ELECTRONIC SUPPORTING INFORMATION FOR

The Robust, Readily Available Cobalt(III) Trication [Co(NH₂CHPhCHPhNH₂)₃]³⁺ is a Progenitor of Broadly Applicable Chirality and Prochirality Sensing Agents[†]

Quang H. Luu,^{\$0} Kyle G. Lewis,[§] Anik Banerjee,^{\$0} Nattamai Bhuvanesh, John A. Gladysz^{*\$0}

Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA. E-mail: gladysz@mail.chem.tamu.edu

■ EXPERIMENTAL SECTION (continued)

General data. NMR spectra were recorded on a Varian NMRS 500 MHz spectrometer at ambient probe temperature. Chemical shifts (δ in ppm) were referenced to residual solvent signals (¹H: CHCl₃, 7.26; CHD₂CN, 1.94; DMSO-*d*₅, 2.50; CHD₂OD, 3.30; CDHCl₂, 5.32; acetone-*d*₅, 2.05; ¹³C: CDCl₃, 77.2; DMSO-*d*₆, 39.5; CD₃OD, 49.0; CD₂Cl₂, 54.0; acetone-*d*₆, 29.8) or external C₆F₆ (¹⁹F, -164.9) or 85 wt% aqueous H₃PO₄ (³¹P, 0.00). IR spectra were recorded on a Shimadzu IRAffinity-1 spectrometer (Pike MIRacle ATR system, diamond/ZnSe crystal). Melting points were determined using an OptiMelt MPA 100 instrument. Microanalyses were conducted by Atlantic Microlab. HPLC analyses were carried out with a Shimadzu instrument package (pump/autosampler/detector LC-20AD/SIL-20A/SPD-M20A).

NMR solvents (Cambridge Isotopes) were treated as follows: DMSO- d_6 , distilled under vacuum and stored over molecular sieves; CDCl₃, CD₂Cl₂, acetone-d₆, CD₃CN, and CD₃OD, stored over molecular sieves. HPLC grade solvents (hexanes, Fischer; isopropanol (38), JT Baker) were degassed. The following materials were used as received: CH₂Cl₂ (EMD Chemicals, ACS grade), CH₃OH (EMD, anhydrous, 99.8%), acetone (BDH, ACS grade), toluene (BDH, ACS grade), Co(OAc)₂·4H₂O (Alfa Aesar, 98%), (S,S)-dpen (NH₂CHPhCHPhNH₂; Oakwood or Combi blocks), activated charcoal (Acros, Norit SX 4), Na⁺ BAr_f⁻ (BAr_f⁻ = B(3,5-C₆H₃(C-F₃)₂)₄⁻; Ark Pharm, 97%), aqueous HI (Aldrich, 57 wt%, 99.9%), CoI₂ (Aldrich, anhydrous, 99%), KI (Aldrich, anhydrous, 99%), NaI (EMD, >99.5%), silica gel (Silicycle SiliaFlash® F60), Celite 545 (Aldrich), (S)-1-phenethyl amine ((S)-5, TCI Chemicals, >98%, ee 97+%), 2carbomethoxy cyclopentanone (7, TCI Chemicals, 97%), D- and L-proline (R- and S-9, Acros Organics, 99%), (S)-1-phenylethanol ((S)-10; Alfa Aesar, 98+%), (R)-10 (Alfa Aesar, 99%, ee 97+%), DL-lactide (11, Aldrich, 99%), L-lactide (S,S-11, Aldrich, 98%), (S)- and (R)-1,1'-bi-2naphthol ((S)- and (R)-BINOL, Ark Pharm, >98%), δ-hexanolactone (12, Alfa Aesar, 98%), styrene oxide (16, Alfa Aesar, 98%), 1,2-propanediol (21, Aldrich, 99%), 1,2-butanediol (22, Aldrich, 98%), 2-carbomethoxy cycloheptanone (23, Aldrich, 99%), ethyl 2-methylacetoacetate (24, Alfa Aesar, 95%), 2-acetylcyclopentanone (25, TCI Chemicals, >95%), (S)-tert-butylsulfinamide

