Electronic Supplementary Information (ESI)

Table of Contents

1. Experimental section	S2
1.1 General	S2
1.2 Synthetic procedures and characterization data	S3
2. Data analysis for the bowl inversion barrier	S7
3. ESR data	S12
4. Additional spectra	S14
5. DFT calculations	S18
6. X-ray crystallographic data	S53
7. Appendix: NMR spectra and HR mass spectra	
8. References	S60

1. Experiment Section

1.1 General

All reagents and starting materials were obtained from commercial suppliers and used without Anhydrous *N*,*N*-dimethylformamide further purification. (DMF) and dichloromathane (DCM) were distilled from CaH2. Anhydrous toluene and THF were distilled from sodium-benzophenone immediately prior to use. The compound 1 was synthesized according to the literature.¹ The ¹H NMR and ¹³C NMR spectra were recorded in deuterated solvents on Bruker DPX 300/400/500 NMR spectrometers with tetramethylsilane (TMS) as the internal standard. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet. HR-APCI mass spectra (MS) were recorded on a Bruker amazonX instrument. EI mass spectra were recorded on Agilent 5975C DIP/MS mass spectrometer. The solvents used for UV-vis and PL measurements are of HPLC grade (Merck). The electrochemical measurements were carried out in anhydrous 1,2-dichlorobenzene with 0.1 M tetra-*n*-butylammonium perchlorate $(n-Bu_4NClO_4)$ as the supporting electrolyte at 50 °C under the protection of nitrogen. A gold disk was used as working electrode, platinum wire was used as counting electrode, and Ag/AgCl (3M KCl solution) as reference electrode. The potential was externally calibrated against the ferrocene/ferrocenium couple. Steady-state UV-vis absorption were recorded on a Shimadzu UV-1700 and UV-3600 spectrometer. Continuous wave X-band ESR spectra were obtained with a JEOL (FA200) spectrometer.

A Quantum Design 7 Tesla SQUID-VSM system was available for the magnetic measurements in this work. Powder sample of **Cor-D2** with a weight of 5-10 mg was sealed in a plastic capsule. Magnetic moment was measured in the temperature range of 2 to 300 K. The empty plastic capsule exhibited diamagnetic and its magnetic moment was measured for correction. After correction of diamagnetic contributions from the sample, using tabulated constants, sample holder and paramagnetic contamination, the magnetic data were fitted with Bleaney-Bowers equation:

$$\chi_M T = \frac{2N\beta^2 g^2}{k_B [3 + exp(-2J/k_B T)]}$$

where, -2J is correlated to the excitation energy from the singlet ground state to the triplet excited state.

1.2. Synthetic procedure and characterization data

1-Bromo-2-methoxycorannulene (2)

N-bromosuccinimide (NBS, 358.0 mg) was added to a solution of compound **1** (500.0 mg, 1.78 mmol) and *i*-Pr₂NH (18 mg) in DCM. The mixture was stirred for 15 min until the starting material **1** was consumed completely, and then quenched with 100 mL H₂O. The mixture was extracted with DCM for three times, and the organic phase was washed with brine for three times and dried over Mg₂SO₄. The solvent was removed under reduce pressure and the residue was purified with silica gel chromatography to give pure compound **2** in 85% yield. ¹H NMR (CDCl₃, 300 MHz): δ ppm 7.90 (1H, d, *J* = 8.7 Hz), 7.88 (1H, d, *J* = 8.8 Hz), 7.80-7.73 (6H, m), 4.34 (3H, s). ¹³C NMR (CDCl₃, 125 MHz): δ ppm 158.48, 136.39, 136.29, 136.17, 134.90, 133.10, 131.26, 130.91, 130.84, 129.38, 127.36, 127.33, 126.99, 126.78, 126.66, 126.58, 125.76, 124.32, 123.66, 102.58, 55.97. HR-MS (APCI): *m/z* = 359.0066, calcd. For C₂₁H₁₂BrO [M+1]⁺: *m/z* = 359.0072, error = -1.67 ppm.

1-Methoxy-corannulene-2-pinacol boronate (3)

A solution of *n*-BuLi in *n*-hexane (2.10 M, 0.32 mL, 1.20 equiv.) was added dropwise into a solution of compound **2** (2.0 g, 5.60 mmol) in 50.0 mL dry THF under nitrogen. The mixture was stirred for 3hrs at -78 °C, then 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.50 g, 8.30 mmol) was added. The reaction mixture was warmed to rt and stirred overnight. The reaction was quenched by water at 0 °C, and was extracted with DCM. The organic layer was washed with brine for three times and dried over Mg₂SO₄. The solvent was removed and the residue was purified with column chromatography to give compound **3** as a white solid (1.6 g, 70% yield). ¹H NMR (CDCl₃, 300 MHz): δ ppm 8.12 (1H, d, *J* = 6.6 Hz), 7.94 (1H, d, *J* = 6.3 Hz), 7.83-7.76 (6 H, m), 4.34 (3H, s), 1.48 (12 H, s). ¹³C NMR (CDCl₃, 125 MHz): δ ppm 164.80, 138.46, 136.42, 135.88, 135.66, 135.32, 132.63, 131.39, 130.83, 130.05, 128.30, 127.75, 127.16, 127.12, 126.80, 126.74, 126.25, 125.55, 124.00, 83.76, 64.34, 25.01. HR-MS (APCI): *m/z* = 407.1818, calcd. For C₂₇H₂₄BO₃ [M+1]⁺: *m/z* = 407.1819, error = -0.25 ppm.

