Supporting Information

Copper-Catalyzed Enantioselective 1,2-Borylation of 1,3-Dienes

1

Yangbin Liu, Daniele Fiorito and Clément Mazet* Department of Organic Chemistry, University of Geneva 30, Quai Ernest Ansermet, 1211 Geneva 4, Switzerland E-mail: <u>clement.mazet@unige.ch</u>

Table of Contents

1	General information	2
2	Reaction optimization	3
3	General procedure for the borylation/oxidation sequence	7
4	Substrate scope	8
5	Non-linear effect	61
6	References	62
7	NMR spectra of new compounds	63

1. General information

All reactions were carried out under an inert atmosphere of nitrogen using either twomanifold vacuum/inert nitrogen lines or a M.Braun glove-box. Solvents were dried over activated alumina columns and further degassed by three successive "freeze-pump-thaw" cycles if necessary. NMR spectra were recorded on AMX–300, AMX–400 and AMX–500 Bruker Avance spectrometers at 298 K. ¹H and ¹³C{¹H} NMR chemical shifts are given in ppm relative to SiMe₄, with the solvent resonance used as internal reference. ¹H NMR spectra were referenced to CDCl₃ (7.26 ppm) and ¹³C{¹H} NMR spectra were referenced to CDCl₃ (77.16 ppm). Infrared spectra were obtained on a Perkin–Elmer 1650 FT-IR spectrometer using neat samples on a diamond ATR Golden Gate sampler. The mass spectrometric data were obtained at the mass spectrometry facility of the University of Geneva (<u>http://www.unige.ch/sciences/sms/</u>). GC-MS analyses were performed on GC–HP 6890, column Agilent–HP1 (30 m–ID 0.32 mm, Film 0.25 μm) coupled with MS–HP 5973.

The enantiomeric excesses (ee's) were determined by HPLC, SFC and GC analyses.

HPLC analyses performed on a *Shimadzu* CTO-20AA with column DAICEL OD-H, OJ-H, AD-H and IC. GC analyses were performed on HP–6890, column HYDRODEX DiMOM and HYDRODEX TBDM, 50 m. SFC analyses were performed on a Waters Acquity UPC2 with columns OD-3, OJ-3, OZ-3, OB-H, AZ-3, AD, AS-3, AY-H. Retention times (t_R) are given in minutes. Thin layer chromatography (TLC) was performed on plates of silica precoated with 0.25 mm Kieselgel 60 F₂₅₄ from *Merck*. Flash chromatography was performed using silica gel SiliaFlash® P60 (230-400 mesh) from *Silicycle*. Commercial reagents, precatalysts and ligands were purchased from Aldrich, Fluka, Acros or Strem and used without purification unless otherwise noted. Liquid reagents were transferred with stainless steel syringes or cannula. All the dienes were prepared following reports from the literature.¹ Copper complexes and ligands were stored and weighted inside a M. Braun glove-box. CuO*t*Bu was prepared as described in the literature.² Simplephos ligands L8-9 were prepared following reports from the literature.³

2. Reaction optimization

Table S1: Ligand screening

- 2a : 3a : 4a = 1 : 7 : -2a: 3a: 4a = 6:1:-–40% ee –21% ee
- **2a** : **3a** : **4a** = 4 : 1 : 1 –20% ee
- **2a** : **3a** : **4a** = 4.6 : 1.3 : 1 –4% ee

^a Reaction conditions: Unless otherwise noted, all reactions were performed with diene (0.12 mmol), ligand/CuCl (1:1, 10 mol%), B₂pin₂ (0.1 mmol), KO*t*Bu (40 mol%), MeOH (0.2 mmol) in THF (0.3 mL) at 0 °C. Conversion and regioselectivity are for the boronic ester detected by ¹H NMR. Enantioselectivity determined by HPLC analysis on a chiral stationary phase after oxidation to the alcohol. ^{*b*}CuCl (10 mol%), ligand (20 mol%).

