 (1H, dd, *J* = 7.4, 4.5 Hz, H2'), 4.13-4.08 (2H, m, H3', H4'), 3.82 (1H, dd, *J* = 12.2, 3.1 Hz, H5'), 3.74 (1H, dd, *J* = 12.2, 2.7 Hz, H5'), 0.99 (9H, s, Si*t*-Bu), 0.24 (3H, s, SiMe), 0.19 (3H, s, SiMe).

¹³C NMR (101 MHz, MeOD) δ 165.9, 152.4, 141.7, 103.3, 92.1, 87.9, 73.7, 62.0, 31.7, 26.4, 19.0,

-4.3, -4.4.

HRMS (ESI⁺) Found $[M+H]^+ = 469.0649$; C₁₅H₂₆O₅N₂¹²⁷I²⁸Si requires 469.0650.

IR (film) v_{max}/cm⁻¹ 3405, 3222, 3062, 2955, 2923, 2856, 1690, 1676, 1462, 1169, 1128, 1102, 1025.

 $[a]_D^{25}$ 27.9 (c = 1.0, MeOH)

2-iodoethyl 4-methylbenzenesulfonate, 7y

Adapted from the procedure described by Wegert et al.³⁰ To a round-bottomed flask charged with pyridine (2 mL) at 0 °C was added *p*-toluenesulfonyl chloride (1.91 g, 10.0 mmol, 1.0 equiv.). The resulting mixture was stirred at 0 °C for 5 min, then 2-iodoethanol (780 μ L, 10.0 mmol, 1.0 equiv.) was added dropwise. The solution was allowed to warm to rt, and stirred for 2 h, then cooled to 0 °C. HCl (aq., 5 M, 10 mL) was added, and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic phases were washed with Na₂S₂O₃ (aq., 10 wt%, 10 mL) and brine (10 mL), dried (Na₂SO₄) and concentrated. Purification by column chromatography (SiO₂, petroleum ether / Et₂O, 1:0 \rightarrow 0:1) afforded **7y** (1.28 g, 3.92 mmol, 39%) as a yellow oil.

R_f = 0.18 (petroleum / Et₂O, 9:1) ¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (2H, d, J = 7.3 Hz, H4), 7.36 (2H, d, J = 8.0 Hz, H5), 4.23 (2H, t, J = 7.4 Hz, H1), 3.26 (2H, t, J = 7.3 Hz, H2), 2.46 (3H, s, H7). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.3, 132.8, 130.1, 128.1, 69.7, 21.8, -1.3. **HRMS** (ESI⁺) Found [M+Na]⁺ = 348.9367; C₉H₁₁O₃¹²⁷I²³Na³²S requires 348.9366.

Boc-Asp(Ot-Bu)-Ser-OMe, 15

Adapted from the procedure described by Pu et al.³¹ To a suspension of HCl.H-Ser-OMe (422 mg, 4.00 mmol, 1.0 equiv.) in EtOH (10 mL) was added *N*-methylmorpholine (1.32 mL, 12.0 mmol, 3.0 equiv.), a solution of Boc-Asp(Ot-Bu)-OH (1.19 g, 4.12 mmol, 1.03 equiv.), and HOBt (82 mg, 0.60 mmol, 30 mol %) in EtOH (10 mL). The resulting mixture was cooled to 0 °C and stirred at this temperature for 15 min. EDCI (920 mg, 4.80 mmol, 1.2 equiv.) was added in three portions at 0 °C, and the resulting mixture warmed to room temperature and stirred for 12 h. Water (40 mL) was added, and the aqueous phase was extracted with EtOAc (3 x 25 mL). The combined organic phases were washed with pH 2 buffer solution (2 × 25 mL), NaHCO3 (aq., sat., 25 mL) and brine (25 mL), dried (MgSO₄) and concentrated. Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 1:1→7:3) afforded **15** (1.53 g, 3.92 mmol, 97%) as a white foam.

 $\mathbf{R}_{\mathbf{f}} = 0.17$ (petroleum ether/EtOAc, 1:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (1H, d, *J* = 7.4 Hz, NH), 5.68 (1H, d, *J* = 8.6 Hz, NH), 4.57 (1H, dt, *J* = 7.2, 3.4 Hz, H2), 4.46 (1H, dt, *J* = 9.7, 5.6 Hz, H6), 4.00-3.82 (2H, m, H1), 3.74 (3H, s, H4), 3.23 (1H, t, *J* = 6.5 Hz, OH), 2.89 (1H, dd, *J* = 17.0, 5.4 Hz, H10), 2.63 (1H, dd, *J* = 17.0, 5.4 Hz, H10), 1.42 (9H, s, *t*-Bu), 1.40 (9H, s, *t*-Bu).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 171.3, 170.7, 155.6, 82.1, 80.7, 62.4, 55.1, 52.8, 51.0, 37.8, 28.3, 28.1.

HRMS (ESI⁺) Found $[M+Na]^+ = 413.1899$; $C_{17}H_{30}O_8N_2^{23}Na$ requires 413.1894. **IR** (film) v_{max}/cm^{-1} 3339, 2978, 2935, 1726, 1673, 1523, 1368, 1293, 1249, 1230, 1161. $[a]_D^{25} = 35.1$ (c 1.1, CHCl₃)

1-benzyl-N-phenylpiperidin-4-amine, S6

According to the procedure described by Brine et al.³² To a solution of *N*-benzyl-4-piperidone (1.85 mL, 10.0 mmol, 1.0 equiv.) in toluene (50 mL) was added *p*-toluenesulfonic acid monohydrate (38 mg, 0.20 mmol, 0.2 equiv.) and aniline (1.00 mL, 11.0 mmol, 1.1 equiv.), and the mixture was stirred under reflux for 15 h using a Dean-Stark apparatus. The mixture was cooled to room temperature and EtOH (50 mL) was added. Sodium borohydride (380 mg, 10.0 mmol, 1.0 equiv.) was added portionwise and the resulting mixture was stirred at room temperature for 3 h. Water (20 mL) was added dropwise and the mixture was stirred for 4 h at rt, then it was acidified to pH 3 with HCl (10%, aq.) and washed with toluene (3 × 25 mL). The aqueous phase was basified with NaOH (50%, aq.), and extracted with CH₂Cl₂ (3 × 50 mL). The combined organics were dried (MgSO₄) and concentrated. Recrystallization from Et₂O with petroleum ether afforded **S6** (1.15 g, 4.31 mmol, 43%) as yellow crystals.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether / EtOAc, 1:1)

m.p. = 81-82 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (2H, app s, H7 or H8), 7.37 (2H, s app, H7 or H8), 7.34-7.28 (1H, m, H9), 7.25-7.16 (2H, m, H12), 6.73 (1H, tt, *J* = 7.3, 1.1 Hz, H13), 6.67-6.60 (2H, m, H11), 3.58 (2H, s, H5), 3.55 (1H, br s, NH), 3.34 (1H, dq, *J* = 10.7, 5.3 Hz, H4), 2.90 (2H, dt, *J* = 11.9, 4.0 Hz, H2), 2.19 (2H, td, *J* = 11.5, 2.6 Hz, H2), 2.13-2.04 (2H, m, H3), 1.59-1.45 (2H, m, H3).

¹³C NMR (101 MHz, CDCl₃) δ 147.2, 138.5, 129.4, 129.2, 128.3, 127.1, 117.2, 113.3, 63.2, 52.5, 50.0, 32.7.

HRMS (ESI⁺) Found $[M+H]^+ = 267.1854$; C₁₈H₂₃N₂ requires 267.1856.

Spectroscopic data in agreement with that reported previously.³³

N-(1-benzylpiperidin-4-yl)-N-phenylpropionamide, S7

According to the procedure described by Gupta et al.³³ To a solution of **S6** (799 mg, 3.00 mmol, 1.0 equiv.) in 1,2-dichloroethane (5 mL) was added propionyl chloride (786 uL, 9.00 mmol, 3.0 equiv.) dropwise at rt. The resulting mixture was stirred at room temperature for 12 h, and then quenched with NaOH (4%, aq.). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 × 5 mL). The combined organic phases were dried (Na₂SO₄) and concentrated *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether / EtOAc, 1:0→0:1) afforded S7 (930 mg, 2.89 mmol, 96%) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.26$ (petroleum ether / EtOAc, 1:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.38-7.25 (3H, m, H12, H13), 7.25-7.08 (5H, m, H7, H8, H9), 7.03-6.94 (2H, m, H11), 4.59 (1H, tt, *J* = 12.2, 3.9 Hz, H4), 3.36 (2H, s, H5), 2.87 (2H, m, H2), 2.03 (2H, td, *J* = 12.0, 2.3 Hz, H2), 1.84 (2H, q, *J* = 7.5 Hz, H15), 1.74-1.58 (2H, m, H3), 1.31 (2H, qd, *J* = 12.3, 3.9 Hz, H3), 0.93 (3H, t, *J* = 7.5 Hz, H16).

¹³C NMR (101 MHz, CDCl3) δ 173.6, 141.0, 139.1, 138.4, 130.5, 129.4, 129.2, 128.3, 128.3, 127.1, 63.2, 53.2, 52.4, 30.7, 28.6, 9.7.

HRMS (ESI⁺) Found $[M+H]^+ = 323.2110$; C₂₁H₂₇ON₂ requires 323.2118. Spectroscopic data in agreement with that reported previously.³³

N-phenyl-N-(piperidin-4-yl)propionamide (Norfentanyl), 18

Adapted from the procedure described by Sudo et al.³⁴ To a solution of **S7** (1.78 g, 5.52 mmol, 1.0 equiv.) in EtOH (20 mL) was added Pd(OH)₂ (969 mg, 20 wt% over carbon, 1.38 mmol, 25 mol %) and HCOOH (4.17 mL, 110 mmol, 20 equiv.). The resulting mixture was stirred at 50 °C for 1 h, filtered (celite, washed with EtOH, 3×20 mL). The filtrate was concentrated. Purification by column chromatography (SiO₂, CH₂Cl₂ / CH₃OH, 8:2) afforded **18** (1.00 g, 4.30 mmol, 77%) as a beige foam.

$R_f = 0.28 (CH_2Cl_2 / CH_3OH, 8:2)$

¹**H NMR** (400 MHz, MeOD) δ 7.54-7.43 (3H, m, H7, H8), 7.24 (2H, d, *J* = 7.3 Hz, H6), 4.77 (1H, tt, *J* = 12.2, 3.9 Hz, H4), 3.44-3.35 (2H, m, H2), 3.15-3.05 (1H, m, H2), 2.06 (2H, d, *J* = 13.7 Hz, H3), 1.96 (2H, q, *J* = 7.5 Hz, H10), 1.58 (2H, qd, *J* = 13.3, 4.1 Hz, H3), 0.97 (3H, t, *J* = 7.5 Hz, H11).

¹³**C NMR** (101 MHz, MeOD) δ 176.0, 139.4, 131.4, 130.9, 130.2, 51.5, 44.9, 29.3, 28.6, 9.9. **HRMS** (ESI⁺) Found [M+H]⁺ = 233.1649; C₁₄H₂₁ON₂ requires 233.1648.