Compound Cor-D1

A mixture of compound **3** (518 mg, 1.28 mmol), 2,5-dibromoterephthalaldehyde (**4**, 150.0 mg, 0.51 mmol), K_2CO_3 (1.80 g, 13.0 mmol), $Pd(PPh_3)_4$ (59.0 mg, 0.051 mmol) in toluene/EtOH/H₂O (2/1/1) (16 mL) was stirred at 110 °C for 24 hrs under nitrogen. After cooling down, the mixture was extracted with DCM for three times and the organic phase was washed with brine for three times, dried with anhydrous MgSO₄. The solvent was removed under vacuum and the residue was poor so that intermediate dialdehyde compound **6a** was used directly to the next step without purification. Mesitylmagnesium bromide (1.0 M, 1.0 mL) was added to the 15.0 mL dry THF solution of compound **6a** (0.07 g, 0.10 mmol) under argon atmosphere and the solution was stirred at room temperature overnight. The reaction mixture was quenched by water and extracted by dichloromethane. The organic layer

was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude compound was then dissolved in 20.0 mL dry DCM under argon atmosphere and 0.2 mL of BF₃·OEt₂ was added. The mixture was stirred for 5 minutes and quenched by methanol. The solvent was removed under reduced pressure. DDQ (0.0227 g, 0.10 mmol) was added dropwise to the 20.0 mL dry toluene solution of the cyclized intermediate compound 7a and the reaction mixture was heated to 80 °C for half hour. The solvent was remvoed and the the residue was purified by column chromatography (silica gel, DCM/hexane (1/1, v/v) as eluent) to give compound Cor-D1 (13.0 mg, 15% yield in three steps) as a dark black solid. HR-MS (APCI): m/z = 893.3419, calcd. For C₆₈H₄₅O₂ [M+1]⁺: m/z = 893.3414, error = -0.5 ppm. ¹H NMR (THF- d_8 /CS₂ = 2:1, v/v, 400 MHz, rt): δ ppm 8.49 (2H, s), 7.90 (2H, d, J = 8.8 Hz), 7.78 (2H, d, J = 8.9 Hz), 7.72 (4H, s), 7.65 (2H, d, J = 8.8 Hz), 7.56 (2 H, d, J = 8.8 Hz), 7.21 (4H, br), 7.03 (2H, s), 3.86 (6H, s), 2.54 (6H, s). Clear ¹³C NMR spectrum could not be obtained due to the poor solubility of the compound. HR-MS (APCI): m/z = 893.3419, calcd. For $C_{68}H_{45}O_2 [M+1]^+$: m/z = 893.3414, error = -0.5 ppm. The dianion of **Cor-D1** was prepared by reduction with 2.1 equivalent of freshly prepared sodium anthracenide in anhydrous THF-d₈ in a J-Y NMR tube. ¹H NMR (THF-d₈, 300 MHz, rt): δ ppm 9.37 (2H, s), 7.80 (2H, d, J = 8.6 Hz), 7.56 (2H, d, J = 9.0 Hz), 7.27 (2H, d, J = 7.8 Hz), 7.15-7.05 (10H, m), 6.95 (2 H, d, *J* = 9.1 Hz), 2.48 (6H, s).

Compound Cor-D2

A mixture of compound **3** (518 mg, 1.28 mmol), 3,7-diformylnaphthalene-2,6-diyl bis(trifluoromethanesulfonate)² (**5**, 240 mg, 0.50 mmol), K_2CO_3 (1.80 g, 13.0 mmol), Pd(PPh₃)₄ (59.0 mg, 0.051 mmol) in toluene/EtOH/H₂O (2/1/1) (16 mL) was stirred at 110 °C

for 24 hrs under nitrogen. After cooling, the mixture was extracted with DCM for three times, and the organic phase was washed with brine for three times, dried over anhydrous MgSO₄. The solvent was removed under vacuum to give a solid residue, which was washed with DCM and hexane and dried under vacuum. The solubility of intermediate dialdehye compound **6b** was very poor so it was used directly to the next step without purification. Mesitylmagnesium bromide (1.0 M, 1.0 mL) was added to the 15.0 mL dry THF solution of compound **6b** (74.0 mg, 0.10 mmol) under argon atmosphere, and the solution was stirred at room temperature overnight. The reaction mixture was quenched by water and extracted by DCM. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude compound was then dissolved in 20.0 mL dry DCM under argon atmosphere and 0.2 mL of BF₃·OEt₂ was added. The mixture was stirred for 5 minutes and quenched by methanol. The solvent was removed under reduced pressure. DDQ (0.0227 g, 0.10 mmol) was added to the 20.0 mL dry toluene solution of intermediate cyclized product 7b, and the reaction mixture was heated to 80 °C for half hour. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, DCM/hexane (1/1, v/v) as eluent) to give compound Cor-D2 (18.0 mg, 19% yield in three steps) as a dark black solid. ¹H NMR (THF- d_8 , 400 MHz, rt): δ ppm 8.70 (2H, s), 8.04 (2H, d, J = 8.9 Hz), 7.83 (2H, d, J = 8.9 Hz), 7.73 (4H, s), 7.65 (2H, d, J = 8.8 Hz), 7.53 (2H, d, J = 8.8 Hz), 7.15 (4H, br), 7.09 (2 H, s), 6.94 (2H, s), 4.19 (6H, s), 2.52 (6H, s). Clear ¹³C NMR spectrum could not be obtained due to the poor solubility of the compound. HR-MS (APCI): m/z = 943.3572, calcd. For C₇₂H₄₆O₂ [M+1]⁺: m/z = 943.3571, error = -0.2 ppm. The dianion of Cor-D2 was prepared by reduction with 2.1 equivalent of freshly prepared sodium anthracenide in anhydrous THF- d_8 in a J-Y NMR tube. ¹H NMR (THF- d_8 , 400 MHz, rt): δ ppm 9.77 (2H, s), 8.09 (2H, d, J = 8.1 Hz), 7.77 (2H, d, J = 9.0 Hz), 7.72-7.72 (4H, m), 7.61 (2H, d, *J* = 7.9 Hz), 7.17 (4 H, s), 4.04 (6H, s), 2.48 (6H, s).

2. Data analysis for the bowl inversion barrier

VT ¹H NMR spectra of Cor-D1 and Cor-D2 were recorded in CDCl₃ from 245 K to 335 K. The bowl inversion exchange rate constant k was estimated based on the line-shape change of the protons a in the central benzene/naphthalene rings.³ The exchange rate constant k was calculated by individual equation: (1) At slow exchange temperature ($T < T_c$), two peaks are separated enough, then $k = \pi [(\Delta V_e)_{1/2} - (\Delta V_0)_{1/2}]$. (2) At coalescence temperature (T = T_c), k = $\pi \Delta V_0/2^{1/2}$. In these equations, ΔV is the difference in chemical shift (Hz) between two correlated peaks at one temperature in the slow exchange region. ΔV_0 is defined as the value of ΔV at no exchange temperature (at which the two peaks are mostly separated, herein, it was chosen as 245 K), and ΔV_e is defined as the value of ΔV at all other temperatures in this region if available. $(\Delta V)_{1/2}$ is the linewidth (Hz) at half height of peak at anyone temperature in all region if available. $(\Delta V_0)_{1/2}$ is defined as the value of $(\Delta V)_{1/2}$ at no exchange temperature. $(\Delta V_e)_{1/2}$ is defined as the value of $(\Delta V)_{1/2}$ at all other temperatures in all region if available. T_c is defined as coalescence temperature at which two peaks completely merge into one peak. The obtained k values were then fitted with Eyring equation: $\ln \frac{k}{T} = -\frac{\Delta H^{\dagger}}{R} \times \frac{1}{T} +$ $\ln \frac{k_B}{h} + \frac{\Delta S^{\ddagger}}{R}$ to obtain the thermodynamic parameters ΔH^{\ddagger} and ΔS^{\ddagger} , and then $\Delta G^{\ddagger} = \Delta H^{\ddagger}$ $-T\Delta S^{\ddagger}$.