Table S2: Solvent optimization^a

Ph	CuCl (10 (S,S)-L9 (KOfBu (2 B ₂ (pin) ₂ (MeOH (2 solvent (0.1	0 mol%) 20 mol%) 40 mol%) 1.0 equiv.) 2.0 equiv.) M), 5 h, 0 °C	Ar + 2a 1,2-selectivity	Ar Bpin + 3a 4,3-selectivity	Ar (E)- 4a 1,4-selectivity
	t-Bu t-Bu t-Bu t-Bu t-Bu				
	L (<i>S,S</i>)-Simpl	.9 ephos-naph			
Entry	solvent	conv. (%)	2a : 3a : 4a	ee 2a (%	6)
1	THF	29	11 : 1 : 3	64	
2	toluene	83	13 : 1 : -	70	
3	Et ₂ O	51	12 : 1 : -	72	
4	CH_2CI_2	66	15 : 1 : -	73	
5	2-Me-THF	44	9:1:1	67	
6 ^{<i>b</i>}	1,4-dioxane	68	11 : 1.6 : 1	59	
7	<i>i</i> -Pr ₂ O	78	12 : 1 : -	67	
8	<i>n</i> -pentane	79	17 : 1 : 1	73	
9	<i>n</i> -hexane	88	16 : 1 : -	71	
10	cyclohexane	85	13 : 1 : -	66	
11	PhCF ₃	85	11 : 1 : -	74	
12	PhCl	85	12 : 1 : -	70	
13 [°]	n-pentane	88	17 : 1 : -	70	
14 ^{<i>c,d</i>}	n-pentane	77	20 : 1 : -	85	

^a Reaction conditions: all reactions were performed with diene (0.12 mmol), (S,S)-L9/CuCl (2:1, 10 mol%), B₂pin₂ (0.1 mmol), KO*t*Bu (40 mol%), MeOH (0.2 mmol) in THF (1.0 mL) at 0 °C. ^{*b*} At room temperature. ^{*c*} Ligand/CuCl (1:1, 10 mol%). ^{*d*} At –40 °C for 40 h.

Table S3: Base survey^a

5^{*b*}

CuOtBu

-

-

^a Reaction conditions: all reactions were performed with diene (0.12 mmol), (S,S)-**L9**/CuCl (1:1, 10 mol%), B₂pin₂ (0.1 mmol), Base (x mol%), MeOH (0.2 mmol) in *n*-pentane (1.0 mL) at –40 °C. ^{*b*}CuO*t*Bu (10 mol%) was used without extra base, 0.15 M.

89

20:1:-

90

3. General procedure for the borylation/oxidation sequence

CuO*t*Bu (0.03 mmol, 10 mol%), (*R*,*R*)-Simplephos-naph **L9** (0.03 mmol, 10 mol%) and B_2pin_2 (0.3 mmol, 1.0 equiv.) were introduced into a Schlenk tube in a glove-box and dissolved in anhydrous and degassed *n*-pentane (2.0 mL, 0.15 M). After stirring at room temperature for 20 min, the reaction mixture was cooled to -40 °C. Diene **1** (0.36 mmol, 1.2 equiv.) and MeOH (0.6 mmol, 2.0 equiv.) were added next. After stirring at -40 °C for 40 h, the reaction was filtered through a short pad of Celite[®], washed with diethyl ether (10 mL) and the solvent was removed under vacuum. The conversion and isomeric ratio of boronic ester were determined by ¹H NMR analysis of the crude reaction mixture.

To a solution of boronic ester in THF (3.0 mL) was added 30% H_2O_2 (1.5 mL) and 4 M NaOH (1.5 mL). The reaction mixture was stirred vigorously for 30 min at room temperature. The mixture was diluted with water and extracted with diethyl ether (3 x 10 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography (pentane/ethyl acetate 6:1 to 3:1) to afford the corresponding alcohol **2'**. This compound was used for determination of the enantiomeric excess.

Note: All racemates were prepared according to a similar procedure using DrewPhos (**L10**) as ligand (THF, rt, 24 h).