((*S*)-26, Ark Pharm, 98%), (*R*)-*tert*-butylsulfinamide ((*R*)-26, ACS Scientific, 98%), 2-methyltetrahydofuran (27, Aldrich, >99%), 2-bromopropionamide (30, Aldrich, 99%), 2-carboethoxy cyclohexanone (31, Aldrich, 95%), cyclohexene oxide (32, TCI Chemicals, 98%), methyl ethyl ketone (33, Aldrich, 99%), chloroacetone (34, Acros Organics, 96%), DMSO (35, BDH, 99.9%), ethyl acetate (36, Aldrich, 99.8%), isopropylamine (37, Alfa Aesar, 99%), 1-methyl-2-oxindole (39, Aldrich, 97%), ethyl acetoacetate (40, Alfa Aesar, 99%), 2-bromoethyl acetate (41, TCI Chemicals, >98%), 3-pentanone (42, Aldrich, >99%), 2-bromoacetophenone (43, Alfa Aesar, 98%), ethyl chloroacetate (44, TCI Chemicals, 98%), benzyl carbamate (45, Alfa Aesar, 99%), ethyl cyanoacetate (46, TCI Chemicals, >98%), propionamide (47, TCI Chemicals, >98%), dimethyl malonates (Alfa Aesar, 98%), *sec*-butylbenzene (TCI Chemicals, >99%), nitroethane (Aldrich, >98%), 5-hydroxymethyl-2-pyrrolidinone (Chem-Impex International, 98.5%), propionitrile (Acros Organics, 99%), propionic acid (Alfa Aesar, 99%), methyl isovalerate (Aldrich, >98%), diethyl phosphite (Alfa Aesar, 96%), and tetrahydrofuran (Aldrich, >99%).

The following analytes were synthesized by literature procedures: (*S*)- and (*R*)-1-phenylethyl acetate ((*S*)- and (*R*)-4),^{s1} 1-phenethyl amine (**5**),^{s2} phenyl methyl sulfoxide (**6**),^{s3} (*S*)- and (*R*)-Boc-BINOL ((*S*)- and (*R*)-8),^{s1} (*S*)- and (*R*)-BINOL diacetate,^{s1} 1-phenyl-1,2-ethanediol (**14**),^{s4} 1-phenyl-2,2,2-trifluoroethanol (**15**),^{s5} *N*-tosyl phenethyl amine (**17**),^{s6} *N*-acetyl phenethyl amine (**18**),^{s2} hydroxyphenylmethyl diethyl phosphonate (**19**),^{s7} hydroxyphenylmethyl dimethyl phosphonate (**20**),^{s7} 2-phenyl-2-butanol (**28**),^{s8} 1-phenyl-1-chloroethane.^{s9} and methyl 2bromopropionate (**29**).^{s10} Ibuprofen (**13**) was isolated from commercially available tablets following a literature procedure.^{s11}

Alternative syntheses of Λ -[Co((*S*,*S*)-NH₂CHPhCHPhNH₂)₃]³⁺ 3I⁻ (Λ -2³⁺ 3I⁻) directly from cobalt(II) precursors (bypassing Λ -2³⁺ 3Cl⁻ in Scheme 1). A. A gas circulating flask^{s12} was charged with a solution of CoI₂ (0.156 g, 0.50 mmol) in CH₃OH (50 mL). Activated charcoal (0.05 g) and (*S*,*S*)-dpen (0.356 g, 1.68 mmol, 3.36 equiv) were added with vigorous stirring. Air was passed through the suspension. After 17 h, the mixture was filtered through Celite and aqueous HI (0.377 g, 57 wt%, 1.68 mmol) was added. The solvent was removed by rotary