Fig. S1. VT NMR spectra of **Cor-D1** in CDCl₃ (245-335 K, 500 MHz). Top: full spectra; bottom: magnified spectra at aromatic region. * indicates impurities that cannot be removed even by column chromatography and repeated washing.

T (K)	$(\Delta V_e)_{1/2}$ (Hz)	ΔV_e (Hz)	k (s ⁻¹)
300	3.44	_	1751.41
290	8.53	_	409.26
285	15.20	—	204.20
275	—	24.17	75.21
265	6.76	40.03	15.30
255	3.09	41.35	3.78
245	$1.89((\varDelta V_0)_{1/2})$	41.6 (<i>AV</i> ₀)	

Table S1. Parameters obtained from the line-shape analysis of the resonances for proton *a* based on the VT ¹H NMR spectra of **Cor-D1** in CDCl₃.

Fig. S2. Fitting of the exchange rate constants with temperature by Erying equation for **Cor-D1** in CDCl₃.

Fig. S3. VT NMR spectra of **Cor-D2** in CDCl₃ (245-335 K, 500 MHz). Top: full spectra; bottom: magnified spectra at aromatic region. * indicates impurities that cannot be removed even by column chromatography and repeated washing.

	1		
T (K)	$(\varDelta V_e)_{1/2}$ (Hz)	ΔV_e (Hz)	k (s ⁻¹)
290	2.48	—	678.63
285	2.77	—	250.80
275	3.30	—	116.31
265	—	4.25	16.53
255	3.96	7.01	5.17
245	$2.31((\Delta V_0)_{1/2})$	8.57 (<i>∆V</i> ₀)	

Table S2. Parameters obtained from the line-shape analysis of the resonances for proton a based on the VT ¹H NMR spectra of **Cor-D2** in CDCl₃.

Fig. S4. Fitting of the exchange rate constants with temperature by Erying equation for **Cor-D2** in CDCl₃.

3. ESR data

Fig. S5. Solid-state ESR spectra of Cor-D1 recorded from 298 K to 453K.

Fig. S6. IT-T curve based on the VT ESR spectra of the powder **Cor-D1** upon heating up to 453 K; the red line denotes the fitted curve obtained by using the Bleaney–Bows equation to give a singlet-triplet energy gap of -8.4 kcal/mol. *I* is the integrated ESR intensity and *T* is temperature.

Fig. S7. VT ESR spectra of compound Cor-D2 at solid state.

Fig. S8. The change of *IT* with temperature *T* for **Cor-D2**. *I* is the integrated ESR intensity and *T* is temperature.

4. Additional spectra

Fig. S9. VT NMR spectra of Cor-D1 in *d*-toluene (300-373 K, 500 MHz).

Fig. S10. VT NMR spectra of **Cor-D2** in *d*-toluene (298-373 K, 500 MHz). No signal in the aromatic range is observed in this solvent at all temperatures, due to its extreme poor solubility in *d*-toluene. But protons m on methoxy groups are visible.

Fig. S11. The change of the UV-vis-NIR absorptuion spectra during the reductive and oxidative titration of **Cor-D1**: (a) from neutral to radical anion, (b) from radical anion to dianion, (c) from neutral to radical cation, and (d) from radical cation to dication. Reductant: Sodium anthracenide (NaAn); oxidant: NO•SbF₆.

Fig. S12. The change of the UV-vis-NIR absorptuion spectra during the reductive and oxidative titration of Cor-D2: (a) from neutral to radical anion, (b) from radical anion to dianion, (c) from neutral to radical cation, (d) from radical cation to dication. Reductant: Sodium anthracenide (NaAn); oxidant: NO•SbF₆.

Fig. S13. ¹H NMR spectra (aromatic region) of **Cor-D1** (THF- $d_8/CS_2 = 2/1$, v/v, 400 MHz, rt) and its dianion **Cor-D1**²⁻ (THF- d_8 , 300 MHz, rt) by *in situ* reduction with sodium anthracenide. The peak labeled by # comes from impurities in CS₂.

Fig. S14. ¹H NMR spectra (aromatic region) of **Cor-D2** (THF- $d_8/CS_2 = 2/1$, v/v, 400 MHz, rt) and its dianion **Cor-D2**²⁻ (THF- d_8 , 300 MHz, rt) by *in situ* reduction with sodium anthracenide. The peak labeled by # comes from impurities in CS₂ and the signals labeled by * are due to the existence of anthracene after chemical reduction. Due to strong aggregation of **Cor-D2** in solution, the ¹H NMR spectrum can only be recorded at low concentration. For the dianion, high concentration solution gave broad signals so only the resolved NMR spectrum at very low concentration is shown.

5. DFT calculations

Theoretical calculations were performed with the Gaussian09 program suite.⁴ All calculations were carried out using the density functional theory (DFT) method with Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional (B3LYP) employing the 6-31G(d,p) basis set for all atoms.⁵ Time-dependent DFT (TD-DFT) calculations were performed at the (U)B3LYP/6-31G(d,p) level of theory under vacuum. Both the *syn-* and *anti-* isomers were calculated for comparison and they show similar physical properties, so only the *anti-* isomers were considered for other calculations. NOON calculations were done by spin unrestricted UCAM-B3LYP/6-31G(d,p) method based on the X-ray crystallographic structure and the diradical character (y_0) was calculated according to Yamaguchi's scheme: $y_0 = 1 - (2T/(1 + T^2))$, and $T = (n_{HOMO} - n_{LUMO})/2$.⁶ NICS values were calculated (UB3LYP/6-31G(d,p)) using the standard GIAO procedure (NMR pop=NCSall).⁷ AICD plot (B3LYP/6-31G(d,p)) was calculated by using the method developed by Herges based on the optimized ground-state geometries.⁸

Fig. S15. Calculated spin density distribution map of the triplet biradical of syn- Cor-D2.