4. Substrate scope

Figure S1. Sequential borylation/oxidation of 2-(hetero)aryl substituted 1,3-dienes. Reaction conditions: **1** (0.36 mmol), B₂(pin)₂ (0.30 mmol). Chemoselectivity assessed by ¹H NMR after borylation. Yields of isolated alcohols **2'**. Enantioselectivity determined by HPLC, GC or SFC using a chiral stationary phase after oxidation. ^a The minor isomer is **4'n**. ^b Isolated as a 5:1 mixture.

Figure S2. Sequential borylation/oxidation of 2-alkyl substituted 1,3-dienes. Reaction conditions: **1u-x** (0.18-0.36 mmol), B₂(pin)₂ (0.15-0.30 mmol). Chemoselectivity assessed by ¹H NMR after borylation. Isolated yields for alcohols **2'v-x**. Enantioselectivity determined by HPLC, GC, SFC using a chiral stationary phase after oxidation. ^a Conversion determined by ¹H NMR. ^b At 0 °C for 24 h.

Figure S3. Catalyst-controlled diastereoselective borylation of (*S*)-**1y**. Reaction conditions: (*S*)-**1y** (0.24 mmol), $B_2(pin)_2$ (0.20 mmol). Chemoselectivity >20:1 in all cases was assessed by ¹H NMR after borylation. Diastereoselectivity assessed by ¹H and ¹³C{¹H} NMR after borylation and oxidation. Isolated yields after oxidation. (B) borylation of bis-diene **1z** (0.36 mmol scale). ^{*a*} 1,2-/4,3-selectivity = 10:1. ^{*b*} Inseparable mixture.

Figure S4. Sequential borylation/oxidation of other substituted 1,3-dienes.

(S)-2-([1,1'-biphenyl]-4-yl)but-3-en-1-ol 2'a

Following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'biphenyl **1a** (74 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 μ L, 0.6 mmol, 2.0 equiv.).

Conversion: 89%, **2a**:**3a** > 20:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'a** as a colorless oil (55 mg, 82% yield, **2'a**:**3'a** > 20:1, 90% *ee*).

TLC: $R_f = 0.5$ (pentane/ethyl acetate 2:1).

¹**H NMR** (300 MHz, CDCl₃) δ (ppm) = 7.54 - 7.44 (m, 4H), 7.40 - 7.30 (m, 2H), 7.29 - 7.18 (m, 3H), 5.95 (ddd, ³*J*_{HH} = 16.8, 10.7, 7.3 Hz, 1H, *H*-3), 5.23 - 5.05 (m, 2H, *H*-4), 3.77 (dd, ³*J*_{HH} = 7.4, ²*J*_{HH} = 3.1 Hz, 2H, *H*-1), 3.49 (dt, ³*J*_{HH} = 7.3, 7.2 Hz, 1H, *H*-2), 1.52 (s, 1H, OH).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ (ppm) = 140.8 (C-Ar), 139.9 (C-Ar), 139.7 (C-Ar), 138.2 (CH-3), 128.8 (CH-Ar), 128.4 (CH-Ar), 127.5 (CH-Ar), 127.3 (CH-Ar), 127.1 (CH-Ar), 117.2 (CH₂-4), 66.1 (CH₂-1), 52.2 (CH-2).

LRMS (ESI +): calculated for $C_{16}H_{16}O$ [M]⁺: 224.12; found: 242.25 [M+NH₄]⁺; 247.15 [M+Na]⁺.

IR (neat) v (cm⁻¹): 3354, 3029, 2923, 2855, 1637, 1601, 1519, 1486, 1463, 1407, 1261, 1181, 1027, 917, 836, 763, 696.

HPLC: 90% ee, chiral stationary column: IC, mobile phase: hexane/*i*PrOH = 99/1, 1.0 mL/min, 254 nm, 30 °C, t_R (major) = 28.1 min, t_R (minor) = 26.5 min.