10. Computational details

All calculations were performed using Gaussian 09 software.³⁵ Structural optimizations and frequency calculations were performed with the (RO)B3LYP,³⁶ (RO)M06-2x,³⁷ (RO) ω B97xD³⁸ functional along with the def2tzvp basis set³⁹ *in vacuo*. Single point energies have been extracted from the same method / basis set combinations indicated above.

initiation: radical formation

Fig Comp S1. Comparison of computed activation barriers and exergonicities for the initiation step of the radical process depending on the method employed. All numbers in kcal/mol.

method	∆G [‡] (BS)	∆G [‡] (BI)	∆∆G [‡] (BS - BI)	∆G _{rxn} (BS)	∆G _{rxn} (BI)
ROB3LYP	14.2	7.4	6.8	-20.7	-13.8
ROM062x	13.3	7.3	6.1	-21.4	-14.6
ROwb97xd	12.3	9.0	3.3	-29.6	-16.9

Fig Comp S2. Comparison of computed activation barriers and exergonicities for the propagation step (BI) of the radical process and the sideproduct formation (BS) depending on the method employed. All numbers in kcal/mol.

method	∆G+ (BS)	∆G+ (BBr)	∆∆G+ (BS - BBr)	∆G _{rxn} (BS)	∆G _{rxn} (BBr)
ROB3LYP	14.2	11.9	2.3	-20.7	-17.3
ROM062x	13.3	12.9	0.4	-21.4	-16.3
ROwb97xd	12.3	15.2	- 2.9	-29.6	-18.3

Fig Comp S3. Comparison of computed activation barriers and exergonicities for the propagation step (BBr) of the radical process and the sideproduct formation (BS) depending on the method employed. All numbers in kcal/mol.

Computed structures: Representation of calculated transition states

 AB^{\ddagger} BS^{\ddagger}

BI‡

BBr[‡]

xyz-coordinates and energies of all computed structures

[(acetate-radical)]

i) (RO)B3LYP / def2tzvp

MeO			
C -1.784021000 -0.583499000 -0.000003000	O 0.533004000 -0.722805000 0.000116000		
Н -2.694796000 -0.005698000 -0.000115000	C 1.824612000 -0.101265000 -0.000081000		
Н -1.816427000 -1.662338000 -0.000392000	Н 2.542524000 -0.917028000 -0.000479000		
C -0.525261000 0.125935000 0.000094000	Н 1.950802000 0.520454000 -0.886480000		
O -0.411190000 1.335009000 -0.000017000	Н 1.951406000 0.519959000 0.886614000		
Zero-point correction=	0.076066 (Hartree/Particle)		
Thermal correction to Energy=	0.081850		
Thermal correction to Enthalpy=	0.082794		
Thermal correction to Gibbs Free Energy=	0.046817		
Sum of electronic and zero-point Energies=	-267.761272		
Sum of electronic and thermal Energies=	-267.755488		
Sum of electronic and thermal Enthalpies=	-267.754544		
Sum of electronic and thermal Free Energies=	-267.790521		

E[(RO)B3LYP/def2TZVP] = -267.837337601

ii) (RO)M06-2x / def2tzvp

C H H C	-1.786969000 -2.687771000 -1.824839000 -0.516315000 0.389637000	-0.570050000 0.020613000 -1.646983000 0.126350000	0.00001000 -0.000071000 -0.000002000 0.000004000 0.000007000	O C H H	0.526442000 1.808247000 2.531575000 1.928330000	-0.726214000 -0.106046000 -0.915996000 0.517134000 0.516838000	0.000015000 -0.000015000 -0.000205000 -0.885758000 0.885758000
0	-0.389037000	1.327073000	0.000007000	п	1.928498000	0.510858000	0.885918000
Zer	o-point cor	rection=		0.077	087 (Hartre	e/Particle)	
Th	ermal correc	ction to En	ergy=	0.08	32866		
Th	ermal correc	ction to En	thalpy=	0.08	33810		
Th	ermal correc	ction to Gi	bbs Free Energy=	0.04	17694		
Su	m of electro	onic and ze	ro-point Energies=		-267.638577		
Su	m of electro	onic and th	ermal Energies=		-267.632798		
Su	m of electro	onic and th	ermal Enthalpies=		-267.631854		
Su	m of electro	onic and th	ermal Free Energies=		-267.667970		

E[(RO)M06-2x/def2TZVP] = -267.715663649

iii) (RO)ωB97xD / def2tzvp

	0		
	L L		
Me	eO		
С	-1.781130000	-0.578062000	-0.000002000

С	-1.781130000	-0.578062000	-0.000002000	0	0.529320000	-0.719964000
Н	-2.688672000	0.005155000	0.000015000	С	1.812001000	-0.104547000
Н	-1.816844000	-1.656978000	-0.000030000	Н	2.532718000	-0.917955000
С	-0.518224000	0.125866000	0.000001000	Н	1.940591000	0.516951000
0	-0.402344000	1.329483000	-0.000002000	Н	1.940521000	0.517135000
Zero-point correction= 0.076495 (Hartr				495 (Hartre	e/Particle)	
Th	ermal corre	ction to Ene	ergy=	0.08	2500	
Th	ermal correc	ction to Ent	chalpy=	0.08	3445	
Th	ermal corre	ction to Gib	obs Free Energy=	0.04	6240	
Su	m of electro	onic and zer	ro-point Energies=		-267.665908	
Su	m of electro	onic and the	ermal Energies=		-267.659903	
Su	m of electro	onic and the	ermal Enthalpies=		-267.658959	
Su	m of electro	onic and the	ermal Free Energies=		-267.696164	

E[(RO)wB97xD/def2TZVP] = -267.742403375

6240		
-267	.665908	
-267	.659903	
-267	.658959	
-267	.696164	

0.000009000

-0.000002000

0.000096000

-0.886561000

0.886437000

[tcp]

i) (RO)B3LYP / def2tzvp

L			
С	-0.854051000	-0.975927000	-0.000222000
C	0.000017000	-0.000052000	-0.782989000

С	0.000017000	-0.0000520	00 -0.782989000	С	-0.418366000	1.227408000
Н	-1.924401000	-0.8111530	-0.000193000	Н	0.259239000	2.072138000
Н	-0.548666000	-2.0149440	-0.000201000	Н	-1.471011000	1.482035000
С	1.272366000	-0.2514830	00 -0.000208000	С	0.000134000	0.000079000
Н	2.019345000	0.5326000	00 -0.000464000			
Zer	point cor	rection=		0.093	3075 (Hartree	e/Particle)
The	ermal corre	ction to	Energy=	0.09	97056	
The	ermal corre	ction to	Enthalpy=	0.09	98000	
The	ermal corre	ction to	Gibbs Free Energy=	0.00	56775	
Sur	n of electro	onic and	zero-point Energies=		-193.986565	
Sur	n of electro	onic and	thermal Energies=		-193.982584	
Sur	n of electro	onic and	thermal Enthalpies=		-193.981640	
Sur	n of electro	onic and	thermal Free Energies=		-194.012865	

E[(RO)B3LYP/def2TZVP] = -194.059299611

ii) (RO)M06-2x / def2tzvp

A			
C 0.982367000 0.841060000 -0.000210000 C -0.000020000 0.000306000 -0.771841000 H 2.015339000 0.518157000 -0.000123000 H 0.932687000 1.011601000 -0.000123000	H -1.457815000 1.485622000 C 0.237405000 -1.271206000 H -0.557930000 -2.005105000 H 1.244082000 1.668463000	-0.000211000 -0.000182000 -0.000417000	
H 0.023687000 1.911801000 -0.000138000 C -1.219685000 0.429944000 -0.000205000 H -2.066783000 -0.243703000 -0.000360000	C -0.000164000 -1.008405000 C -0.000164000 0.000211000	0.772681000	
Zero-point correction=	0.094352 (Hartree/Particle)		
Thermal correction to Energy=	0.098244		
Thermal correction to Enthalpy=	0.099188		
Thermal correction to Gibbs Free Energy=	0.068099		
Sum of electronic and zero-point Energies=	-193.908868		
Sum of electronic and thermal Energies=	-193.904976		
Sum of electronic and thermal Enthalpies=	-193.904032		
Sum of electronic and thermal Free Energies=	-193.935120		

1.664902000 -1.260826000

 -0.418366000
 1.227408000

 0.259239000
 2.072138000

Н

-0.000242000

-0.000209000

-0.000461000

-0.000238000

0.783927000

E[(RO)M06-2x/def2TZVP] = -194.003219431

iii) (RO)ωB97xD / def2tzvp

A						
C -1.282890000	0.179562000	-0.000290000	Н	-0.144437000	-2.081325000	-0.000137000
C -0.000246000	0.000102000	-0.777903000	С	0.797169000	1.020823000	-0.000316000
Н -1.730346000	1.166014000	-0.000053000	Н	1.875168000	0.914477000	-0.000327000
Н -1.983900000 -	0.646214000	-0.000069000	Н	0.432654000	2.040857000	-0.000137000
С 0.485872000 -	1.200435000	-0.000312000	С	-0.000015000	0.000078000	0.778992000
Н 1.551524000 -	1.394590000	-0.000301000				
Zero-point corre	ction=		0.093	3688 (Hartree	e/Particle)	
Thermal correct	ion to En	ergy=	0.09	97653		
Thermal correct	ion to En	thalpy=	0.09	0.098597		
Thermal correct	ion to Gil	obs Free Energy=	0.067401			
Sum of electron	ic and ze	ro-point Energies=		-193.919158		
Sum of electronic and thermal Energies=			-193.915194			
Sum of electronic and thermal Enthalpies=		-193.914249				
Sum of electron	ic and the	ermal Free Energies=		-193.945445		
E[(RO)wB97xD/def	2TZVP] =	-194.012846414				

```
[AB<sup>‡</sup>]
```

i) (RO)B3LYP / def2tzvp

		. ‡	:				
	MeO-						
С	-2.755980000	-0.243405000	-0.770710000				
С	-2.650210000	0.621741000	0.473956000				
Н	-3.239109000	-1.207675000	-0.664697000				
Н	-2.945601000	0.261061000	-1.710970000				
С	-1.457388000	1.419566000	-0.027022000				
Ĥ	-0.822916000	1.884381000	0.717903000				
Н	-1.589215000	1.993741000	-0.936408000				
С	-1.815063000	-0.379186000	1.256224000				
H	-1.191090000	0.003609000	2,054343000				
Н	-2.254922000	-1.350556000	1.448503000				
С	-1.370169000	-0.090003000	-0.165863000				
Z	Zero-point correction=						

Therma.	L Correction	1 10	Energy=
Thermal	l correctior	n to	Enthalpy=
Thermal	l correctior	n to	Gibbs Free Energy=
Sum of	electronic	and	zero-point Energies=
Sum of	electronic	and	thermal Energies=
Sum of	electronic	and	thermal Enthalpies=
Sum of	electronic	and	thermal Free Energies=

E[(RO)B3LYP/def2TZVP] = -461.913367074

ii) (RO)M06-2x / def2tzvp

_		‡	
	MeO-		
C	-2.667640000	0.095105000	-0.831862000
С	-2.407148000	0.716932000	0.522817000
Η	-3.332589000	-0.759192000	-0.860725000
Η	-2.732258000	0.767720000	-1.678222000
С	-1.080352000	1.331177000	0.138857000
Н	-0.376917000	1.526338000	0.939882000
Η	-1.079612000	2.047782000	-0.672914000
С	-1.809191000	-0.528466000	1.136782000
Н	-1.121216000	-0.402170000	1.963129000
Н	-2.440043000	-1.407969000	1.178713000
С	-1.303376000	-0.116900000	-0.224363000