evaporation to give an orange solid. A portion was dissolved in acetone-d₆. ¹³C{¹H} NMR (acetone-d₆, δ in ppm, partial): 62.2 and 64.7 (2s, ca. 2:1, CHPh, Λ and Δ- 2^{3+} 3I⁻).^{s13} The solid was dissolved in 95:5 v/v CH₂Cl₂/CH₃OH (1 mL). The solution was loaded on a silica gel column (2 × 15 cm) packed in CH₂Cl₂, which was eluted with CH₂Cl₂/CH₃OH (100:0 v/v, 200 mL; 98:2 v/v, 500 mL; 97:3 v/v as needed). The orange band was collected. Solvents were removed by rotary evaporation. The residue was dried by oil pump vacuum at room temperature (20 h) to give Λ- 2^{3+} 3I⁻·H₂O (0.208 g, 0.190 mmol, 38%) as an orange solid. **B**. A solution of Co(OAc)₂ ·4H₂O (0.296 g, 1.19 mmol) in CH₃OH (50 mL), activated charcoal (0.1 g), (*S*,*S*)-dpen (0.849 g, 4.00 mmol, 3.36 equiv), air, Celite, and aqueous HI (0.898 g, 57 wt%, 4.00 mmol) were combined in a procedure analogous to that in A. A similar workup (3 mL 95:5 v/v CH₂Cl₂/CH₃OH) gave Λ- 2^{3+} 3I⁻·H₂O (0.611 g, 0.559 mmol, 47%) as an orange solid, mp 200-201 °C dec (open capillary). Anal. Calcd. for C₄₂H₄₈Col₃N₆·H₂O (1094.05): C 46.09, H 4.60, N 7.68; found C 46.16, H 4.75, N 7.46.

NMR (acetone-d₆, δ in ppm): ¹H (500 MHz) 7.57-7.54 (m, 12H, *o*-Ph), 7.53 (br s, 6H, NHH', partial overlap with *o*-Ph), 7.32-7.22 (m, 18H, *m*-, *p*-Ph), 5.63 (br s, 6H, NHH'), 5.25 (s, 6H, CHPh), 2.83 (br s, 7H, H₂O); ¹³C{¹H} (125 MHz) 130.3 (s, *i*-Ph), 130.0 (s, *p*-Ph), 129.6 and 128.8 (2 s, *o*- and *m*-Ph), 63.2 (s, CHPh).

Extended Bibliography. Additional literature that augments that given in the main text is supplied at the end of the references (other CSAs from 2014-present,^{\$14-\$29} other NMR methods for prochirality sensing^{\$30-\$35}).

Entry	CSA	Solvent	Δδ (ppm) PhC <u>H</u> (CH ₃)O	Δδ (ppm) O(C=O)C <u><i>H</i></u> ₃	Δδ (ppm) PhCH(C <u>H</u> ₃)O
1	Λ -1 ³⁺ 3BAr _f ⁻	CD_2Cl_2		_	
2	Λ -2 ³⁺ 2Cl ⁻ BAr _f ⁻	CD_2Cl_2	1.32	0.50	0.28
3	Δ -2 ³⁺ 2Cl ⁻ BAr _f ⁻	CD ₂ Cl ₂	0.15	0.02	
4	Λ -2 ³⁺ 2Cl ⁻ (C ₆ F ₅) ₄ ⁻	CD ₂ Cl ₂	1.37	0.53	0.28
5	Λ -2 ³⁺ 3BAr _f ⁻	CD ₂ Cl ₂	0.34	0.15	0.08
6	Λ -2 ³⁺ 2I ⁻ BAr _f ⁻	CD ₂ Cl ₂	1.30	0.52	0.25
7	Λ -2 ³⁺ 2I ⁻ BAr _f ⁻	CDCl ₃	1.75	0.68	0.37
8	$\Lambda\text{-}2^{3+}\text{2I}\text{-}\text{BAr}_{f}^{-}$	acetone-d ₆			
9	$\Lambda\text{-}2^{3+}\text{2I}\text{-}\text{BAr}_{f}^{-}$	CD ₃ CN			
10	$\Lambda\text{-}2^{3+}\text{2I}\text{-}\text{BAr}_{f}^{-}$	DMSO-d ₆			
11	Λ -2 ³⁺ 2Cl ⁻ BAr _f ⁻	acetone-d ₆			
12	Λ -2 ³⁺ 2Cl ⁻ BAr _f ⁻	CD ₃ CN			
13	Λ -2 ³⁺ 2Cl ⁻ BAr _f ⁻	DMSO-d ₆	_	_	