 $[\alpha]^{25}_{D} = +69.2 (c 1.03, CH_2CI_2).$

<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	26.551	9348150	49.489	
2	28.128	9541217	50.511	
Total		18889367	100.000	

<Chromatogram>

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	26.539	700527	5.140	
2	28.057	12928996	94.860	
Total		13629523	100.000	

(S)-2-phenylbut-3-en-1-ol 2'b

Following the general procedure using buta-1,3-dien-2-ylbenzene **1b** (47 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 μ L, 0.6 mmol, 2.0 equiv.). Conversions: 84%, **2b:3b** = 20:1. The reaction

mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'b** as a colorless oil (29 mg, 65% yield, **2'b**:**3'b** > 20:1, 90% *ee*). All spectroscopic and spectrometric analyses were in agreement with the literature.⁴

HPLC: 90% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 99.5/0.5, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 33.2 min, t_R (minor) = 39.1 min. [α]²⁰_D = +51.2 (*c* 0.24, CH₂Cl₂).

<Peak Table>

PDA Ch1 220nm				
Peak#	Ret. Time	Area	Area%	
1	33.504	2833436	50.147	
2	39.003	2816818	49.853	
Total		5650254	100.000	

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	33.245	12593524	95.021
2	39.075	659954	4.979
Total		13253478	100.000

(S)-2-(4-(dimethylamino)phenyl)but-3-en-1-ol 2'c

Following the general procedure using 4-(buta-1,3-dien-2-yl)-*N*,*N*-dimethylaniline **1c** (62 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-**L9** (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 μ L, 0.6 mmol, 2.0 equiv.). Conversions: 70%, **2c:3c** = 12:1. The reaction mixture was then

oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'c** as a colorless oil (36 mg, 63% yield, **2'c**:**3'c** = 14:1, 88% *ee*).

TLC: $R_f = 0.3$ (pentane/ethyl acetate 2:1).

¹**H NMR** (300 MHz, CDCl₃) δ (ppm) = 7.16 – 7.06 (m, 2H), 6.78 – 6.68 (m, 2H), 5.98 (ddd, ³*J*_{HH} = 16.6, 10.8, 7.6 Hz, 1H, *H*-3), 5.24 – 5.08 (m, 2H, *H*-4), 3.78 (d, ³*J*_{HH} = 7.2 Hz, 2H, *H*-1), 3.44 (dt, ³*J*_{HH} = 7.3, 7.2 Hz, 1H, *H*-2), 2.94 (s, 6H, *H*-5), 1.59 (s, 1H, **O**-*H*).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ (ppm) = 149.7 (C-Ar), 138.9 (CH-3), 128.6 (CH-Ar), 128.2 (C-Ar), 116.3 (CH₂-4), 113.1 (CH-Ar), 66.2 (CH₂-1), 51.5 (CH-2), 40.7 (CH₃-5).

LRMS (ESI +): calculated for C₁₂H₁₇NO [M]⁺: 191.13; found: 192.14 [M+H]⁺.

IR (neat) v (cm⁻¹): 3366, 3077, 2922, 2875, 2800, 1613, 1565, 1519, 1478, 1445, 1345, 1223, 1163, 1134, 1055, 1027, 946, 913, 814, 745, 646.

HPLC: 88% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 97/3, 1.0 mL/min, 254 nm, 30 °C, t_R (major) = 20.4 min, t_R (minor) = 17.9 min.

 $[\alpha]^{20}_{D} = +63.2 (c \ 0.65, \ CH_2Cl_2).$

<Peak Table>

PDA C	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	17.939	5761392	50.783		
2	20.565	5583755	49.217		
Total		11345147	100.000		

<Chromatogram>

mAU

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	17.938	2972545	6.061	
2	20.438	46074039	93.939	
Total		49046584	100.000	

(S)-2-(4-methoxyphenyl)but-3-en-1-ol 2'd

Following the general procedure using 1-(buta-1,3-dien-2-yl)-4methoxybenzene **1d** (58 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (R,R)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (S)-2'd (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0 equiv.).

Conversions: 87%, 2d:3d = 9:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-2'd as a colorless oil (37 mg, 70% yield, 2'd:3'd > 20:1, 90% *ee*). All spectroscopic and spectrometric analyses were in agreement with the literature.⁴

HPLC: 90% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 98/2, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 26.3 min, t_R (minor) = 23.6 min. $[\alpha]^{25}_D = +68.2$ (*c* 0.56, CH₂Cl₂).