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

E[(RO)M06-2x/def2TZVP] = -461.717879384

iii) (RO)ωB97xD / def2tzvp

C	0 456755000	1 122582000	1.025502000
C	0.430/33000	-1.155585000	-1.055595000
Н	0.073840000	-2.124257000	-0.851664000
Η	0.362432000	-0.712655000	-2.024401000
С	1.499304000	-0.660756000	-0.155125000
0	1.814487000	-1.167542000	0.904452000
0	2.088163000	0.475131000	-0.628297000
С	3.128525000	1.016987000	0.190629000
Η	3.481965000	1.903921000	-0.329617000
Н	2.748907000	1.280947000	1.178196000
Η	3.939859000	0.298606000	0.310600000

0.170754 (Hartree/Particle) 0.181244 0.182188 0.132134 -461.742614 -461.732123 -461.731179 -461.781233

С	0 395433000	-1 270931000	-1 036490000
Ĥ	0.004120000	-2.241892000	-0.779320000
Н	0.362051000	-0.938246000	-2.062119000
С	1.370938000	-0.695950000	-0.139263000
0	1.573138000	-1.049283000	1.001459000
0	2.002775000	0.367181000	-0.690205000
С	2.934469000	1.018817000	0.162328000
Η	3.364946000	1.825890000	-0.423872000
Η	2.435277000	1.414947000	1.047350000
Н	3.710152000	0.324903000	0.485228000

0.172849 (H	artree/Particle)
0.183156	
0.184100	
0.134789	
-461.5	45031
-461.5	34723
-461.5	33779

-461.583090

С	0.417958000	-1.215447000	-1.035002000
Н	0.039324000	-2.200749000	-0.814003000
Н	0.353138000	-0.843398000	-2.046053000
С	1.425815000	-0.684639000	-0.146557000
0	1.687828000	-1.113382000	0.955355000
0	2.023178000	0.414017000	-0.662462000
С	2.991304000	1.031144000	0.172717000
Н	3.388776000	1.867405000	-0.397336000
Н	2.536032000	1.388298000	1.097832000
Н	3.788439000	0.331905000	0.426470000

0.172294 (Hartree/Particle)

0.182709 0.183654 0.133907

10000	
-461.	583156
-461.	572741
-461.	571797
-461.	621543

E[(RO)wB97xD/def2TZVP] = -461.755449934

Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

[B]

i) (RO)B3LYP / def2tzvp

0

MeO-					
С	-2.613536000	-0.002947000	0.790519000		
С	-2.590460000	-0.479962000	-0.673605000		
Н	-3.103730000	0.947226000	0.994542000		
Н	-2.810514000	-0.753289000	1.554279000		
С	-1.341647000	-1.335304000	-0.384473000		
Н	-0.701550000	-1.576552000	-1.230576000		
Н	-1.458863000	-2.168697000	0.305711000		
С	-1.695729000	0.713770000	-1.058786000		
Н	-1.074388000	0.606350000	-1.944681000		
Н	-2.128400000	1.708088000	-0.967531000		
С	-1.152428000	0.073354000	0.253515000		

С	0.050151000	0.554242000	1.074538000
Н	-0.127924000	1.583546000	1.386894000
Н	0.154594000	-0.078232000	1.956173000
С	1.322630000	0.530690000	0.262920000
0	1.676927000	1.402828000	-0.489139000
0	2.011317000	-0.613177000	0.453150000
С	3.219697000	-0.752651000	-0.312077000
Н	3.627525000	-1.722359000	-0.040416000
Н	3.003168000	-0.712428000	-1.379020000
Н	3.922058000	0.041982000	-0.062763000

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and th

0.174844 (Hartree/Particle)
0.184674
0.185618
0.137500
-461.777615
-461.767785
-461.766841

-461.814959

nermal	Free	Energies=	

E[(RO)B3LYP/def2TZVP] = -461.952458382

ii) (RO)M06-2x / def2tzvp

MeO-

С	-2.594142000	-0.051705000	0.758421000	Н	-2.7710770
С	-2.492753000	-0.534778000	-0.693654000	С	-1.2192210
Н	-3.136248000	0.874758000	0.932793000	Н	-0.5363500

Η	-2.771077000	-0.808834000	1.519085000
С	-1.219221000	-1.320927000	-0.359064000
Н	-0.536350000	-1.524510000	-1.181136000

Н	-1.316442000	-2.149788000	0.338178000	С	1.284994000	0.554937000	0.269077000
С	-1.655104000	0.695720000	-1.061938000	0	1.625906000	1.370301000	-0.543078000
Η	-0.992532000	0.609985000	-1.919317000	0	1.959781000	-0.579791000	0.501867000
Η	-2.142026000	1.665284000	-0.987564000	С	3.119325000	-0.774561000	-0.305376000
С	-1.135696000	0.092800000	0.265225000	Н	3.539658000	-1.727351000	0.002016000
С	0.028760000	0.634432000	1.092021000	Н	2.846543000	-0.795921000	-1.359909000
Н	-0.160190000	1.678857000	1.336937000	Н	3.833846000	0.031158000	-0.142904000
Η	0.132354000	0.046769000	2.003238000				
Zer	o-point corr	rection=		0.177	225 (Hartre	e/Particle)	
Th	ermal correc	ction to Ene	ergy=	0.18	6784		
Th	ermal correc	ction to Ent	halpy=	0.18	7728		
Th	ermal correc	ction to Gib	bs Free Energy=	0.14	0427		
Su	m of electro	onic and zer	co-point Energies=		-461.581379		
Su	m of electro	onic and the	ermal Energies=		-461.571820		
Su	m of electro	onic and the	ermal Enthalpies=		-461.570875		
Su	m of electro	onic and the	ermal Free Energies=		-461.618177		

```
E[(RO)M06-2x/def2TZVP] = -461.758603302
```

iii) (RO)ωB97xD / def2tzvp

М	eo	_	
С	-2.601959000	0.03716500	0 0.753267000
С	-2.531277000	-0.55558000	0 -0.665359000
Н	-3.117558000	0.98918700	0 0.868105000
Н	-2.804220000	-0.65486300	0 1.569314000
С	-1.272188000	-1.34715900	0 -0.269953000
Н	-0.596665000	-1.63759700	0 -1.072599000
Н	-1.388051000	-2.12455300	0 0.483328000
С	-1.649825000	0.62308900	0 -1.113214000
Η	-0.995532000	0.46205300	0 -1.967496000
Н	-2.105498000	1.61150300	0 -1.113710000
С	-1.132999000	0.10669100	0 0.256670000
Ze	ro-point cori	rection=	
Т	hermal correc	ction to E	nergy=
Т	hermal correc	ction to E	nthalpv=
Т	hermal correc	ction to G	ibbs Free Energy=
S	um of electro	onic and z	ero-point Energies=
S	um of electro	onic and t	hermal Energies=
S	um of electro	onic and t	hermal Enthalpies=
S	um of electro	onic and t	hermal Free Energies=

E[(RO)wB97xD/def2TZVP] = -461.807655339

С	1.307389000	0.567856000	0.245339000	
0	1.692825000	1.384902000	-0.545736000	
0	1.943232000	-0.585897000	0.487197000	
С	3.123363000	-0.816018000	-0.277394000	
Н	3.501396000	-1.782697000	0.044386000	
Н	2.893499000	-0.832188000	-1.342858000	
Н	3.861641000	-0.036984000	-0.088048000	
177171 (Hartroo (Darticlo)				

0.675688000

1.730027000

0.133678000

1.046097000

1.248749000

1.986424000

0.177171 (Hartree/Particle) 0.186874 0.187818 0.139896 -461.630485 -461.620782 -461.619838 -461.667759

0.036733000

-0.148299000

0.135411000

С

Η

Н

[**B**S[‡]]

i) (RO)B3LYP / def2tzvp

Н	0.488223000	-2.627237000	-0.118389000
С	-2.388027000	-1.283596000	-0.296826000
С	0.831330000	-0.395788000	-0.116704000
С	3.598231000	1.671021000	0.278118000
С	4.730324000	0.657321000	0.131616000
С	4.094950000	-0.355411000	1.080589000
С	4.142987000	0.016785000	-1.123322000
Н	3.460941000	2.378108000	-0.531681000
Н	3.421292000	2.074265000	1.268430000

11	4.505522000	1.57205500	0.701	027000		C	5.5	07505000
Н	3.940056000	-0.04176300	00 2.106	5339000		0	-3.5	45527000
Н	4.435500000	-1.00416200	00 -1.339	9646000		0	-3.8	13926000
Н	4.029793000	0.65136000	00 -1.994	4628000		С	-4.6	69342000
С	3.190428000	0.23874900	0.027	336000		Н	-4.1	31343000
Н	-2.524228000	-2.1966130	00 0.283	3914000		Н	-4.9	73559000
Н	-2.641370000	-1.4786690	00 -1.33	9043000		Н	-5.5	37914000
Zer	o-point corr	rection=				0.268	150	(Hartre
The	ermal correc	ction to 1	Energy=			0.28	3161	
The	ermal correc	ction to 1	Enthalpy	/=		0.28	4106	
The	ermal correc	ction to (Gibbs Fi	cee Energy=		0.22	1141	
Su	m of electro	onic and :	zero-poi	Int Energies	s=		-655	.758218
Sui	m of electro	onic and	thermal	Energies=			-655	.743206
Sui	m of electro	onic and	thermal	Enthalpies=	=		-655	.742262
Sui	m of electro	onic and [.]	thermal	Free Energ:	ies=		-655	.805227

1 302833000 0 061820000

С	-3.307385000	-0.232624000	0.274242000
0	-3.545527000	-0.087111000	1.446708000
0	-3.813926000	0.563886000	-0.690437000
С	-4.669342000	1.626444000	-0.240113000
Н	-4.131343000	2.290979000	0.435121000
Η	-4.973559000	2.157744000	-1.137808000
Н	-5.537914000	1.222250000	0.278743000

(Hartree/Particle)

E[(RO)B3LYP/def2TZVP] = -656.026366956

ii) (RO)M06-2x / def2tzvp

н

1 385322000

Thermal correction to Gibbs Free Energy=

Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=

E[(RO)M06-2x/def2TZVP] = -655.756563332

Sum of electronic and zero-point Energies=

Sum of electronic and thermal Free Energies=

Н	-2.787988000	-2.387800000	-0.285303000
Н	-2.864689000	-1.858927000	1.467118000
Н	-4.533203000	1.240616000	0.714124000
Н	-3.838044000	0.165339000	2.024025000
Н	-4.436572000	0.572176000	-1.503998000
Н	-3.665240000	-1.030012000	-1.943851000
С	-3.008052000	-0.201336000	0.003065000
Н	2.607803000	2.187903000	0.483030000
Н	2.714944000	1.609712000	-1.204614000
С	3.160950000	0.151597000	0.298680000
0	3.375959000	-0.104193000	1.451879000
0	3.516603000	-0.655528000	-0.712099000
С	4.159803000	-1.867166000	-0.323889000
Н	3.503192000	-2.456410000	0.315366000
Н	4.376273000	-2.399001000	-1.245455000
Н	5.078321000	-1.650905000	0.220093000