Fig. S16. ACID plots of the *anti*- Cor-D1 viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S17. ACID plots of the *anti*- Cor-D2 viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S18. ACID plots of the *anti-* **Cor-D1**²⁻ viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S19. ACID plots of the *anti-* **Cor-D2**²⁻ viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S20. ACID plots of the *anti*- Cor-D1²⁺ viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S21. ACID plots of the *anti*- Cor-D2²⁺ viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S22. ACID plots of the *anti-* **Cor-D1**^{-•} viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S23. ACID plots of the *anti*- Cor-D2^{-•} viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S24. ACID plots of the *anti*- **Cor-D1**^{+•} viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S25. ACID plots of the *anti*- **Cor-D2**^{+•} viewed from different angles. The green arrow indicates the magnetic field. Isovalue is 0.02.

Fig. S26. ACID plots of parent corannulene. The magnetic field is point out through the paper. The blue and red arrows indicate the diamagnetic and paramagnetic ring current flow, respectively. Isovalue is 0.03.

Fig. S27. Calculated (a) NICS(0)zz values, (b) NICS(1)zz values, (c) NICS(-1)zz values of the neutral, dianion and dication of the *anti*- **Cor-D1** at B3LYP/6-31G(d,p) level.

Fig. S28. Calculated (a) NICS(0)zz values, (b) NICS(1)zz values, (c) NICS(-1)zz values of the neutral, dianion and dication of the *anti*- **Cor-D2** at B3LYP/6-31G(d,p) level.

Fig. S29. Frontier molecular orbital profiles and energy diagram of the *anti*- **Cor-D1** obtained by B3LYP/6-31G(d,p) level calculation.

Wavelength (nm)	Osc. Strength	Major contribs
670.2527	1.0459	HOMO->LUMO (100%)
563.74	0	H-1->LUMO (91%)
520.7633	0	HOMO->L+1 (89%)
495.1411	0.0159	H-2->LUMO (11%), HOMO->L+2 (86%)
466.6817	0	HOMO->L+3 (83%)
455.2353	0.0419	H-2->LUMO (83%)
422.4736	0	H-5->LUMO (38%), H-3->LUMO (48%)
421.8842	0	H-5->LUMO (53%), H-3->LUMO (39%)
420.5391	0.0062	H-4->LUMO (95%)
403.6047	0.0003	H-6->LUMO (76%)
403.5653	0.0226	H-8->LUMO (62%), H-7->LUMO (27%)
402.0342	0.0506	H-8->LUMO (30%), H-7->LUMO (59%)
399.5596	0	H-9->LUMO (93%)
387.8236	0.0027	H-10->LUMO (92%)
385.3526	0	H-11->LUMO (93%)
380.5271	0.0602	HOMO->L+4 (83%)
371.5413	0.3426	H-1->L+1 (88%)
370.3538	0	HOMO->L+5 (91%)

Table S3. Selected TD-DFT (B3LYP/6-31G(d)) calculated energies, oscillator strength and compositions of major electronic transitions of the *anti*- **Cor-D1**.

Fig. S30. Calculated stick spectrum (B3LYP/6-31G(d,p)) of the *anti*- **Cor-D1** along with the experimental spectrum.

Figure S31. Calculated (B3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of **Cor-D1**.

Fig. S32. Frontier molecular orbital profiles and energy diagram of the *anti*- **Cor-D1** \cdot obtained by UB3LYP/6-31G(d,p) level calculation.

Wavelength	Osc.	
(nm)	Strength	Major contribs
1208.297	0.274	HOMO(B)->LUMO(B) (89%)
1045.303	0.0175	HOMO(A)->LUMO(A) (93%)
936.9254	0	HOMO(A)->L+1(A) (86%)
800.719	0.4655	HOMO(A)->L+2(A) (84%)
742.86	0	HOMO(A)->L+3(A) (12%), HOMO(B)->L+1(B) (54%)
		HOMO(A)->L+3(A) (36%), HOMO(B)->L+1(B) (27%),
653.4381	0	HOMO(B)->L+3(B) (26%)
643.5678	0.041	HOMO(B)->L+2(B) (87%)
623.0632	0	H-1(B)->LUMO(B) (70%)
571.1675	0	HOMO(A)->L+3(A) (38%), HOMO(B)->L+3(B) (47%)
555.6801	0	H-1(A)->LUMO(A) (76%), H-1(B)->LUMO(B) (11%)
555.2073	0.052	H-1(A)->L+1(A) (16%), HOMO(A)->L+4(A) (71%)
		H-2(A)->LUMO(A) (16%), H-1(A)->L+1(A) (29%),
531.9347	0.0056	H-2(B)->LUMO(B) (14%), H-1(B)->L+1(B) (13%)
		H-1(A)->L+2(A) (54%), H-3(B)->LUMO(B) (25%),
505.8273	0	HOMO(B)->L+3(B) (10%)
		H-1(A)->L+1(A) (40%), HOMO(A)->L+4(A) (20%),
496.4298	0.1083	$H-1(B) \rightarrow L+1(B) (10\%)$
491.9193	0.0341	H-1(A)->L+3(A) (11%), HOMO(B)->L+4(B) (63%)
479.6817	0	HOMO(A)->L+5(A) (96%)
471.5271	0.0032	HOMO(A)->L+6(A) (94%)
		H-3(A)->LUMO(A) (10%), H-2(A)->L+1(A) (15%),
		H-1(A)->L+2(A) (15%), H-3(B)->LUMO(B) (16%),
466.2255	0	$H-1(B) \rightarrow L+2(B) (11\%)$

Table S4. Selected TD-DFT (UB3LYP/6-31G(d)) calculated energies, oscillator strength and compositions of major electronic transitions of the *anti*- **Cor-D1** $^{-}$.

Fig. S33. Calculated stick spectrum (UB3LYP/6-31G*) of the *anti*- **Cor-D1**^{-.} along with the experimental spectrum.

Figure S34. Calculated (UB3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of **Cor-D1**[•].

Fig. S35. Frontier molecular orbital profiles and energy diagram of the *anti*- **Cor-D1**²⁻ obtained by B3LYP/6-31G(d,p) level calculation.