<Peak Table>

PDA Ch1 220nm					
Peak#	Ret. Time	Area	Area%		
1	23.654	942439	50.231		
2	26.339	933774	49.769		
Total		1876213	100.000		

PDA C	n2 220nm		
Peak#	Ret. Time	Area	Area%
1	23.617	217264	5.139
2	26.276	4010678	94.861
Total		4227941	100.000

(S)-2-(4-isobutylphenyl)but-3-en-1-ol 2'e

Following the general procedure using 1-(buta-1,3-dien-2-yl)-4isobutylbenzene **1e** (74 mg, 0.3 mmol, 1.0 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-**L9** (22 mg, 0.03 mmol, 10 mol%), B_2pin_2 (91 mg, 0.36 mmol, 1.2 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0

equiv.). Conversions: 84%, 2e:3e = 20:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-2'e as a colorless oil (45 mg, 73% yield, 2'e:3'e > 20:1, 91% *ee*).

TLC: $R_f = 0.6$ (pentane/ethyl acetate 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.18 – 7.10 (m, 4H), 6.01 (ddd, ³*J*_{HH} = 16.8, 10.6, 7.7 Hz, 1H, *H*-3), 5.23 – 5.16 (m, 2H, *H*-4), 3.85 – 3.77 (m, 2H, *H*-1), 3.51 (dt, ³*J*_{HH} = 7.3, 7.2 Hz, 1H, *H*-2), 2.46 (d, ³*J*_{HH} = 7.1 Hz, 2H, *H*-5), 1.85 (dt, ³*J*_{HH} = 13.5, 6.8 Hz, 1H, *H*-6), 1.50 (s, 1H, *H*-0), 0.90 (d, ³*J*_{HH} = 6.6 Hz, 6H, *H*-7).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 140.4 (C-Ar), 138.4 (CH-3), 137.7 (C-Ar), 129.5 (CH-Ar), 127.6 (CH-Ar), 116.9 (CH₂-4), 66.1 (CH₂-1), 52.2 (CH-2), 45.0 (CH₂-5), 30.2 (CH-6), 22.4 (CH₃-7).

LRMS (ESI+): calculated for C₁₄H₂₀O [M]⁺: 204.15; found: 222.25 [M+NH₄]⁺; 227.25 [M+Na]⁺. **IR** (neat) v (cm⁻¹): 3351, 3082, 2954, 2923, 2869, 1638, 1512, 1465, 1415, 1383, 1367, 1168, 1117, 1054, 1031, 917, 844, 794.

HPLC: 91% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 99/1, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 16.9 min, t_R (minor) = 15.2 min.

 $[\alpha]^{25}_{D} = +55.5 (c \, 0.84, \, CH_2Cl_2).$

<Peak Table>

PDA C	PDA Ch2 220nm				
Peak#	Ret. Time	Area	Area%		
1	15.123	4485654	49.959		
2	16.863	4493067	50.041		
Total		8978722	100.000		

<Chromatogram>

mAU

PDA Ch2 220nm				
Peak#	Ret. Time	Area	Area%	
1	15.185	187992	4.430	
2	16.925	4055665	95.570	
Total		4243657	100.000	

(S)-2-(4-(trifluoromethyl)phenyl)but-3-en-1-ol 2'f

Following the general procedure using 1-(buta-1,3-dien-2-yl)-4-(trifluoromethyl)benzene **1f** (48 mg, 0.24 mmol, 1.2 equiv.), CuO*t*Bu (2.7 mg, 0.02 mmol, 10 mol%), (R,R)-L**9** (15 mg, 0.02 mmol, 10 mol%), B₂pin₂ (51 mg, 0.2 mmol, 1.0 equiv.) and MeOH (16 µL, 0.4 mmol, 2.0 equiv.).

Conversions: 70%, 2f:3f = 50:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'f** as a colorless oil (24 mg, 56% yield, **2'f:3'f** > 50:1, 86% *ee*). All spectroscopic and spectrometric analyses were in agreement with the literature.⁴

HPLC: 86% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/^{*i*}PrOH = 99/1, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 16.5 min, t_R (minor) = 19.7 min. $[\alpha]^{20}_D = +34.6$ (*c* 0.80, CHCl₃).