0.271257 (Hartree/Particle)

0.285966

0.286910 0.224541 -655.485306 -655.470598 -655.469654 -655.532022

iii) (RO) ω B97xD / def2tzvp

Η	0.036361000	-1.364809000	1.739959000
Н	-0.481305000	0.365885000	1.619514000
С	-0.909725000	-0.837960000	-0.239997000

Н	-0.207345000	0.462288000	-1.947912000
Н	-0.613395000	1.390539000	-0.445881000
Н	0.452904000	-1.748416000	-1.793665000
Η	0.558630000	-2.550596000	-0.171713000
С	-2.354097000	-1.297219000	-0.367099000
С	0.819816000	-0.312772000	-0.094828000
С	3.604785000	1.657502000	0.293478000
С	4.677727000	0.583053000	0.141377000
С	3.989983000	-0.390231000	1.094389000
С	4.044483000	-0.024725000	-1.106825000
Н	3.502597000	2.370270000	-0.516786000
Н	3.457207000	2.070512000	1.284730000
Н	4.217009000	-1.443097000	0.972127000

Zero-point correction=	
Thermal correction to	Energy=
Thermal correction to	Enthalpy=
Thermal correction to	Gibbs Free Energy=
Sum of electronic and	zero-point Energies=
Sum of electronic and	thermal Energies=
Sum of electronic and	thermal Enthalpies=
Sum of electronic and	thermal Free Energies=

Н	3.857772000	-0.067203000	2.120546000
Н	4.273871000	-1.062304000	-1.320818000
Н	3.961234000	0.614337000	-1.978457000
С	3.124126000	0.254806000	0.048429000
Н	-2.480648000	-2.235244000	0.172744000
Н	-2.591909000	-1.447394000	-1.420222000
С	-3.282301000	-0.279295000	0.238607000
0	-3.589895000	-0.234862000	1.398878000
0	-3.695102000	0.615904000	-0.669113000
С	-4.521310000	1.664403000	-0.171154000
Н	-3.990843000	2.243506000	0.584903000
Н	-4.760228000	2.287420000	-1.028933000
Н	-5.431339000	1.258618000	0.270389000

0.271246 (Hartree/Particle)

0.286012	
0.286956	

-655.547191 -655.532425 -655.531481 -655.593565

E[(RO)wB97xD/def2TZVP] = -655.818436833

[*BS*]

i) (RO)B3LYP / def2tzvp

C	-0.170167000	-0.154611000	1.074570000
С	-0.170167000	-0.154654000	-1.074541000
Н	-0.746468000	2.249991000	-0.903869000
Н	-0.746471000	2.250025000	0.903804000
С	0.598445000	0.667617000	-0.000002000
Н	0.091362000	-1.208573000	1.153208000
Н	-0.284726000	0.313992000	2.054176000
Н	0.091364000	-1.208619000	-1.153138000
Н	-0.284728000	0.313910000	-2.054165000
С	2.049819000	1.067715000	-0.000014000
С	-1.229468000	0.229236000	0.000006000
С	-3.729355000	0.281980000	1.092741000
С	-4.443381000	-0.537268000	0.000004000
С	-3.729313000	0.281825000	-1.092819000
С	-3.289636000	-1.558610000	0.000099000

Zero-point correction=

Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

E[(RO)B3LYP/def2TZVP] = -656.088237183

ii) (RO)M06-2x / def2tzvp

С	0.616854000	1.675401000	0.000101000
С	0.153187000	-0.122481000	-1.071170000
С	0.153251000	-0.122554000	1.071279000
Н	0.770889000	2.261775000	0.907214000
Н	0.770839000	2.261837000	-0.906981000
С	-0.591385000	0.710184000	0.000104000

Н	-3.613279000	-0.188225000	2.067510000
Н	-3.978975000	1.339276000	1.161484000
Н	-3.613198000	-0.188517000	-2.067518000
Н	-3.978931000	1.339112000	-1.161722000
Η	-3.145310000	-2.143444000	-0.906368000
Н	-3.145347000	-2.143318000	0.906653000
С	-2.687482000	-0.117537000	0.000009000
Η	2.274992000	1.690891000	0.871321000
Η	2.274970000	1.690905000	-0.871345000
С	3.027288000	-0.088017000	-0.000045000
0	2.745181000	-1.258635000	-0.000068000
0	4.297343000	0.367759000	-0.000021000
С	5.326738000	-0.633820000	0.000079000
Н	6.265947000	-0.087439000	0.000326000
Н	5.249669000	-1.261972000	0.886986000
Н	5.250023000	-1.261752000	-0.887017000

0.271414 (Hartree/Particle) 0

	т <u>т</u>	(martre
0.285	622	
0.286	566	
0.227	498	
-	655	.816823
-	655	.802615
-	655	.801671
-	655	.860740

Η	-0.128148000	-1.171860000	-1.139916000
Н	0.278833000	0.347602000	-2.047902000
Н	-0.128081000	-1.171936000	1.139975000
Н	0.278958000	0.347466000	2.048034000
С	-2.038554000	1.111101000	0.000124000
С	1.205614000	0.245691000	0.000034000

С	3.685084000	0.254462000	-1.090632000	С	2.652635000	-0.127218000	-0.000046000
С	4.374372000	-0.576361000	-0.000159000	Н	-2.273473000	1.724750000	-0.874027000
С	3.685160000	0.254207000	1.090556000	Н	-2.273463000	1.724807000	0.874238000
С	3.208653000	-1.573422000	-0.000238000	С	-2.980302000	-0.067005000	0.000169000
Н	3.554558000	-0.217555000	-2.061797000	О	-2.659204000	-1.223461000	0.000406000
Н	3.953153000	1.306934000	-1.151374000	О	-4.258572000	0.338227000	-0.000208000
Н	3.554701000	-0.218034000	2.061620000	С	-5.230524000	-0.704961000	-0.000255000
Н	3.953235000	1.306664000	1.151524000	Н	-6.197478000	-0.210777000	-0.001249000
Н	3.050148000	-2.147686000	0.909671000	Н	-5.117768000	-1.329020000	-0.885993000
Н	3.050087000	-2.147467000	-0.910274000	Н	-5.119042000	-1.327887000	0.886445000
Zei	ro-point cor	rection=		0.27	4379 (Hartre	e/Particle)	
Tł	nermal corre	ction to Ene	ergy=	0.28	87592		
Tł	nermal corre	ction to Ent	thalpy=	0.28	88536		
Tł	nermal corre	ction to Gib	obs Free Energy=	0.23	32642		
Sı	um of electr	onic and zer	ro-point Energies=		-655.545620		
Sı	um of electr	onic and the	ermal Energies=		-655.532406		
Sı	um of electr	onic and the	ermal Enthalpies=		-655.531462		
Sı	um of electr	onic and the	ermal Free Energies=	=	-655.587357		
			_				
Ε[(RO)M06-2x/d	ef2TZVP] = ·	-655.819998096				

iii) (RO)ωB97xD / def2tzvp

С	0.608204000	1.662390000	0.000240000
С	0.162307000	-0.136583000	-1.070174000
С	0.162224000	-0.136983000	1.069945000
Н	0.757574000	2.254545000	0.905172000
Н	0.757653000	2.254889000	-0.904454000
С	-0.597948000	0.688878000	0.000009000
Н	-0.107885000	-1.188779000	-1.147344000
Н	0.282670000	0.331945000	-2.049168000
Н	-0.107982000	-1.189203000	1.146713000
Н	0.282517000	0.331194000	2.049116000
С	-2.043983000	1.086193000	0.000028000
С	1.218143000	0.237633000	-0.000003000
С	3.702161000	0.267218000	-1.088219000
С	4.413084000	-0.557709000	-0.000019000
С	3.701960000	0.266372000	1.088684000
С	3.245449000	-1.561255000	-0.000521000

Zero-point correction=

Thermal correction to	Energy=
Thermal correction to	Enthalpy=
Thermal correction to	Gibbs Free Energy=
Sum of electronic and	zero-point Energies=
Sum of electronic and	thermal Energies=
Sum of electronic and	thermal Enthalpies=
Sum of electronic and	thermal Free Energies=

E[(RO)wB97xD/def2TZVP] = -655.894962524

[Iodoacetate]

i) (RO)B3LYP/def2tzvp

١,	O Me			
С	0.261788000	0.873644000	0.850178000	
Н	0.027020000	1.929333000	0.793573000	
Н	0.286141000	0.512773000	1.872432000	
С	1.539972000	0.587545000	0.110722000	
0	2.022562000	1.317088000	-0.716244000	
0	2.081360000	-0.577116000	0.502471000	

Н	-2.273473000	1.724750000	-0.874027000
Н	-2.273463000	1.724807000	0.874238000
С	-2.980302000	-0.067005000	0.000169000
0	-2.659204000	-1.223461000	0.000406000
0	-4.258572000	0.338227000	-0.000208000
С	-5.230524000	-0.704961000	-0.000255000
Н	-6.197478000	-0.210777000	-0.001249000
Н	-5.117768000	-1.329020000	-0.885993000
Н	-5.119042000	-1.327887000	0.886445000

Н	3.576820000	-0.202003000	-2.062639000
Н	3.957623000	1.323364000	-1.157909000
Н	3.576438000	-0.203586000	2.062725000
Н	3.957411000	1.322463000	1.159234000
Н	3.091007000	-2.143030000	0.906524000
Н	3.091177000	-2.142313000	-0.908054000
С	2.662458000	-0.120363000	-0.000012000
Н	-2.272002000	1.704538000	-0.872823000
Н	-2.271983000	1.704490000	0.872918000
С	-3.001050000	-0.080154000	0.000031000
0	-2.699284000	-1.242190000	0.000070000
0	-4.270335000	0.349670000	-0.000070000
С	-5.270682000	-0.664434000	-0.000002000
Н	-6.223235000	-0.141340000	-0.000496000
Η	-5.182133000	-1.292476000	-0.886512000
Н	-5.182679000	-1.291759000	0.887074000

0.274507 (Hartree/Particle)

0.286840 0.287784 0.234565

-655.620456
-655.608123
-655.607179
-655.660398

С	3.291703000	-0.964454000	-0.170615000
Н	3.578179000	-1.914596000	0.270840000
Η	3.110244000	-1.076006000	-1.238915000
Н	4.068953000	-0.217349000	-0.015322000
Ι	-1.404956000	-0.153478000	-0.088946000
Zero-point correction=	0.080216 (Hartree/Particle)		
--	-----------------------------		
Thermal correction to Energy=	0.087324		
Thermal correction to Enthalpy=	0.088269		
Thermal correction to Gibbs Free Energy=	0.046202		
Sum of electronic and zero-point Energies=	-565.617726		
Sum of electronic and thermal Energies=	-565.610617		
Sum of electronic and thermal Enthalpies=	-565.609673		
Sum of electronic and thermal Free Energies=	-565.651740		