Table s1. Expansion of Table 1 showing the separation of all aliphatic ${}^{1}H$ NMR signals ($\Delta\delta$, ppm) of the enantiomers of racemic 1-phenylethyl acetate (4).

Comparison of ee values obtained by NMR and HPLC (Figure s1). Standard solutions of (*R*)- and (*S*)-4 were prepared in hexanes/isopropanol (99:1 v/v, 0.0010 g/mL). These were mixed at different ratios into five separate volumetric flasks so that the total volume was always 1.00 mL (Table s2). Each was assayed by HPLC (Chiralcel OD-H column, hexane/isopropanol 99:1 v/v, 0.5 mL/min, 254 nm). The HPLC samples were concentrated by rotary evaporation, redissolved in CD₂Cl₂ (0.70 mL), and transferred to 5 mm NMR tubes. Then Λ -2³⁺ 2Cl⁻ BAr_f⁻⁻2H₂O (0.0085 g, 0.0050 mmol) was added and ¹H NMR spectra were recorded. Data: Table s2.

sample	$(R)-4 (mL)^{a}$	$(S)-4 (mL)^a$	theoretical ee (%)	HPLC ee (%) ^b	NMR ee (%) ^b	
1	0.940	0.940 0.060		+88	+88	
2	0.800	0.200	+60	+60 +60		
3	0.660	0.340	+32	+32	+32	
4	0.220	0.780	-56	-56	-56	
5	0.050	0.950	-90	-90	-90	

Table s2. Tabular comparison of ee values of scalemic 4 obtained by NMR and HPLC.

^aPer the experimental procedure, the volumes represent the ratios of the enantiomers in the samples assayed. ^bThe original traces and spectra are depicted in Figures s2-s6.

Figure s1. Graphical comparison of ee values of scalemic 4 obtained by NMR and HPLC.

Figure s2. HPLC trace (top) and ¹H NMR spectrum (bottom) of 4 (88% ee) corresponding to the data in Table s2.

Figure s3. HPLC trace (top) and ¹H NMR spectrum (bottom) of **4** (60% ee) corresponding to the data in Table s2.

Figure s5. HPLC trace (top) and ¹H NMR spectrum (bottom) of **4** (–56% ee) corresponding to the data in Table s2.

Figure s7. NMR titration and binding constants of Λ -2³⁺ 2Cl⁻BAr_f⁻ and Λ -2³⁺ 2l⁻BAr_f⁻ with the analytes (*S*)-4, (*R*)-4, (*S*)-10, and (*R*)-10; raw data underlying Table 4.

empirical formula	C ₁₀₈ H ₁₆₈ Co ₂ I ₆ N ₁₂ O ₁₂ S ₁₂ ^a			
formula weight	3080.44			
temperature of collection [K]	110.0			
diffractometer	Bruker Quest			
wavelength [Å]	0.71073			
crystal system	monoclinic			
space group	<i>P</i> 2(1)			
unit cell dimensions:				
<i>a</i> [Å]	23.057(2)			
<i>b</i> [Å]	13.6098(12)			
<i>c</i> [Å]	23.378(2)			
α [deg]	90			
β [deg]	110.977(2)			
γ [deg]	90			
V [Å ³]	6849.8(10)			
Z	2^a			
$\rho_{calc} [Mg/m^3]$	1.494			
absorption coefficient [mm ⁻¹]	1.832			
F(000)	3100			
Crystal size [mm ³]	$0.257\times0.098\times0.081$			
Θ [deg]	2.314 to 24.763			
range / indices (h, k, l)	-27,26; -16,15; -27,27			
reflections collected	72270			
independent reflections	22606 [R(int) = 0.0476]			
completeness to $\Theta = 24.763^{\circ}$	98.8%			
absorption correction	semiempirical from equivalents			
max. and min. transmission	0.4283 and 0.3391			
refinement method	full-matrix least-squares on F^2			
data / restraints / parameters	22606 / 2887 / 1441			
goodness-of-fit on F^2	1.214			
final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0820, wR2 = 0.1405			
R indices (all data)	R1 = 0.0993, w $R2 = 0.1521$			
absolute structure parameter	0.08(3)			
largest diff. peak and hole [e.Å ⁻³]	4.180 / -1.492			