<Peak Table>

PDA Ch1 220nm			
Peak#	Ret. Time	Area%	
1	16.967	50.075	
2	19.806	49.925	
Total		100.000	

<Chromatogram>

mAU

PDA Ch1 220nm				
Peak#	Ret. Time	Area%		
1	16.536	93.207		
2	19.731	6.793		
Total		100.000		

(S)-2-(4-fluorophenyl)but-3-en-1-ol 2'g

the

Following general procedure fluorobenzene 1g (54 mg, 0.36 mmol, 1.2 equiv.), CuOtBu (4.1 mg, 0.03 mmol, 10 mol%), (R,R)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0 equiv.). Conver-

using

sions: 76%, 2g:3g = 8:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (S)-2'g as a colorless oil (28 mg, 56% yield, 2'g:3'g > 20:1, 89% ee). All spectroscopic and spectrometric analyses were in agreement with the literature.⁴

HPLC: 89% ee, chiral stationary column: AD-H, mobile phase: hexane/iPrOH = 99/1, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 26.6 min, t_R (minor) = 24.6 min. $[\alpha]^{20}_{D} = +61.0 (c 0.26, CH_2CI_2).$

1-(buta-1,3-dien-2-yl)-4-

<Peak Table>

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	24.656	5967707	50.270
2	26.625	5903490	49.730
Total		11871198	100.000

<Chromatogram>

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	24.629	114074	5.594
2	26.608	1925015	94.406
Total		2039089	100.000

(S)-2-(4-chlorophenyl)but-3-en-1-ol 2'h

Following the general procedure using 1-(buta-1,3-dien-2-yl)-4chlorobenzene **1h** (60 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (R,R)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0 equiv.). Conver-

sions: 95%, **2h**:**3h** = 20:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'h** as a colorless oil (44 mg, 80% yield, **2'h**:**3'h** > 50:1, 89% *ee*). All spectroscopic and spectrometric analyses were in agreement with the literature.⁴

HPLC: 89% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 99/1, 1.0 mL/min, 221 nm, 30 °C, t_R (major) = 30.8 min, t_R (minor) = 28.1 min. $[\alpha]^{20}_D = +55.9$ (*c* 0.60, CHCl₃).

mAU

<Peak Table>

PDA Ch1 221nm			
Peak#	Ret. Time	Area%	
1	28.280	50.400	
2	30.955	49.600	
Total		100.000	

<Chromatogram>

mAU

PDA Ch1 221nm				
Peak#	Ret. Time	Area%		
1	28.074	5.497		
2	30.757	94.503		
Total		100.000		

(S)-2-(benzo[d][1,3]dioxol-5-yl)but-3-en-1-ol 2'i

Following the general procedure using 5-(buta-1,3-dien-2-yl)benzo[d][1,3]dioxole **1i** (63 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (R,R)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0 equiv.).

Conversions: 93%, **2i**:**3i**:**4i** = 20:4:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'i** as a colorless oil (45 mg, 77% yield, **2'i**:**3'i**:**4'i** = 50:1:1.6, 90% *ee*). All spectroscopic and spectrometric analyses were in agreement with the literature.⁵

HPLC: 90% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 98/2, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 40.6 min, t_R (minor) = 44.1 min. $[\alpha]^{20}_D = +52.8$ (*c* 0.72, CH₂Cl₂).