С

H H H

Ι

0.088456 0.089400 0.047799

 3.229944000
 -0.965973000
 -0.159871000

 3.524338000
 -1.910052000
 0.287721000

 3.031816000
 -1.088509000
 -1.223865000

 4.007819000
 -0.215708000
 -0.026847000

-1.377727000 -0.155973000 -0.088362000

0.081521 (Hartree/Particle)

-565.329021 -565.322086 -565.321141

-565.362743

E[(RO)B3LYP/def2TZVP] = -565.697941736

ii) (RO)M06-2x / def2tzvp

O I _____O_Me

С	0.236084000	0.902007000	0.837221000	
Н	0.008632000	1.957034000	0.747974000	
Н	0.264180000	0.570470000	1.869259000	
С	1.512790000	0.589780000	0.109713000	
0	2.000535000	1.292712000	-0.729372000	
0	2.038196000	-0.567904000	0.517691000	

Zero-point correction=

Thermal correction	to	Energy=	
Thermal correction	to	Enthalpy=	
Thermal correction	to	Gibbs Free Energy=	
Sum of electronic a	nd	zero-point Energies	=
Sum of electronic a	nd	thermal Energies=	
Sum of electronic a	nd	thermal Enthalpies=	
Sum of electronic a	nd	thermal Free Energie	es=

E[(RO)M06-2x/def2TZVP] = -565.410541279

iii) (RO)ωB97xD / def2tzvp

	0						
١~	Me						
С	0.243274000	0.865308000	0.847854000	С	3.263565000	-0.955221000	-0.169496000
Н	0.019407000	1.924658000	0.797810000	Н	3.565183000	-1.896484000	0.281075000
Н	0.279234000	0.508343000	1.872059000	Н	3.074768000	-1.085412000	-1.234909000
С	1.524623000	0.583672000	0.112011000	Н	4.037524000	-0.200195000	-0.034177000
0	2.001523000	1.309743000	-0.715030000	Ι	-1.390643000	-0.153262000	-0.089275000
0	2.065876000	-0.571064000	0.503466000				
Zero-point correction=					1345 (Hartre	e/Particle)	
Thermal correction to Energy=		0.0	88305	0,10101010)			
The	ermal correc	tion to Ent	halpy=	0.0	89249		
The	ermal correc	tion to Gib	bs Free Energy=	0.0	47648		
Sum	n of electro	onic and zer	o-point Energies=		-565.508705		
Sum of electronic and thermal Energies=				-565.501745			
Sum of electronic and thermal Enthalpies=				-565.500801			
Sum	n of electro	onic and the	rmal Free Energies=		-565.542402		
E[(F	RO)wB97xD/de	ef2TZVP] = -	565.590049775				

[**BI**[‡]]

i) (RO)B3LYP / def2tzvp

‡

CTO POTHC COTTCCCTOH	
Thermal correction to	Energy=
Thermal correction to	Enthalpy=
Thermal correction to	Gibbs Free Energy=
Sum of electronic and	zero-point Energies=
Sum of electronic and	thermal Energies=
Sum of electronic and	thermal Enthalpies=
Sum of electronic and	thermal Free Energies=

E[(RO)B3LYP/def2TZVP] = -1027.65535121

ii) (RO)M06-2x / def2tzvp

				. ‡
	MeO		ОМ	e
C	1 201112000	1 488620000	-0 6730130	00
C	0.778119000	0.123476000	-0.1367180	00
Н	1.050705000	1.662303000	-1.7357030	00
Η	0.970748000	2.349606000	-0.0502910	00
С	1.743138000	0.244368000	1.0404750	00
Н	2.089696000	-0.680225000	1.4910770	00
Н	1.541505000	1.041537000	1.7521090	00
С	1.837963000	-0.578551000	-0.9808900	00
Н	2.188411000	-1.543803000	-0.6299040	00
Η	1.719180000	-0.510307000	-2.0596870	000
С	2.451541000	0.662003000	-0.2769500	00
С	3.877833000	1.148295000	-0.4084060	00
Η	4.101540000	1.392289000	-1.4496190	00
Η	4.022633000	2.066428000	0.1656740	00
С	4.888128000	0.131507000	0.0638890	00
0	4.634302000	-0.958504000	0.4955630	00
Ze I	ero-point corr Thermal correc	rection= ction to Ene	ergy=	
ן. ת	nermal correc	tion to Ent	naipy=	En o marte
-1 C	nermar correc	stion to Gir	os rree .	Energy= Energiog-
2	oum or erectro	mic and zer	.o-point .	enerdres=

C	6.133156000	0.604627000	-0.061429000
C	7.170354000	-0.281919000	0.359260000
H	8.102009000	0.247997000	0.187084000
H	7.054731000	-0.524093000	1.414752000
H	7.138894000	-1.202710000	-0.221359000
Ι	-1.561752000	-0.574282000	0.020625000
0	-3.735871000	-1.288839000	0.103147000
H	-3.844076000	-1.664883000	1.112748000
ŀ	-3.795621000	-2.044295000	-0.669319000
C	-4.580384000	-0.112713000	-0.202056000
0	-4.973061000	0.192739000	-1.297381000
0	-4.848018000	0.607331000	0.901616000
C	-5.597335000	1.796484000	0.677664000
ŀ	-5.727694000	2.255613000	1.653297000
ŀ	-5.055127000	2.464284000	0.008608000
ŀ	-6.563293000	1.561255000	0.232049000

0.258004 (Hartree/Particle)

0.	. 2	7	6	1	7	6	
----	-----	---	---	---	---	---	--

0.277120

0.205009

-1026.916350

С	-4.673786000	-0.271212000	0.388466000
0	-5.103474000	0.690940000	-0.459860000
0	-4.978666000	-0.309850000	1.556760000
С	-5.930453000	1.707407000	0.120987000
Н	-6.174484000	2.386547000	-0.691734000
Η	-6.837207000	1.272123000	0.540637000
Н	-5.393291000	2.233276000	0.910214000
Н	4.265398000	1.740740000	-0.919090000
Н	4.157503000	1.867088000	0.819874000
С	5.024701000	0.053872000	0.128370000
0	4.770360000	-1.120000000	0.205778000
0	6.275355000	0.550613000	0.160160000
С	7.334621000	-0.413197000	0.295749000
Н	7.324919000	-1.109655000	-0.541731000
Н	8.254507000	0.164543000	0.302316000
Н	7.225217000	-0.970931000	1.224979000

0.254579 (Hartree/Particle) 0.273152 0.274097 0.200411

-1027.400773 -1027.382199 -1027.381255 -1027.454941

Sum	of	electronic	and	thermal	Energies=	-1026.898178
Sum	of	electronic	and	thermal	Enthalpies=	-1026.897234
Sum	of	electronic	and	thermal	Free Energies=	-1026.969344

‡

```
E[(RO)M06-2x/def2TZVP] = -1027.17435372
```

iii) (RO)ωB97xD / def2tzvp

Zero-point correction=

```
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
```

E[(RO) wB97 xD/def2TZVP] = -1027.40014630

[BI]

i) (RO)B3LYP / def2tzvp

M		\mathbf{Z}^{I}	
С	0.258404000	1.693043000	-0.414691000
С	0.787795000	0.293287000	-0.037303000
Н	0.493893000	2.502205000	0.275539000
Н	0.369446000	1.990139000	-1.457029000
С	-0.328285000	-0.329222000	-0.903724000
Н	-0.620334000	-1.348682000	-0.655830000
Н	-0.255522000	-0.167030000	-1.978499000
С	-0.180718000	0.283694000	1.165201000
Н	-0.472235000	-0.689049000	1.553793000
Н	0.024158000	1.001832000	1.957979000
С	-0.979078000	0.813070000	-0.063795000
7			

Zero-point correction=	
Thermal correction to	Energy=
Thermal correction to	Enthalpy=
Thermal correction to	Gibbs Free Energy=
Sum of electronic and	zero-point Energies=
Sum of electronic and	thermal Energies=
Sum of electronic and	thermal Enthalpies=

0	-5.046879000	1.106072000	0.808700000
С	-5.565727000	2.412578000	0.568510000
Н	-5.691397000	2.866505000	1.547573000
Η	-4.872388000	2.996001000	-0.036951000
Η	-6.522802000	2.352740000	0.050737000
Ι	1.524924000	-0.678817000	-0.074857000
С	3.791511000	-0.849946000	0.282429000
Η	4.142558000	-1.382127000	-0.594338000
Н	3.877780000	-1.411421000	1.203989000
С	4.335846000	0.520611000	0.418777000
0	4.493847000	1.100968000	1.461543000
0	4.623081000	1.057597000	-0.777990000
С	5.100472000	2.397284000	-0.755698000
Н	5.274739000	2.665428000	-1.794478000
Н	4.359657000	3.062103000	-0.310748000
Н	6.026620000	2.468213000	-0.184919000

0.258120 (Hartree/Particle)

```
0.276280
0.277224
0.204406
-1027.142026
-1027.123867
-1027.122923
-1027.195741
```

С	-2.423917000	1.269698000	-0.102076000
Н	-2.556371000	2.090656000	0.607425000
Н	-2.674214000	1.633748000	-1.098437000
С	-3.381025000	0.168324000	0.300473000
0	-3.401627000	-0.360991000	1.382359000
0	-4.212506000	-0.162454000	-0.706163000
С	-5.159884000	-1.206257000	-0.420685000
Н	-5.734901000	-1.335673000	-1.333245000
Н	-4.642721000	-2.128331000	-0.158349000
Н	-5.808893000	-0.915416000	0.404417000
Ι	2.853415000	-0.308692000	-0.012599000

0.177214 (Hartree/Particle) 0.187789 0.188733

0.100/33
0.138625
-759.659621
750 640045

```
-759.649045
-759.648101
```

Sum of electronic and thermal Free Energies=

-759.698209

-2.562868000

-2.692450000 1.567066000

-3.329199000 0.292666000

-3.532310000 0.122049000

-3.831420000 -0.496440000

-4.627339000 -1.586058000

-4.955247000 -2.116402000

-4.035299000 -2.238165000

-5.481020000 -1.215543000

2.745327000 -0.332373000

0.179593 (Hartree/Particle)

-759.295925 -759.284659 -759.283715

-759.336294

-2.433309000 1.364058000 -0.309087000

2.266049000

0.289047000

-1.347621000

0.255779000

1.426154000

-0.702992000

-0.237894000

-1.126676000

0.403109000

0.327722000

0.055494000

С

Η

Η

С

0

0

С

Н

Н

Н

Ι

0.190858 0.191802 0.139223

E[(RO)B3LYP/def2TZVP] = -759.836834643

ii) (RO)M06-2x / def2tzvp

M		← I	
С	0.262984000	1.674192000	-0.666596000
С	0.728906000	0.328282000	-0.093297000
Н	0.523660000	2.558646000	-0.087793000
Н	0.392294000	1.812565000	-1.738823000
С	-0.392711000	-0.368610000	-0.875975000
Н	-0.726960000	-1.328867000	-0.486004000
Н	-0.304933000	-0.357242000	-1.961009000
С	-0.239675000	0.518181000	1.082177000
Н	-0.570093000	-0.384815000	1.591124000
Н	-0.013948000	1.333653000	1.766832000
С	-0.997258000	0.896280000	-0.214502000
7.01		roation-	