Table s3. Summary of crystallographic data for Λ -**2**³⁺ 3I^{-.}6DMSO.^{*a*}

^{*a*}There are two independent molecules in the unit cell. Hence, there are two cobalt atoms in the empirical formula and the Z value represents the total number of dicobalt units.

iodide	$I \cdots HN(C_3)$	$I^{\dots}N$	I…H-N
I1	2.826 2.799 ^a	3.712 3.675	164.7 166.6
I1	2.794 2.820 ^a	3.681 3.700	165.2 163.0
I1	2.771 2.693 ^{<i>a</i>}	3.664 3.585	167.3 166.6
I3	2.835 2.783 ^a	3.687 3.652	156.4 160.5
13	2.725 2.609^{a}	3.612 3.506	165.5 168.6
13	$2.760 \\ 2.798^a$	3.633 3.672	161.3 161.5

^{*a*}The second set of values is for the other independent molecule in the unit cell, which is geometrically similar.

Figure s8. Thermal ellipsoid diagrams (50% probability level) showing interactions of two iodide anions with the trication of Λ -2³⁺ 31⁻ 6DMSO (*lel*₃) viewed along the idealized C₃ axis (left) and one idealized C₂ axis (right). The other independent molecule is similar.

O atom	O ···HN (C_2)	$O{\cdots}N$	O…H-N
O1	$2.026 \\ 2.039^a$	2.893 2.882	159.1 153.6
02	2.265	2.923	147.6
	2.141 ^{<i>a</i>}	2.965	150.2
O3	2.290	3.006	135.5
	2.256^{a}	3.011	140.1
O4	1.975	2.869	167.0
	2.013 ^{<i>a</i>}	2.859	154.1
O5	2.085	2.870	143.9
	2.074^{a}	2.897	149.8
O6	2.197	2.999	146.7
	2.219 ^a	2.969	139.2

Table s4. Distances (Å) between hydrogen bonded DMSO and NH units depicted in Figure 7.

^aThe second set of values is for the other independent molecule in the unit cell, which is geometrically similar.

Figure s9. Thermal ellipsoid diagram (50% probability level) showing the nearest contacts of the third iodide anion in Λ -2³⁺ 3I⁻ 6DMSO (molecule 1) with neighboring atoms (CH of three DMSO molecules and two phenyl rings).

Figure s10. Thermal ellipsoid diagram (50% probability level) showing the nearest contacts of the third iodide anion in Λ - 2^{3+} 3I⁻.6DMSO (molecule 2) with neighboring atoms (CH of two DMSO molecules and four phenyl rings).