Table S5. Selected	TD-DFT (B3LYP/6-310	G(d))	calculated	energies,	oscillator	strength	and
compositions of maj	jor electron	ic transitions	of the	anti- Cor-	-D1²⁻ .			

Wavelength (nm)	Osc. Strength	Major contribs
1039.693	0.0256	HOMO->LUMO (95%)
935.0176	0	HOMO->L+1 (97%)
740.5085	0.5883	HOMO->L+2 (92%)
627.8909	0	H-1->LUMO (60%), HOMO->L+3 (36%)
616.6484	0	H-1->LUMO (36%), HOMO->L+3 (53%)
579.9847	0.0247	H-1->L+1 (79%), HOMO->L+4 (13%)
563.9195	0.0393	HOMO->L+4 (75%), HOMO->L+6 (14%)

562.8698	0.0001	HOMO->L+5 (86%)
534.5031	0.1064	HOMO->L+6 (74%)
527.9032	0	H-1->L+2 (83%)
520.1953	0	HOMO->L+7 (93%)
507.1723	0.0769	HOMO->L+8 (90%)
454.6677	0.0634	H-1->L+3 (92%)
436.8687	0.0102	HOMO->L+9 (83%)
431.3364	0	HOMO->L+10 (78%)
418.9051	0.6217	H-2->LUMO (83%)
411.9869	0	H-1->L+4 (88%)
411.2899	0.0066	H-1->L+5 (93%)

Fig. S36. Calculated stick spectrum (B3LYP/6-31G*) of the *anti*- Cor-D1²⁻ along with the experimental spectrum.

Figure S37. Calculated (B3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of **Cor-D1**²⁻.

Fig. S38. Frontier molecular orbital profiles and energy diagram of the *anti*- **Cor-D1**^{+.} obtained by UB3LYP/6-31G(d,p) level calculation.

Table S6. Selected TD-DFT (UB3LYP/6-31G(d)) calculated energies, oscillator strength and
compositions of major electronic transitions of the anti- Cor-D1 ^{+.}

Wavelength	Osc.	
(nm)	Strength	Major contribs
1161.11	0.263	HOMO(A)->LUMO(A) (74%), HOMO(B)->LUMO(B) (18%)
1119.589	0.0395	HOMO(A)->LUMO(A) (17%), HOMO(B)->LUMO(B) (79%)
		H-1(A)->LUMO(A) (32%), H-1(B)->LUMO(B) (50%),
863.2134	0	HOMO(B)->L+1(B) (11%)
748.9178	0	H-1(A)->LUMO(A) (50%), H-1(B)->LUMO(B) (35%)
732.286	0.0189	H-4(B)->LUMO(B) (29%), H-2(B)->LUMO(B) (57%)
726.4507	0.0001	H-3(B)->LUMO(B) (84%)
725.473	0.0288	H-4(B)->LUMO(B) (48%), H-2(B)->LUMO(B) (34%)
681.6016	0	H-5(B)->LUMO(B) (85%)

669.7458	0	H-6(B)->LUMO(B) (95%)
664.1134	0.402	H-7(B)->LUMO(B) (65%), H-4(B)->LUMO(B) (13%)
652.4752	0.005	H-8(B)->LUMO(B) (96%)
617.4469	0	H-9(B)->LUMO(B) (97%)
617.2317	0.0007	H-10(B)->LUMO(B) (98%)
608.537	0	H-1(A)->LUMO(A) (12%), HOMO(B)->L+1(B) (52%)
585.8219	0.0988	H-2(A)->LUMO(A) (72%), H-7(B)->LUMO(B) (15%)
		H-11(A)->LUMO(A) (21%), H-3(A)->LUMO(A) (22%),
556.5281	0	H-11(B)->LUMO(B) (12%), HOMO(B)->L+1(B) (15%)
539.9266	0.0021	H-4(A)->LUMO(A) (89%)
538.7535	0	H-11(A)->LUMO(A) (13%), H-3(A)->LUMO(A) (62%)

Fig. S39. Calculated stick spectrum (UB3LYP/6-31G*) of the *anti*- **Cor-D1**^{+.} along with the experimental spectrum.

Figure S40. Calculated (UB3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of **Cor-D1**^{•+}.

Fig. S41. Frontier molecular orbital profiles and energy diagram of the *anti*- **Cor-D1**²⁺ obtained by B3LYP/6-31G(d,p) level calculation.

Table	e S7.	Selected	TD-DFT	(B3LYP/6	6-31G(d))	calculated	energies,	oscillator	strength	and
comp	ositic	ons of ma	jor electro	nic transit	ions of th	e anti- Cor	-D1 ²⁺ .			

Wavelength (nm)	Osc. Strength	Major contribs
1163.289	0.026	HOMO->LUMO (98%)
839.2563	0	H-2->LUMO (17%), H-1->LUMO (75%)
829.5419	0	H-2->LUMO (80%), H-1->LUMO (16%)
804.4076	0.0193	H-5->LUMO (75%), H-3->LUMO (14%)
779.3773	0.0002	H-6->LUMO (97%)
779.1814	0	H-7->LUMO (98%)
758.1224	0.0012	H-5->LUMO (14%), H-3->LUMO (82%)
757.4277	0	H-4->LUMO (95%)
718.744	0	H-9->LUMO (46%), HOMO->L+1 (42%)
715.7565	0.0811	H-8->LUMO (85%)
646.5885	0	H-9->LUMO (46%), HOMO->L+1 (52%)
601.4229	0.5886	H-10->LUMO (87%)
535.3339	0.0356	H-1->L+1 (89%)
524.7084	0.0208	H-2->L+1 (96%)
514.9237	0	H-5->L+1 (76%), H-3->L+1 (17%)
503.8335	0	H-6->L+1 (97%)
503.6902	0.0003	H-7->L+1 (98%)
493.6035	0	H-5->L+1 (17%), H-3->L+1 (79%)

Fig. S42. Calculated stick spectrum (B3LYP/6-31G*) of the *anti*- Cor-D1²⁺ along with the experimental spectrum.

Figure S43. Calculated (B3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of **Cor-D1**²⁺.

Fig. S44. Frontier molecular orbital profiles and energy diagram of the *anti*- **Cor-D2** obtained by B3LYP/6-31G(d,p) level calculation.