Tero borne correction-	
Thermal correction to	Energy=
Thermal correction to	Enthalpy=
Thermal correction to	Gibbs Free Energy=
Sum of electronic and	zero-point Energies=
Sum of electronic and	thermal Energies=
Sum of electronic and	thermal Enthalpies=
Sum of electronic and	thermal Free Energies=

E[(RO)M06-2x/def2TZVP] = -759.475517295

iii) (RO) ω B97xD / def2tzvp

Me		Z					
С	0.258705000	1.639596000	-0.712429000	С	-2.434492000	1.334626000	-0.363660000
С	0.748749000	0.314215000	-0.095604000	Н	-2.561251000	2.269033000	0.183027000
Н	0.508578000	2.549130000	-0.166721000	Н	-2.677949000	1.494560000	-1.414194000
Н	0.390965000	1.752280000	-1.788228000	С	-3.365657000	0.312702000	0.237637000
С	-0.377710000	-0.410480000	-0.857794000	0	-3.651758000	0.250089000	1.402049000
Н	-0.706051000	-1.363060000	-0.443456000	0	-3.802879000	-0.557306000	-0.680797000
Н	-0.289713000	-0.439743000	-1.943413000	С	-4.634212000	-1.608077000	-0.192734000
С	-0.238228000	0.537855000	1.067630000	Н	-4.896921000	-2.205580000	-1.061469000
Н	-0.561995000	-0.349155000	1.609768000	Н	-4.096294000	-2.212535000	0.537564000
Н	-0.023990000	1.373166000	1.733147000	Н	-5.529922000	-1.201126000	0.275664000
С	-1.003550000	0.869708000	-0.241433000	Ι	2.761510000	-0.323587000	0.069031000
Zei	co-point cori	rection=		0.179)656 (Hartre	e/Particle)	
Tł	nermal correc	ction to Ene	rgy=	0.19	0925		
Tł	nermal correc	ction to Ent	halpy=	0.19	91869		
Tł	nermal correc	ction to Gib	bs Free Energy=	0.13	39120		
Sι	um of electro	onic and zer	o-point Energies=		-759.500345		
Sum of electronic and thermal Energies=					-759.489077		
Sum of electronic and thermal Enthalpies= -759.488132							
Sι	um of electro	onic and the	rmal Free Energies=		-759.540882		
E [(RO)wB97xD/de	ef2TZVP] = -	759.680001681				

[bromoacetate]

i) (RO)B3LYP / def2tzvp

	-		
С	-0.239416000	0.764828000	0.810731000
Η	-0.525659000	1.808834000	0.773000000
Η	-0.232650000	0.381608000	1.825712000
С	1.091832000	0.574950000	0.125093000
0	1.586366000	1.378992000	-0.620791000
0	1.653878000	-0.593484000	0.466144000

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

E[(RO)B3LYP/def2TZVP] = -2842.07755604

ii) (RO)M06-2x / def2tzvp

С	-0.255920000	0.790743000	0.794292000	С	2.860269000	-0.899337000	-0.156593000
Н	-0.535782000	1.834867000	0.723042000	Н	3.157032000	-1.868804000	0.230792000
Н	-0.247921000	0.438914000	1.820555000	Н	2.727673000	-0.939262000	-1.236786000
С	1.077248000	0.576948000	0.124515000	Н	3.605544000	-0.142208000	0.082996000
0	1.583830000	1.359879000	-0.627313000	Br	-1.611997000	-0.237196000	-0.142703000
0	1.619139000	-0.588849000	0.477403000				
Ze	ro-point com	rrection=		0.08	31842 (Hartr	ee/Particle)	
Th	ermal correc	ction to En	ergy=	0.08	38768		
Th	ermal correc	ction to En	thalpy=	0.08	39713		
Th	ermal correc	ction to Gi	bbs Free Energy=	0.04	8615		
Su	m of electro	onic and ze	ro-point Energies=	-	-2841.890676		
Su	m of electro	onic and th	ermal Energies=	-	-2841.883750		
Su	m of electro	onic and th	ermal Enthalpies=	-	-2841.882806		
Su	m of electro	onic and th	ermal Free Energies=	-	-2841.923903		

С

H H

Н

Br

0.087709 0.088653

0.047291

-2841.996891

-2841.989847

-2841.988903

-2842.030265

2.910011000 -0.895356000

3.201690000 -1.868737000

2.788982000 -0.928532000

3.654007000 -0.141770000

-1.639511000 -0.234343000

0.080665 (Hartree/Particle)

-0.166388000 0.217048000

-1.248347000

0.088503000

-0.143867000

E[(RO)M06-2x/def2TZVP] = -2841.97251788

iii) (RO)ωB97xD / def2tzvp

Br√	O Me						
С	-0.250718000	0.747946000	0.813236000	С	2.893003000	-0.880140000	-0.169274000
Н	-0.529636000	1.795237000	0.790321000	Н	3.212481000	-1.837144000	0.233292000
Н	-0.235596000	0.358148000	1.826312000	Н	2.758625000	-0.945539000	-1.248688000
С	1.081917000	0.568107000	0.128654000	Н	3.627409000	-0.106690000	0.053707000
0	1.565761000	1.371398000	-0.618324000	Br	-1.625688000	-0.232616000	-0.145148000
0	1.649314000	-0.588637000	0.467019000				
Zer	o-point corn	rection=		0.081	.656 (Hartre	e/Particle)	
Thermal correction to Energy=		0.08	0.088626				
Thermal correction to Enthalpy=		0.08	0.089570				
Th	ermal correc	ction to Gib	bs Free Energy=	0.048353			
Sum of electronic and zero-point Energies=		-	-2841.938664				
Su	m of electro	onic and the	rmal Energies=	-	2841.931694		
Su	m of electro	onic and the	rmal Enthalpies=	-	2841.930750		
Su	m of electro	onic and the	rmal Free Energies=	-	2841.971967		
E[(RO)wB97xD/de	ef2TZVP] = -	2842.02031976				

[BBr[‡]]

i) (RO)B3LYP / def2tzvp

‡

‡

Therma	al correction	n to	Energy=
Therma	al correction	n to	Enthalpy=
Therma	al correction	n to	Gibbs Free Energy=
Sum of	electronic	and	zero-point Energies=
Sum of	electronic	and	thermal Energies=
Sum of	electronic	and	thermal Enthalpies=
Sum of	electronic	and	thermal Free Energies=

E[(RO)B3LYP/def2TZVP] = -3304.02812337

ii) (RO)M06-2x / def2tzvp

				. ‡
Γ	0		Q	7
	Men			.
		∫Br⁻	OIV	le
Ċ	1.148735000	-1.61556400	0 1.055418	000
Č	1.574326000	-0.90357500	0 -0.965497	000
С	1.203019000	0.52825600	0.6413330	000
Н	0.914923000	-1.46549700	0 2.106519	000
Н	1.224564000	-2.66117800	0 0.766834	000
С	2.193341000	-0.65040200	0 0.436096	000
Н	1.731020000	-0.12213900	0 -1.701977	000
Η	1.672403000	-1.91306300	0 -1.357803	000
Η	1.341933000	1.38237800	0 -0.013839	000
Η	0.970514000	0.78655500	0 1.6718700	000
С	3.666234000	-0.64673000	0 0.777131	000
С	0.470289000	-0.67787100	0 0.062515	000
Br	-1.780739000	-0.71103900	0 -0.386870	0000
С	-3.849240000	-0.79511200	0 -0.806864	000
Η	-4.126037000	-1.81505300	0 -0.575521	000
Η	-3.910422000	-0.53352600	0 -1.855616	000
Ze	ro-point corr	ection=		
Т	hermal correc	tion to E	nerqy=	
Т	hermal correc	tion to E	nthalpy=	
Т	hermal correc	tion to G	ibbs Free	Energy=
S	um of electro	onic and z	ero-point	Energies=

С	-4.491952000	0.180305000	0.104597000
0	-4.484713000	1.420263000	-0.411573000
0	-4.946027000	-0.081685000	1.186972000
С	-5.018272000	2.429455000	0.439126000
Н	-4.937864000	3.360603000	-0.114069000
Н	-6.058889000	2.213935000	0.679378000
Η	-4.447535000	2.482533000	1.365704000
Н	3.809083000	-0.468656000	1.845523000
Н	4.110975000	-1.621209000	0.561544000
С	4.441630000	0.401934000	0.018008000
0	5.734648000	0.379881000	0.362687000
С	6.561745000	1.334329000	-0.302865000
Н	7.558493000	1.199366000	0.105602000
Η	6.558190000	1.152805000	-1.376748000
Н	6.201291000	2.344331000	-0.113219000
0	3.985356000	1.163296000	-0.789053000

0.258512 (Hartree/Particle)

\cap	27652	5
U.	. /. / 0.)/)

- 0.277469
- 0.206543

-3303.469478

С	-4.634513000	0.076627000	0.067035000
0	-4.708076000	1.351876000	-0.374985000
0	-5.110627000	-0.293783000	1.113905000
С	-5.362009000	2.277293000	0.502914000
Н	-5.324452000	3.238170000	-0.003517000
Н	-6.395054000	1.977228000	0.677825000
Н	-4.842421000	2.328838000	1.459610000
Н	3.836800000	-0.155308000	1.911100000
Н	4.122986000	-1.518824000	0.858775000
С	4.590421000	0.363518000	-0.007289000
0	5.865545000	0.341068000	0.424655000
С	6.803912000	1.122940000	-0.334726000
Η	7.763676000	0.980957000	0.153944000
Н	6.843464000	0.774821000	-1.366138000
Н	6.520165000	2.174609000	-0.323859000
0	4.222143000	0.990006000	-0.966739000

0.254820 (Hartree/Particle) 0.273290 0.274234

0.201810 -3303.773305 -3303.754835 -3303.753891 -3303.826314

Sum	of	electronic	and	thermal	Energies=	-3303.451466
Sum	of	electronic	and	thermal	Enthalpies=	-3303.450522
Sum	of	electronic	and	thermal	Free Energies=	-3303.521448

ŧ

```
E[(RO)M06-2x/def2TZVP] = -3303.72799004
```

iii) (RO)ωB97xD / def2tzvp

Zero-point correction=

```
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
```

E[(RO)wB97xD/def2TZVP] = -3303.82257154

[BBr]

i) (RO)B3LYP / def2tzvp

Me		Br	
С	0.848733000	1.553473000	-0.577444000
С	1.309689000	0.178588000	-0.056658000
Η	1.121575000	2.417268000	0.027658000
Н	0.973254000	1.736144000	-1.644261000
С	0.170850000	-0.479481000	-0.859512000
Н	-0.166354000	-1.453874000	-0.508917000
Н	0.251308000	-0.432629000	-1.944854000
С	0.345441000	0.334867000	1.136005000
Н	0.010204000	-0.579792000	1.619598000
Н	0.583225000	1.120175000	1.852132000
С	-0.429538000	0.771896000	-0.144666000
С	-1.852116000	1.284290000	-0.232840000
Н	-1.948623000	2.178488000	0.387218000
Н	-2.088689000	1.548339000	-1.263620000
С	-2.848138000	0.267510000	0.281713000