molecule 1 ^c	l	molecule 2^a			
Co(1)-N(1B)	1.973(13)	Co(1D)-N(1D)	1.958(12)		
Co(1)-N(2B)	1.986(13)	Co(1D)-N(2D)	1.996(13)		
Co(1)-N(3B)	1.951(12)	Co(1D)-N(3D)	1.977(12)		
Co(1)-N(4B)	1.944(12)	Co(1D)-N(4D)	1.963(12)		
Co(1)-N(5B)	1.949(12)	Co(1D)-N(5D)	1.952(13)		
Co(1)-N(6B)	1.971(12)	Co(1D)-N(6D)	1.977(12)		
N(1B)-C(1B)	1.516(19)	N(1D)-C(1D)	1.504(19)		
N(2B)-C(8B)	1.49(2)	N(2D)-C(8D)	1.494(19)		
N(3B)-C(6)	1.509(19)	N(3D)-C(15D)	1.490(18)		
N(4B)-C(13)	1.49(2)	N(4D)-C(22D)	1.49(2)		
N(5B)-C(1I)	1.484(19)	N(5D)-C(36D)	1.487(19)		
N(6B)-C(1A)	1.493(18)	N(6D)-C(29D)	1.501(18)		
I(2)HN(2B)	2.783	I(1)HN(1D)	2.826		
I(2)HN(4B)	2.609	I(1)HN(3D)	2.794		
I(2)HN(6B)	2.798	I(1)HN(5D)	2.771		
I(5)···HN(1B)	2.799	I(3)HN(2D)	2.835		
I(5)···HN(3B)	2.820	I(3)HN(4D)	2.725		
I(5)HN(5B)	2.693	I(3)HN(6D)	2.760		
I(6)HC(2C)	4.059	I(4)HC(1P)	3.120		
I(6) HC(1AA)	3.081	I(4)HC(1Q)	2.996		
I(2) N(2B)	3.652	I(1) N(1D)	3.712		
I(2) N(4B)	3.506	I(1) N(3D)	3.681		
I(2) N(6B)	3.672	I(1) N(5D)	3.664		
I(5) N(1B)	3.675	I(3) N(2D)	3.687		
I(5) N(3B)	3.700	I(3) N(4D)	3.612		
I(5) N(5B)	3.585	I(3) N(6D)	3.633		
I(6) C(2C)	4.294	I(4) C(1P)	4.028		
I(6) C(1AA)	3.938	I(4)C(1Q)	3.941		
O(7)HN(3B)	2.074	O(1)HN(1D)	2.062		
O(8)HN(2B)	2.219	O(2)HN(6D)	2.265		
O(9)HN(4B)	2.256	O(3)HN(4D)	2.290		
O(10)HN(6B)	2.141	O(4)HN(5D)	1.975		
O(11)HN(1B)	2.039	O(5)HN(3D)	2.085		
O(12)HN(5B)	2.013	O(6)HN(2D)	2.197		
O(7) ··· N(3B)	2.897	O(1) N(1D)	2.893		

Table s5. Key interatomic distances (Å) and angles (°) in crystalline Λ -**2**³⁺ 3I⁻ 6DMSO.