Wavelength	Osc.	
(nm)	Strength	Major contribs
826.4454	1.2951	HOMO->LUMO (104%)
690.9074	0.0015	H-1->LUMO (71%), HOMO->L+1 (28%)
631.3119	0.0002	H-1->LUMO (26%), HOMO->L+1 (69%)
547.4603	0.0276	HOMO->L+2 (88%)
531.547	0.0013	H-3->LUMO (15%), HOMO->L+3 (78%)
507.4421	0.0303	H-2->LUMO (87%)
470.5607	0.0008	H-3->LUMO (65%)
458.0609	0.0071	H-5->LUMO (19%), H-4->LUMO (73%)
		H-6->LUMO (28%), H-5->LUMO (35%), H-4->LUMO
454.651	0.0008	(12%)
452.9568	0.0015	H-6->LUMO (54%), H-5->LUMO (33%)
449.6386	0.0083	H-8->LUMO (72%), H-7->LUMO (16%)
		H-9->LUMO (14%), H-8->LUMO (14%), H-7->LUMO
444.2733	0.0178	(24%), HOMO->L+4 (40%)
441.9138	0.0091	H-9->LUMO (79%), HOMO->L+4 (15%)
436.3306	0.0937	H-7->LUMO (50%), HOMO->L+4 (28%)
423.6719	0.0005	H-10->LUMO (100%)
418.2691	0.0006	H-11->LUMO (100%)
407.612	0.0267	HOMO->L+5 (88%)
404.7907	0.9134	H-1->L+1 (91%)

Table S8. Selected TD-DFT (B3LYP/6-31G(d)) calculated energies, oscillator strength and compositions of major electronic transitions of **Cor-D2**.

Fig. S45. Calculated stick spectrum (B3LYP/6-31G(d,p)) of the *anti*- **Cor-D2** along with the experimental spectrum. TD DFT calculation on open-shell singlet diradicaloids is a challenging problem and there is a significant discrepancy on the wavelength.

Figure S46. Calculated (B3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of **Cor-D2**.

Fig. S47. Frontier molecular orbital profiles and energy diagram of the *anti*- **Cor-D2**⁻ obtained by UB3LYP/6-31G(d,p) level calculation.

Waveleng	Osc.	
th (nm)	Strength	Major contribs
1431.678	0.4115	HOMO(B)->LUMO(B) (94%)
1054.998	0.1398	HOMO(A)->LUMO(A) (94%)
		H-1(A)->LUMO(A) (11%), HOMO(A)->L+1(A) (26%),
917.24	0.0018	HOMO(B)->L+1(B) (55%)
849.5501	0.0378	HOMO(A)->L+1(A) (59%), HOMO(B)->L+1(B) (19%)
825.0155	0.2472	HOMO(A)->L+2(A) (72%)
		H-1(A)->LUMO(A) (14%), H-1(B)->LUMO(B) (47%),
715.7152	0.0013	HOMO(B)->L+1(B) (20%)
694.5456	0.0692	HOMO(A)->L+2(A) (10%), HOMO(B)->L+2(B) (74%)
		HOMO(A)->L+3(A) (12%), H-1(B)->LUMO(B) (18%),
681.2271	0.0091	HOMO(B)->L+3(B) (53%)
614.9662	0.0004	H-1(A)->LUMO(A) (44%), HOMO(A)->L+3(A) (39%)
		H-1(A)->LUMO(A) (26%), HOMO(A)->L+3(A) (30%),
605.3283	0.0003	HOMO(B)->L+3(B) (21%)
598.5774	0.0189	H-2(A)->LUMO(A) (30%), H-1(B)->L+1(B) (29%)
573.1213	0.0011	HOMO(A)->L+4(A) (36%), HOMO(B)->L+4(B) (35%)
541.2938	0.0292	H-1(A)->L+1(A) (49%), HOMO(B)->L+4(B) (21%)
		H-1(A)->L+2(A) (47%), H-2(B)->LUMO(B) (20%),
534.3418	0.0217	HOMO(B)->L+4(B) (10%)
		H-1(A)->L+1(A) (24%), HOMO(A)->L+4(A) (45%),
516.4036	0.1014	HOMO(B)->L+4(B) (17%)
492.2904	0.0002	H-1(A)->L+2(A) (28%), H-2(B)->LUMO(B) (53%)
487.0304	0.0003	HOMO(B)->L+5(B) (67%)
482.5569	0.0066	H-3(B)->LUMO(B) (77%)

Table S9. Selected TD-DFT (B3LYP/6-31G(d)) calculated energies, oscillator strength and compositions of major electronic transitions of the *anti*- **Cor-D2**^{-.}.

Fig. S48. Calculated stick spectrum (UB3LYP/6-31G*) of the *anti*- **Cor-D2**^{-.} along with the experimental spectrum.

Figure S49. Calculated (UB3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of **Cor-D2**^{•-}.

Fig. S50. Frontier molecular orbital profiles and energy diagram of the *anti*- Cor-D2²⁻ obtained by B3LYP/6-31G(d,p) level calculation.

Wavelength	Osc.	
(nm)	Strength	Major contribs
1053.205	0.0667	HOMO->LUMO (93%)
902.2876	0.0029	HOMO->L+1 (92%)
780.0638	0.5211	HOMO->L+2 (87%)
703.3717	0.0001	H-1->LUMO (91%)
629.1973	0.0003	HOMO->L+3 (92%)
606.068	0.0272	H-1->L+1 (88%)
570.7731	0.0009	H-1->L+2 (92%)
541.5775	0.1531	HOMO->L+4 (87%)
518.5418	0.0998	HOMO->L+5 (90%)
506.882	0.001	HOMO->L+6 (90%)
489.0283	0.096	H-1->L+3 (94%)
481.4887	0.0009	HOMO->L+7 (92%)
474.5047	0.0017	HOMO->L+8 (91%)
457.7734	0.0223	H-2->LUMO (34%), HOMO->L+9 (56%)
442.2291	1.0869	H-2->LUMO (58%), HOMO->L+9 (34%)
438.429	0.0095	H-1->L+4 (62%), HOMO->L+10 (27%)
		H-2->L+1 (18%), H-1->L+4 (25%), HOMO->L+10
422.56	0.0001	(45%)
413.4432	0.0033	H-2->L+1 (73%), HOMO->L+10 (13%)

Table S10. Selected TD-DFT (B3LYP/6-31G(d)) calculated energies, oscillator strength and compositions of major electronic transitions of the *anti*- **Cor-D2**²⁻.

Fig. S51. Calculated stick spectrum (B3LYP/6-31G*) of the *anti*- Cor-D2²⁻ along with the experimental spectrum.