-0.064507000

-0.243451000

1.434699000

-0.713331000

-2.954748000

-3.598586000

0

С	-4.430319000	0.344491000	0.279146000
0	-4.494664000	1.321348000	-0.638666000
0	-4.734691000	0.496773000	1.433765000
С	-4.906226000	2.593263000	-0.151961000
Н	-4.912930000	3.254320000	-1.014732000
Н	-5.900487000	2.533519000	0.291107000
Н	-4.206754000	2.958332000	0.600597000
Н	4.025574000	-1.220574000	1.207058000
Н	4.161121000	-1.540408000	-0.506310000
С	4.389727000	0.501019000	0.021647000
0	5.714215000	0.408357000	0.183554000
С	6.445988000	1.622159000	0.024916000
Н	7.488852000	1.363034000	0.185301000
Н	6.303491000	2.028822000	-0.976098000
Н	6.121328000	2.361930000	0.756367000
0	3.823714000	1.524842000	-0.246459000

0.258409 (Hartree/Particle)

```
0.276352
0.277296
0.207130
-3303.564163
-3303.546220
-3303.545276
-3303.615442
```

С	-4.563459000	-1.236799000	-0.325600000
Н	-5.067636000	-1.527387000	-1.242971000
Н	-4.066686000	-2.093820000	0.127583000
Н	-5.273448000	-0.819460000	0.387364000
Br	3.148850000	-0.447881000	0.031604000

Zero-point correction=	0.177700 (Hartree/Particle)
Thermal correction to Energy=	0.189007
Thermal correction to Enthalpy=	0.189952
Thermal correction to Gibbs Free Energy=	0.137344
Sum of electronic and zero-point Energies=	-3036.041813
Sum of electronic and thermal Energies=	-3036.030505
Sum of electronic and thermal Enthalpies=	-3036.029561
Sum of electronic and thermal Free Energies=	-3036.082169

E[(RO)B3LYP/def2TZVP] = -3036.21951290

ii) (RO)M06-2x / def2tzvp

С	-0.255920000	0.790743000	0.794292000
Н	-0.535782000	1.834867000	0.723042000
Н	-0.247921000	0.438914000	1.820555000
С	1.077248000	0.576948000	0.124515000
0	1.583830000	1.359879000	-0.627313000
0	1.619139000	-0.588849000	0.477403000
С	2.860269000	-0.899337000	-0.156593000
Н	3.157032000	-1.868804000	0.230792000
Н	2.727673000	-0.939262000	-1.236786000
Н	3.605544000	-0.142208000	0.082996000
Br	-1.611997000	-0.237196000	-0.142703000

Zero-point correction=	0.081842 (Hartree/Particle)
Thermal correction to Energy=	0.088768
Thermal correction to Enthalpy=	0.089713
Thermal correction to Gibbs Free Energy=	0.048615
Sum of electronic and zero-point Energies=	-2841.890676
Sum of electronic and thermal Energies=	-2841.883750
Sum of electronic and thermal Enthalpies=	-2841.882806
Sum of electronic and thermal Free Energies=	-2841.923903

E[(RO)M06-2x/def2TZVP] = -2841.97251788

iii) (RO)ωB97xD / def2tzvp

E[(RO)wB97xD/def2TZVP] = -2842.02031976

11. X-ray Crystallography

Low temperature⁴⁰ single crystal X-ray diffraction data were collected with a (Rigaku) Oxford Diffraction SuperNova A diffractometer at 150 or 200 K. Data were reduced using the instrument manufacturer software CrysAlisPro. All structures were solved *ab initio* using SuperFlip⁴¹ and the structures were refined using CRYSTALS.^{42,43}

Structure **5m** contained solvent accessible voids comprising of weak, diffuse electron density. The discrete Fourier transforms of the void regions were treated as contributions to the A and B parts of the calculated structure factors using PLATON/SQUEEZE^{44,45} integrated within the CRYSTALS software. This enabled a comparison of models, one of which contained the disordered solvent, the other without.

Further details about the refinements, including disorder modelling and restraints, are documented in the CIF. The crystallographic data have been deposited with the CCDC as entries CCDC 1825056–1825060.

 Table S3 Summary of X-ray crystallographic data

Compound Number	5m	5r	58	6b	17
Moiety Formula	C ₈ H ₁₂ NOI, 0.5 (CHCl ₃)	$C_{12}H_{12}NO_2I$	$C_{13}H_{12}F_{3}I$	C ₈ H ₁₁ NO ₂ Br	C ₂₁ H ₃₀ N ₂ O
CCDC	1825056	1825057	1825058	1825059	1825060
Space Group	C 2/c	P 2 ₁ /c	P -1	P -1	P 2 ₁ /n
a [Å]	25.6568(11)	12.8692(2)	5.6020(3)	7.0213(3)	14.7270(3)
b [Å]	9.9841(3)	8.45340(10)	8.9978(5)	11.7894(5)	5.77560(10)
c [Å]	9.9880(4)	11.4743(2)	13.3874(9)	12.2156(5)	21.9219(5)
α [°]	90	90	95.953(5)	72.797(4)	90
β [°]	95.639(4)	99.0055(15)	98.695(5)	86.293(4)	92.4149(18)
γ [°]	90	90	98.785(5)	89.879(3)	90
V [Å ³]	2546.14(17)	1232.88(3)	653.64(7)	963.76(7)	1862.96(7)
Ζ	8	4	2	4(Z' = 2)	4
T [K]	150	150	200	150	150
Total Reflections	12571	26750	5134	16923	19286
R _{int}	0.0490	0.0654	0.0320	0.0503	0.0229
Reflections, Restraints, Parameters (I>-3.0/ σ (I))	2659, 347, 173	2575, 0, 145	2661, 555, 211	3998, 948, 311	3885, 462, 263
Min. and Max. Residual Density, [eÅ ⁻³]	-1.44, 1.34	-0.99, 0.86	-0.94, 0.76	-0.68, 0.52	-0.22, 0.22
$\begin{array}{l} R_1 \left(I {\geq} 2 \sigma(I) \right) \\ w R_2 \end{array}$	0.0399 0.1071	0.0274 0.0756	0.0358 0.0947	0.0328 0.0824	0.0377 0.0948

Figure S2: Solid state structure of **5m**. Displacement ellipsoid plots are drawn at 50% probability. Hydrogen atoms and disordered solvent molecules are omitted for clarity.

Figure S3: Solid state structure of **5r**. Displacement ellipsoid plots are drawn at 50% probability. Hydrogen atoms are omitted for clarity.

Figure S4: Solid state structure of **5s**. Displacement ellipsoid plots are drawn at 50% probability. Hydrogen atoms and disordered components are omitted for clarity.

Figure S5: Solid state structure of **6b**. Displacement ellipsoid plots are drawn at 50% probability. Hydrogen atoms and disordered components are omitted for clarity.

Figure S6: Solid state structure of **17**. Displacement ellipsoid plots are drawn at 50% probability. Hydrogen atoms and disordered components are omitted for clarity.

12. References

- (1) Zhou, X. M.; Wang, Z. Q.; Chang, J. Y.; Chen, H. X.; Cheng, Y. C.; Lee, K. H. J. Med. *Chem.* **1991**, *34*, 3346.
- (2) Yin, G.; Gao, M.; She, N.; Hu, S.; Wu, A.; Pan, Y. Synthesis 2007, 3113.
- Gianatassio, R.; Lopchuk, J. M.; Wang, J.; Pan, C.-M.; Malins, L. R.; Prieto, L.; Brandt, T. A.; Collins, M. R.; Gallego, G. M.; Sach, N. W.; Spangler, J. E.; Zhu, H.; Zhu, J.; Baran, P. S. Science 2016, 351, 241.
- (4) Messner, M.; Kozhushkov, S. I.; de Meijere, A. Eur. J. Org. Chem. 2000, 1137.
- (5) Messner, M.; Kozhushkov, S. I.; de Meijere, A. Eur. J. Org. Chem. 2000, 1137.
- (6) Koseki, Y.; Yamada, H.; Usuki, T. Tetrahedron: Asymm. 2011, 22, 580.
- (7) Lei, L.; Tanishima, M.; Goto, A.; Kaji, H.; Yamaguchi, Y.; Komatsu, H.; Jitsukawa, T.; Miyamoto, M. *Macromolecules* **2014**, *47*, 6610.
- (8) Liu, Y.; Xu, Y.; Jung, S. H.; Chae, J. Synlett 2012, 2692.
- (9) Hunter, C.; Jackson, R. F. W.; Rami, H. K. J. Chem. Soc., Perkin Trans. 1 2000, 219.
- (10) Prebil, R.; Stavber, S. Tetrahedron Lett. 2014, 55, 5643.
- (11) Aydin, O.; Kilic, H.; Bayindir, S.; Erdogan, E.; Saracoglu, N. J. Heterocyc. Chem. 2015, 52, 1540.
- (12) Jereb, M.; Stavber, S.; Zupan, M. Synthesis 2003, 853.
- (13) Pospíšil, J.; Robiette, R.; Sato, H.; Debrus, K. Org. Biomol. Chem. 2012, 10, 1225.
- (14) Danner, P.; Morkunas, M.; Maier, M. E. Org. Lett. 2013, 15, 2474.
- (15) Ikubo, M.; Inoue, A.; Nakamura, S.; Jung, S.; Sayama, M.; Otani, Y.; Uwamizu, A.; Suzuki, K.; Kishi, T.; Shuto, A.; Ishiguro, J.; Okudaira, M.; Kano, K.; Makide, K.; Aoki, J.; Ohwada, T. J. Med. Chem. 2015, 58, 4204.
- (16) Ding, R.; He, Y.; Wang, X.; Xu, J.; Chen, Y.; Feng, M.; Qi, C. *Molecules* 2011, 16, 5665.
- (17) Sakai, N.; Matsushita, Y.; Konakahara, T.; Ogiwara, Y.; Hirano, K. *Eur. J. Org. Chem.* **2015**, 1591.
- (18) Fuson, R. C. J. Am. Chem. Soc. 1926, 48, 830.
- (19) Guisán Ceinos, M.; Soler Yanes, R.; Collado Sanz, D.; Phapale, V. B.; Buñuel, E.; Cárdenas, D. J. Chem. Eur. J. 2013, 19, 8405.
- (20) Wolfe, S.; Ro, S.; Kim, C.-K.; Shi, Z. Can. J. Chem. 2001, 79, 1238.
- (21) Curran, D. P.; Bosch, E.; Kaplan, J.; Newcomb, M. J. Org. Chem. 1989, 54, 1826.
- (22) Izumisawa, Y.; Togo, H. Green Sust. Chem. 2011, 1, 54.
- (23) Paul, B.; Bhuyan, B.; Purkayastha, D. D.; Dhar, S. S.; Patel, B. K. *Tetrahedron Lett.* **2015**, *56*, 5646.
- (24) Suryakiran, N.; Reddy, T. S.; Ashalatha, K.; Lakshman, M.; Venkateswarlu, Y. *Tetrahedron Lett.* **2006**, *47*, 3853.
- (25) Suryakiran, N.; Prabhakar, P.; Srikanth Reddy, T.; Chinni Mahesh, K.; Rajesh, K.; Venkateswarlu, Y. *Tetrahedron Lett.* **2007**, *48*, 877.
- (26) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.