	O(8) N(2B)	2.969	O(2) N(6D)	2.923					
	O(9) N(4B)	3.011	O(3) ··· N(4D)	3.006					
(D(10)N(6B)	2.965	O(4)N(5D)	2.869					
(D(11) N(1B)	2.882	O(5)N(3D)	2.870					
(D(12) N(5B)	2.859	O(6) ··· N(2D)	2.999					
N(1	B)-Co(1)-N(2B)	85.0(5)	N(1D)-Co(1D)-N(2D)	84.7(5)					
N(3	B)-Co(1)-N(1B)	92.8(5)	N(1D)-Co(1D)-N(3D)	91.1(5)					
N(3	B)-Co(1)-N(2B)	92.6(5)	N(1D)-Co(1D)-N(4D)	174.6(5)					
N(3	B)-Co(1)-N(6B)	172.5(5)	N(1D)-Co(1D)-N(6D)	94.2(5)					
N(4	B)-Co(1)-N(1B)	176.4(5)	N(3D)-Co(1D)-N(2D)	93.3(5)					
N(4	B)-Co(1)-N(2B)	92.8(5)	N(4D)-Co(1D)-N(2D)	92.8(5)					
N(4	B)-Co(1)-N(3B)	84.4(5)	N(4D)-Co(1D)-N(3D)	84.1(5)					
N(4	B)-Co(1)-N(5B)	93.1(5)	N(4D)-Co(1D)-N(6D)	90.7(5)					
N(4	B)-Co(1)-N(6B)	89.0(5)	N(5D)-Co(1D)-N(1D)	88.7(5)					
N(5	B)-Co(1)-N(1B)	89.3(5)	N(5D)-Co(1D)-N(2D)	172.2(5)					
N(5	B)-Co(1)-N(2B)	173.3(5)	N(5D)-Co(1D)-N(3D)	91.0(5)					
N(5	B)-Co(1)-N(3B)	91.4(5)	N(5D)-Co(1D)-N(4D)	94.0(5)					
N(5	B)-Co(1)-N(6B)	85.4(5)	N(5D)-Co(1D)-N(6D)	84.5(5)					
N(6	B)-Co(1)-N(1B)	93.9(5)	N(6D)-Co(1D)-N(2D)	91.8(5)					
N(6	B)-Co(1)-N(2B)	91.3(5)	N(6D)-Co(1D)-N(3D)	172.9(5)					
I(2) [.]	H(2BA)-N(2B)	160.5	I(1) H(1DA)-N(1D)	164.7					
I(2) [.]	H(4BA)-N(4B)	168.6	I(1) H(3DA)-N(3D)	165.2					
I(2) [.]	H(6BA)-N(6B)	161.5	I(1) H(5DA)-N(5D)	167.3					
I(5) [.]	H(1BA)-N(1B)	161.7	I(3) H(2DA)-N(2D)	156.4					
I(5) [.]	H(3BA)-N(3B)	163.0	I(3) H(4DA)-N(4D)	165.5					
I(5) [.]	H(5BA)-N(5B)	166.6	I(3)-H(6DA)-N(6D)	161.3					
I(6) [.]	H(2CA)-C(2C)	97.2	I(4) H(1PB)-C(1P)	154.7					
I(6)	H(1AB)-C(1AA)	146.5	I(4)···H(1QB)-C(1Q)	162.6					
O(7)	····H(3BB)-N(3B)	149.8	O(1)H(1DB)-N(1D)	159.1					
O(8)	····H(2BB)-N(2B)	139.2	O(2) H(6DB)-N(6D)	147.6					
O(9)	H(4BB)-N(4B)	140.1	O(3) H(4DB)-N(4D)	135.5					
O(10) H(6BB)-N(6B)	150.2	O(4) H(5DB)-N(5D)	167.0					
O(11) H(1BB)-N(1B)	153.6	O(5) H(3DB)-N(3D)	143.9					
O(12) H(5BB)-N(5B)	154.1	O(6) H(2DB)-N(2D)	146.7					
	^{<i>u</i>} There are two independent molecules in the unit cell.								

	· ·				/	< · · · · · · · · · · · · · · · · · · ·		· ·	
The	ere a	re tw	o independe	nt mol	ecules	s in t	he u	nit c	ell.

REFERENCES

(s1) Y. Onishi, Y. Nishimoto, M. Yasuda, K. Baba, Org. Lett., 2014, 16, 1176-1179.

(s2) F. Xu, Q. Wu, X. Chen, X. Lin, Q. Wu, Eur. J. Org. Chem., 2015, 2015, 5393-5401.

(s3) K. Kaczorowska, Z. Kolarska, K. Mitka, P. Kowalski, Tetrahedron, 2005, 61, 8315-

8327.

(s4) Z. Wang, Y.-T. Cui, Z.-B. Xu, J. Qu, J. Org. Chem., 2008, 73, 2270-2274.

(s5) A. S. Henderson, J. F. Bower, M. C. Galan, Org. Biomol. Chem., 2014, 12, 9180-

9183.

(s6) T. Ankner, G. Hilmersson, Org. Lett., 2009, 11, 503-506.

(s7) N. S. Tulsi, A. M. Downey, C. W. Cairo, Bioorg. Med. Chem., 2010, 18, 8679-8686.

(s8) H. Zong, H. Huang, J. Liu, G. Bian, L. Song, J. Org. Chem., 2012, 77, 4645-4652.

(s9) A. K. Jha, S. Kishor, N. Jain, RSC Adv., 2015, 5, 55218-55226.