Figure S52. Calculated (B3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of Cor-D2²-.

Fig. S53. Frontier molecular orbital profiles and energy diagram of the *anti*- **Cor-D2**^{+.} obtained by UB3LYP/6-31G(d,p) level calculation.

Wavelength	Osc.	
(nm)	Strength	Major contribs
1386.063	0.3764	HOMO(A)->LUMO(A) (91%)
1071.686	0.1048	HOMO(B)->LUMO(B) (95%)
937.6339	0.0005	H-1(A)->LUMO(A) (81%)
767.7462	0.0006	H-1(B)->LUMO(B) (74%)
		H-2(A)->LUMO(A) (19%), H-4(B)->LUMO(B) (24%),
737.6009	0.2366	H-3(B)->LUMO(B) (13%)
701.6204	0.0055	H-3(B)->LUMO(B) (10%), H-2(B)->LUMO(B) (50%)
		H-4(B)->LUMO(B) (11%), H-3(B)->LUMO(B) (19%),
691.6011	0.0226	H-2(B)->LUMO(B) (20%), HOMO(B)->L+1(B) (11%)
676.3957	0.0146	H-3(B)->LUMO(B) (35%), HOMO(B)->L+1(B) (21%)
664.505	0.1028	H-5(B)->LUMO(B) (62%), H-4(B)->LUMO(B) (18%)
654.7493	0.0042	H-6(B)->LUMO(B) (66%)
646.8921	0.0088	H-7(B)->LUMO(B) (81%)
		H-2(A)->LUMO(A) (49%), H-8(B)->LUMO(B) (11%),
636.3994	0.1221	H-4(B)->LUMO(B) (17%)
633.7644	0.0248	H-8(B)->LUMO(B) (81%)
		H-5(A)->LUMO(A) (10%), H-4(A)->LUMO(A) (34%),
606.6018	0.0024	HOMO(A)->L+1(A) (22%)
605.7127	0.0002	H-9(B)->LUMO(B) (94%)
594.7584	0	H-10(B)->LUMO(B) (96%)
584.7995	0.0028	HOMO(A)->L+1(A) (35%), HOMO(B)->L+1(B) (34%)
581.0176	0.0006	H-3(A)->LUMO(A) (78%)

Table S11. Selected TD-DFT (UB3LYP/6-31G(d)) calculated energies, oscillator strength and compositions of major electronic transitions of the *anti*- **Cor-D2**⁺.

Fig. S54. Calculated stick spectrum (B3LYP/6-31G*) of the *anti*- **Cor-D2**^{+.} along with the experimental spectrum.

Figure S55. Calculated (UB3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of **Cor-D2**^{+•}.

Fig. S56. Frontier molecular orbital profiles and energy diagram of the *anti*- **Cor-D2**²⁺ obtained by B3LYP/6-31G(d,p) level calculation.

Table S12.	Selected	TD-DFT	(B3LYP/6)	-31G(d))	calculated	energies,	oscillator	strength	and
compositio	ns of maj	or electron	ic transitic	ons of the	anti- Cor-	$D2^{2+}$.			

Wavelength	Osc.	
(nm)	Strength	Major contribs
1187.352	0.0338	HOMO->LUMO (97%)
862.6128	0.0045	H-1->LUMO (74%), HOMO->L+1 (20%)
832.7736	0.0098	H-2->LUMO (90%)
797.6796	0.0001	H-4->LUMO (94%)
786.2473	0.0255	H-7->LUMO (20%), H-6->LUMO (73%)
768.0316	0.0022	H-3->LUMO (95%)

759.2366	0.0004	H-8->LUMO (89%)
740.0665	0.0064	H-1->LUMO (20%), HOMO->L+1 (61%)
731.9401	0.0019	H-5->LUMO (87%)
		H-10->LUMO (34%), H-9->LUMO (18%), H-7->LUMO
688.7581	0.159	(31%)
		H-10->LUMO (30%), H-9->LUMO (54%), HOMO->L+1
667.4742	0.0126	(10%)
		H-10->LUMO (29%), H-9->LUMO (13%), H-7->LUMO
666.3621	0.589	(34%), H-6->LUMO (11%)
572.1692	0.0492	H-2->L+1 (18%), H-1->L+1 (72%)
567.0402	0.0021	H-2->L+1 (75%), H-1->L+1 (18%)
551.7236	0.0003	H-4->L+1 (94%)
529.0069	0.0094	H-6->L+1 (81%)
526.6698	0.0053	H-3->L+1 (92%)
521.7056	0.0057	H-5->L+1 (93%)

Fig. S57. Calculated stick spectrum (B3LYP/6-31G*) of the *anti*- Cor-D2²⁺ along with the experimental spectrum.

Figure S58. Calculated (B3LYP/6-31G(d,p)) electronic absorption spectra of the *anti*- and *syn*- isomers of **Cor-D2**²⁺.

Fig. S59. Electrostatic potential maps of (a) **Cor-D1**, (b) **Cor-D1**²⁻, (c) **Cor-D1**²⁺, (d) **Cor-D2**, (e) **Cor-D2**²⁻ and (f) **Cor-D2**²⁺ (all in the *anti-* form).

Table S13. Relative energies (kcal/mol) of the *anti-* and *syn-* isomer of **Cor-D1** and **Cor-D2** at different redox states.

Energies	Cor-D1	Cor-D1 ²⁻	Cor-D1 ²⁺	Cor-D1•-	Cor-D1 ^{•+}
Anti-	0	0	0	0	0
Syn-	+0.538	-1.142	+4.686	-0.432	+1.539
Energies	Cor-D2	Cor-D2 ²⁻	Cor-D2 ²⁺	Cor-D2•-	Cor-D2 ^{•+}
Anti-	0	0	0	0	0
Syn-	-0.094	-1.380	+3.145	-0.826	+0.869

6. X-ray crystallographic data

 Table S14. Crystallographic data for Cor-D1.

Chemical formula	C40H27ClO			
Formula weight	559.06 g/mol			
Temperature	100(2) K			
Wavelength	1.54178 Å			
Crystal size	0.122 x 0.145 x 0.255 mm			
Crystal system	triclinic			
Space group	P -1			
Unit cell dimensions	a = 10.7657(7) Å	$\alpha = 65.614(3)^{\circ}$		
	b = 11.9402(7) Å	$\beta = 84.355(3)^{\circ}$		
	c = 12.6973(7) Å	$\gamma = 71.603(4)^{\circ}$		
Volume	1409.62(15) Å ³			
Z	2			
Density (calculated)	1.317 g/cm^3			
Absorption coefficient	1.441 mm ⁻¹			
F(000)	584			

Table S15. Data collection and structure refinement for Cor-D1.