- (27) Haugland, M. M.; El-Sagheer, A. H.; Porter, R. J.; Peña, J.; Brown, T.; Anderson, E. A.; Lovett, J. E. J. Am. Chem. Soc. **2016**, 138, 9069.
- (28) Seamon, K. J.; Hansen, E. C.; Kadina, A. P.; Kashemirov, B. A.; McKenna, C. E.; Bumpus, N. N.; Stivers, J. T. *J. Am. Chem. Soc.* **2014**, *136*, 9822.
- (29) Sun, Q.; Sun, J.; Gong, S.-S.; Wang, C.-J.; Pu, S.-Z.; Feng, F.-D. RSC Adv. 2014, 4, 36036.
- (30) Wegert, A.; Kühnert, S.; Koenigs, R. M.; Nolte, B.; Linz, K.; Harlfinger, S.; Kögel, B.-Y.; Ratcliffe, P.; Theil, F.; Gröger, O.; Braun, B. World Intellectual Property Organization January 21, 2016, pp C07D209/96AI; A61K31/403AI; A61P29/00AI.
- (31) Pu, Y. J.; Vaid, R. K.; Boini, S. K.; Towsley, R. W.; Doecke, C. W.; Mitchell, D. Org. Proc. Res. Dev. 2009, 13, 310.
- (32) Brine, G. A.; Boldt, K. G.; Huang, P. T.; Sawyer, D. K.; Carroll, F. I. *J. Heterocyc. Chem.* **1989**, *26*, 677.
- (33) Gupta, P. K.; Yadav, S. K.; Bhutia, Y. D.; Singh, P.; Rao, P.; Gujar, N. L.; Ganesan, K.; Bhattacharya, R. *Med. Chem. Res.* **2012**, *22*, 3888.
- (34) Sudo, M.; Iwata, Y.; Arano, Y.; Jinno, M.; Ohmi, M.; Noguchi, H. World Intellectual Property Organization September 2, 2010, pp C07D401/14AI; A61K31/454AI; A61K31/497AI; A61P1/04AI; A61P1/06AI; A61P43/00AI; C07D401/04AI.
- (35) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- (36) A. D. Becke, *Phys. Rev. A* 1988, *38*, 3098; A. D. Becke, *J. Phys. Chem.* 1993, *98*, 5648; C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, *37*, 785.
- (37) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- (38) J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 2009, 131, 174105.
- (39) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- (40) Cosier, J.; Glazer, A. M.; IUCr. J. Appl. Crystallogr. 1986, 19, 105.
- (41) Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786.
- (42) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. *Crystallogr.* **2003**, *36*, 1487.
- (43) Cooper, R. I.; Thompson, A. L.; Watkin, D. J. J. Appl. Crystallogr. 2010, 43, 1100.
- (44) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
- (45) van der Sluis, P.; Spek, A. L.; IUCr. Acta Cryst. Sect A Found. Crystallogr. 1990, 46, 194.

12. Copies of NMR spectra

1-Bromo-3-(2-nitropropan-2-yl)bicyclo[1.1.1]pentane, 6b

Ethyl 2,2-difluoro-2-(3-iodobicyclo[1.1.1]pentan-1-yl)acetate, 5b

 1 **H NMR** (400 MHz, C₆D₆)

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)ethan-1-ol, 5d

¹H NMR (400 MHz, CDCl₃)

tert-Butyl (2-(3-iodobicyclo[1.1.1]pentan-1-yl)ethyl)carbamate, 5e

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)-1-phenylethan-1-one, 5f

1-(Furan-2-yl)-2-(3-iodobicyclo[1.1.1]pentan-1-yl)ethan-1-one, 5g

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)-1-(1*H*-pyrrol-2-yl)ethan-1-one, 5h

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)-1-(thiophen-2-yl)ethan-1-one, 5i

1-(Benzofuran-2-yl)-2-(3-iodobicyclo[1.1.1]pentan-1-yl)ethan-1-one, 5j

tert-Butyl 3-(2-(3-iodobicyclo[1.1.1]pentan-1-yl)acetyl)-1H-indole-1-carboxylate, 5k

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)acetamide, 5l

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)propanamide, 5m

2-(3-Iodobicyclo[1.1.1]pentan-1-yl)-3-phenylpropanal, 50

Methyl (R)-2-((tert-butoxycarbonyl)amino)-3-(3-iodobicyclo[1.1.1]pentan-1-yl)propanoate, 5p

Methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3-iodobicyclo[1.1.1]pentan-1-yl)propanoate, 5p BocHN _COOMe ¹H NMR (400 MHz, CDCl₃) ---7.26 CDCB -3.73 88 5 8 8 8 F 1.183 ſ ¹⁷¹ 6.00 1.23 1.01 9.58 2.0 7.0 6.5 2,5 1.5 -0.5 -1 9.5 9.0 8.5 8.0 7.5 1.0 0.5 0.0 -172.81 -00.99 --34.55 22.03
 45.53
 45.53 -6.40 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 ò -10 -20

1-(chloromethyl)-3-iodobicyclo[1.1.1]pentane, 5q

S106

1-Iodo-3-(4-(trifluoromethyl)benzyl)bicyclo[1.1.1]pentane, 5s

¹⁹**F NMR** (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

1-(3,5-Bis(trifluoromethyl)benzyl)-3-iodobicyclo[1.1.1]pentane, 5t

¹⁹**F NMR** (377 MHz, CDCl₃)

2-((3-Iodobicyclo[1.1.1]pentan-1-yl)methyl)benzonitrile, 5u

¹**H NMR** (400 MHz, CDCl₃)

Dimethyl 2-(3-bromobicyclo[1.1.1]pentan-1-yl)malonate, 6c

¹**H NMR** (400 MHz, CDCl₃)

Diethyl 2-(3-bromobicyclo[1.1.1]pentan-1-yl)-2-methylmalonate, 6d

2-(3-Bromobicyclo[1.1.1]pentan-1-yl)-1,3-diphenylpropane-1,3-dione, 6e

2-(3-Bromobicyclo[1.1.1]pentan-1-yl)-1-phenyl-2-tosylethan-1-one, 6f

2-(Bicyclo[1.1.1]pentan-1-yl)acetamide, 9l

Methyl (S)-3-(bicyclo[1.1.1]pentan-1-yl)-2-((tert-butoxycarbonyl)amino)propanoate, 9p

2-(Bicyclo[1.1.1]pentan-1-yl)ethan-1-aminium 2,2,2-trifluoroacetate, 9e

¹**H NMR** (400 MHz, CD₃OD)

2-(Bicyclo[1.1.1]pentan-1-yl)acetic acid, 9a

Phenyl(3-(4-(trifluoromethyl)benzyl)bicyclo[1.1.1]pentan-1-yl)methanol, 11

3-(4-(Trifluoromethyl)benzyl)bicyclo[1.1.1]pentane-1-carbaldehyde, 12

3-(4-(trifluoromethyl)benzyl)bicyclo[1.1.1]pentan-1-ol, 14

1-((2*R*,3*R*,4*S*,5*R*)-4-((*tert*-butyldimethylsilyl)oxy)-5-(hydroxymethyl)-3-(3-iodobicyclo[1.1.1] pentan-1-yl)tetrahydrofuran-2-yl)pyrimidine-2,4(1*H*,3*H*)-dione, 5w

(nOe enhancements indicated in green)

1-((2*R*,3*S*,4*S*,5*R*)-4-((*tert*-butyldimethylsilyl)oxy)-5-(hydroxymethyl)-3-(3-iodobicyclo[1.1.1] pentan-1-yl)tetrahydrofuran-2-yl)pyrimidine-2,4(1*H*,3*H*)-dione, 5w'

(nOe enhancements indicated in green)

¹**H NMR** (400 MHz, CD₃OD)

1-((2*R*,3*R*,4*S*,5*R*)-3-(bicyclo[1.1.1]pentan-1-yl)-4-((*tert*-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1*H*,3*H*)-dione, 9w

Boc-Asp(Ot-Bu)-β-(3-iodobicyclo[1.1.1]pentan-1-yl)Ala-OMe, 5x

Boc-Asp(Ot-Bu)-β-(bicyclo[1.1.1]pentan-1-yl)Ala-OMe, 9x

2-(3-iodobicyclo[1.1.1]pentan-1-yl)ethyl 4-methylbenzenesulfonate, 5y

S138

2-(bicyclo[1.1.1]pentan-1-yl)ethyl 4-methylbenzenesulfonate, 9y

N-(1-(2-(bicyclo[1.1.1]pentan-1-yl)ethyl)piperidin-4-yl)-*N*-phenylpropionamide, (BCP-fentanyl), 18

S141

tert-Butyl (2-iodoethyl)carbamate, 7e

tert-Butyl 2-acetyl-1H-pyrrole-1-carboxylate, S1

2-Iodo-1-(1*H*-pyrrol-2-yl)ethan-1-one, 7h

1-(Benzofuran-2-yl)-2-iodoethan-1-one, 7j

tert-Butyl 3-acetyl-1H-indole-1-carboxylate, S2

tert-Butyl 3-(2-iodoacetyl)-1H-indole-1-carboxylate, 7k

¹**H NMR** (400 MHz, CD₃OD) 4.56 4.58 4.55 4.55 $\begin{pmatrix}
1.88 \\
1.86 \\
1.85
\end{pmatrix}$ 3.12H 1.00H 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 f1 (ppm) 1.5 0.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 2.0 1.0 0.0 -0.5 -1

¹³**C NMR** (101 MHz, CD₃OD)

Methyl (R)-2-((tert-butoxycarbonyl)amino)-3-iodopropanoate, 7p

¹H NMR (400 MHz, CDCl₃)

¹³**C NMR** (101 MHz, CDCl₃)

4-Nitrobenzyl iodide, 7r

1-(Iodomethyl)-4-(trifluoromethyl)benzene, 7s

¹⁹**F NMR** (377 MHz, CDCl₃)

1-(Iodomethyl)-3,5-bis(trifluoromethyl)benzene,7t

¹⁹**F NMR** (377 MHz, CDCl₃)

 \succ

Dimethyl bromomalonate, 8c

Diethyl 2-bromo-2-methylmalonate, 8d

2-Bromo-1-phenyl-2-tosylethan-1-one, 8f

3'-5'-O-di(tert-butyldimethylsilyl)-2'-iodo-2'-deoxyuridine, S5

3'-O-(tert-butyldimethylsilyl)-2'-iodo-2'-deoxyuridine, 7w

¹H NMR (400 MHz, CDCl₃) -2.46 1.74 3.00-1.84 191 1.881 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 f1 (ppm) 8.0 7.5 7.0 6.5 1.5 0.5 -0.5 9.5 9.0 8.5 2.0 1.0 0.0 -1 ¹³C NMR (101 MHz, CDCl₃) -77.16 CDCE 122.83 -69.74 --1.33

I OTs

70 60

80

50

40 30

10

ò

20

-10 -20

170 160 150 140 130 120 110 100 90 f1 (ppm)

220 210 200

190 180

Boc-Asp(O-tBu)-Ser-OMe, 15

N-(1-benzylpiperidin-4-yl)-N-phenylpropionamide, S7

N-phenyl-N-(piperidin-4-yl)propionamide, 17