(s10) Y. Mei, P. Dissanayake, M. J. Allen, J. Am. Chem. Soc., 2010, 132, 12871-12873

(s11) D. Chávez-Flores, J. M. Salvador, Biotechnol. J., 2009, 4, 1222-1224.

(s12) S. K. Ghosh, K. G. Lewis, A. Kumar, J. A. Gladysz, *Inorg. Chem.*, 2017, **56**, 2304-2320 (the gas circulating flask is depicted in the supporting information).

(s13) Washing with water did not lead to any enrichment. The diastereomers exhibit diagnostic CHPh ¹³C NMR chemical shift trends as detailed in reference s12.

(s14) E. Zhou, J. Zhang, Y. Lu, C. Dong, ARKIVOC, 2014, 2014, 351-364.

(s15) K. Tanaka, T. Iwashita, C. Sasaki, H. Takahashi, *Tetrahedron: Asymmetry*, 2014, **25**, 602-609.

(s16) F. Yuste, R. Sánchez-Obregón, E. Díaz, M. A. García-Carrillo, *Tetrahedron:* Asymmetry, 2014, **25**, 224-228.

(s17) C. Wolf, A. M. Cook, J. E. Dannatt, Tetrahedron: Asymmetry, 2014, 25, 163-169.

(s18) P. Borowiecki, Tetrahedron: Asymmetry, 2015, 26, 16-23.

(s19) N. Jain, R. B. Patel, A. V. Bedekar, RSC Adv., 2015, 5, 45943-45955.

(s20) J. Kannappan, N. Jain, A. V. Bedekar, *Tetrahedron: Asymmetry*, 2015, 26, 1102-1107.

(s21) G. Du, Y. Li, S. Ma, R. Wang, B. Li, F. Guo, W. Zhu, Y. Li, *J. Nat. Prod.*, 2015, **78**, 2968-2974.

(s22) M. S. Silva, D. Pietrobom, New J. Chem., 2015, 39, 8240-8244.

(s23) I. Pal, S. R. Chaudhari, N. R. Suryaprakash, Magn. Reson. Chem., 2015, 53, 142-146.

(s24) T. Laaksonen, S. Heikkinen, K. Wähälä, *Molecules*, 2015, 20, 20873-20886.

(s25) S. H. Jung, K. Y. Kim, A. Ahn, S. S. Lee, M. Y. Choi, J. Jaworski, J. H. Jung, *New J. Chem.*, **2016**, *40*, 7917-7922.

(s26) G. Li, J. Cao, W. Zong, X. Lei, R. Tan, Org. Chem. Front., 2016, 3, 96-102.

(s27) A. E. Dowey, C. M. Puentes, M. Carey-Hatch, K. L. Sandridge, N. B. Krishna, T. J. Wenzel, *Chirality*, 2016, **28**, 299-305.

(s28) M. Uzarewicz-Baig, R.Wilhelm, Heteroat. Chem., 2016, 27, 121-134.

(s29) E. Monteagudo, P. March, A. Álvarez-Larena, A. Virgili, *ChemistrySelect*, 2017, 2, 7362-7367.

(s30) V. Schurig, Tetrahedron Lett., 1976, 17, 1269-1272.

(s31) D. Magiera, A. Szmigielska, K. M. Pietrusiewicz, H. Duddeck, *Chirality*, 2004, 16, 57-64.

(s32) C. Naumann, P. W. Kuchel, J. Phys. Chem. A, 2008, 112, 8659-8664.

(s33) C. Naumann, P. W. Kuchel, Chem. Eur. J., 2009, 15, 12189-12191.

(s34) P. W. Kuchel, C. Naumann, B. E. Chapman, D. Shishmarev, P. Håkansson, G. Bacskay, N. S. Hush, *J. Magn. Reson.*, 2014, **247**, 72-80.

(s35) P. Berdagué, J.-E. Herber-Pucheta, V. Jha, A. Panossian, F. R. Leroux, P. Lesot, *New J. Chem.*, 2015, **39**, 9504-9517.