Theta range for data collection	4.27 to 62.36°
Index ranges	-12<=h<=12, -13<=k<=13, -14<=l<=13
Reflections collected	11807
Independent reflections	3995 [R(int) = 0.0383]
Coverage of independent reflections	89.1%
Absorption correction	multi-scan
Max. and min. transmission	0.8440 and 0.7100
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$
Data / restraints / parameters	3995 / 0 / 383
Goodness-of-fit on F ²	1.435
Final R indices	2858 data; I> $2\sigma(I)$ R1 = 0.1049, wR2 = 0.3586
	all data $R1 = 0.1307, wR2 = 0.3667$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +12.8190P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	0.526 and -0.720 eÅ ⁻³

R.M.S. deviation from mean 0.055 eÅ⁻³

Chemical formula	0.5(C ₇₂ H ₄₆ O ₂), (C ₆ H ₅ Cl)			
Formula weight	584.09 g/mol			
Temperature	93 K			
Wavelength	1.54184 Å			
Crystal size	0.01 x 0.03 x 0.20 mm			
Crystal system	triclinic			
Space group	P -1			
Unit cell dimensions	a = 7.3515(7) Å	$\alpha = 74.348(9)^{\circ}$		
	b = 11.2839(11) Å	$\beta = 87.386(8)^{\circ}$		
	c = 19.4024(19) Å	$\gamma = 73.241(8)^{\circ}$		
Volume	1483.1(3) Å ³			
Ζ	2			
Density (calculated)	1.308 g/cm^3			
Absorption coefficient	1.394 mm^{-1}			
F(000)	610.0			

 Table S16. Crystallographic data for Cor-D2.

 Table S17. Data collection and structure refinement for Cor-D2.

Theta range for data collection	25.5 to 65.7°
Index ranges	-8<=h<=8, -12<=k<=12, -22<=l<=22
Reflections collected	17557
Independent reflections	4657, [R(int) = 0.121]
Coverage of independent reflections	98.2 %
Absorption correction	multi-scan
Max. and min. transmission	0.986 and 0.951
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$
Data / parameters	4657/ 427
Goodness-of-fit on F ²	1.002
	2858
Final R indices	data; $R1 = 0.0854$, $wR2 = 0.2120$
	I>2σ(I)
	all data $R1 = 0.1661$, $wR2 = 0.2730$
Largest diff. peak and hole	0.55 and -0.38 eÅ ⁻³

Fig. S60. X-ray crystallographic structure of **Cor-D2-2H** (top-view, side-view and 3D packing), together with selected bond lengths (in Å) for the central 2,6-naphthyl dimethylene unit. There are multiple [CH••• π] interactions between the methyl groups and the backbone, and also π - π and [CH••• π] interactions between the corannulene bowls.

 Table S18. Crystallographic data for Cor-D2-2H.

Chemical formula

C₇₂H₄₈O₂

Formula weight	945.10 g/mol	
Temperature	93 K	
Wavelength	1.54184 Å	
Crystal size	0.01 x 0.05 x 0.05 mm	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 10.7377(4) Å	$\alpha = 90^{\circ}$
	b = 7.2096(3) Å	$\beta = 97.730(3)^{\circ}$
	c = 30.6438(10) Å	$\gamma = 90^{\circ}$
Volume	2350.72(15) Å ³	
Z	2	
Density (calculated)	1.335 g/cm ³	
Absorption coefficient	0.605 mm ⁻¹	
F(000)	992.0	

 Table S19. Data collection and structure refinement for Cor-D2-2H.

Theta range for data collection	2.9 to 67.0°
Index ranges	-12<=h<=12, -8<=k<=8, -31<=l<=36
Reflections collected	15717
Independent reflections	4182 [R(int) = 0.052]
Coverage of independent reflections	99.6 %
Absorption correction	multi-scan
Max. and min. transmission	0.994 and 0.970
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / parameters	4182/338
Goodness-of-fit on F ²	1.01
Final R indices	data; I> $2\sigma(I)$ R1 = 0.0475, wR2 = 0.1140
	all data $R1 = 0.0739$, $wR2 = 0.1294$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +12.8190P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	$0.24 \text{ and } -0.23 \text{ e}\text{\AA}^{-3}$

7. Appendix: NMR spectra and HR mass spectra

Fig. S61. ¹H NMR spectrum of compound 2 (300 MHz, CDCl₃, rt)

Fig. S62. ¹³C NMR spectrum of compound 2 (125 MHz, CDCl₃, rt)

Fig. S63. ¹H NMR spectrum of compound 3 (300 MHz, CDCl₃, rt).

Fig. S64. ¹³C NMR spectrum of compound 3 (125 MHz, CDCl₃, rt)

Fig. S65. HR mass spectrum (ESI) of Cor-D1.

Fig. S66. HR mass spectrum (APCI) of the compound Cor-D2.

8. References

[1] A. Sygula, A. Sygula, L. Kobryn, Org. Lett. 2008, 10, 3927.

[2] P. Hu, S. Lee, K. H. Park, S. Das, T. S. Herng, T. P. Gonçalves, K.-W. Huang, J. Ding, D. Kim, J. Wu, *J. Org. Chem.* **2016**, *81*, 2911.

[3] F. P. Gasparro, N. H. Kolodny, J. Chem. Educ. 1977, 54, 258.

[4] *Gaussian 09; Revision A.2*; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, **2009**.

[5] (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter 1988, 37, 785. (c) Yanai, T.; Tew, D.; and Handy, N. Chem. Phys. Lett. 2004, 393, 51. (d) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. (e) Hehre, W. J.; Ditchfield R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (f) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.

[6] (a) S. Yamanaka, M. Okumura, M. Nakano and K. Yamaguchi, *J. Mol. Struct.* 1994, 310, 205. (b) K. Kamada, K. Ohta, A. Shimizu, T. Kubo, R. Kishi, H. Takahashi, E. Botek, B. Champagne and M. Nakano, *J. Phys. Chem. Lett.* 2010, 1, 937.

[7] Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R. Chem. Rev. 2005, 105, 3842.

[8] Geuenich, D.; Hess, K.; Köhler, F.; Herges, R. Chem. Rev. 2005, 105, 3758.