<Peak Table>

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	40.487	10219687	49.862
2	43.650	10276089	50.138
Total		20495777	100.000

<Chromatogram>

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	40.563	4424592	95.102
2	44.065	227866	4.898
Total		4652457	100.000

(S)-2-(naphthalen-2-yl)but-3-en-1-ol 2'j

Following the general procedure using 2-(buta-1,3-dien-2-yl)naphthalene **1j** (65 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 μ L, 0.6 mmol, 2.0 equiv.). Conversions:

90%, **2j**:**3j** > 20:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'j** as a colorless oil (48 mg, 81% yield, **2'j**:**3'j** > 20:1, 90% *ee*). All spectroscopic and spectrometric analyses were in agreement with the literature.⁴

HPLC: 90% *ee*, chiral stationary column: AD-H, mobile phase: hexane/^{*i*}PrOH = 99/1, 1.0 mL/min, 254 nm, 30 °C, t_R (major) = 52.9 min, t_R (minor) = 45.7 min. [α]²⁰_D = +73.4 (*c* 0.96, CH₂Cl₂).

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	45.348	7018620	49.709
2	52.639	7100816	50.291
Total		14119437	100.000

<Chromatogram>

mAU

PDA C Peak#	Ret. Time	Area	Area%
1	45.705	316990	4.591
2	52.929	6587496	95.409
Total		6904485	100.000

(S)-2-(3-methoxyphenyl)but-3-en-1-ol 2'k

Following the general procedure using 1-(buta-1,3-dien-2-yl)-3methoxybenzene **1k** (49 mg, 0.3 mmol, 1.0 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (R,R)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (91 mg, 0.36 mmol, 1.2 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0 equiv.).

Conversions: 85%, $2\mathbf{k}$: $3\mathbf{k}$ = 20:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'k** as a colorless oil (43 mg, 73% yield, **2'k**: $3'\mathbf{k}$ > 20:1, 91% ee). All spectroscopic and spectrometric analyses were in agreement with the literature.⁶

HPLC: 91% *ee*, chiral stationary column: OD-H, mobile phase: hexane/*i*PrOH = 98/2, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 23.3 min, t_R (minor) = 21.6 min. [α]²⁵_D = +56.2 (*c* 0.70, CH₂Cl₂).

<Peak Table>

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	21.543	5005627	50.197
2	23.325	4966432	49.803
Total		9972059	100.000

<Chromatogram>

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	21.572	162269	4.256
2	23.333	3650231	95.744
Total		3812501	100.000

(S)-2-(o-tolyl)but-3-en-1-ol 2'l

Following the general procedure using 1-(buta-1,3-dien-2-yl)-2methylbenzene **1I** (35 mg, 0.24 mmol, 1.2 equiv.), CuO*t*Bu (2.7 mg, 0.02 mmol, 10 mol%), (*R*,*R*)-**L9** (14.7 mg, 0.02 mmol, 10 mol%), B₂pin₂ (50.8 mg, 0.2 mmol, 1.0 equiv.) and MeOH (18 μ L, 0.4 mmol, 2.0 equiv.) at -40 °C for

60 h. Conversions: 90%, **2I:3I** = 2.6:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'I** as a colorless oil (18 mg, 56% yield, **2'I:3'I** > 20:1, 88% *ee*).

TLC: $R_f = 0.6$ (pentane/ethyl acetate 3:1).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.22 – 7.12 (m, 4H), 5.96 (ddd, ³J_{HH} = 17.1, 10.3, 6.8 Hz, 1H, *H*-3), 5.26 – 5.06 (m, 2H, *H*-4), 3.88 – 3.74 (m, 3H, *H*-1 and *H*-2), 2.37 (s, 3H, *H*-5), 1.56 (s, 1H, *H*-O).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 138.6 (C-Ar), 138.2 (CH-3), 136.7 (C-Ar), 130.8 (CH-Ar), 126.7 (CH-Ar), 126.4 (CH-Ar), 126.3 (CH-Ar), 117.0 (CH₂-4), 65.3 (CH₂-1), 47.9 (CH-2), 19.6 (CH₃-5).

LRMS (ESI+): calculated for C₁₄H₂₀O [M]⁺: 162.10; found: 185.09 [M+Na]⁺.

IR (neat) v (cm⁻¹): 3355, 3075, 3020, 2927, 2876, 1726, 1637, 1604, 1490, 1462, 1413, 1380, 1295, 1261, 1028, 994, 916, 869, 753, 726, 665.

GC: 88% *ee*, HYDRODEX G-DiMOM, 100°C-1°C/min-170°C, 45 cm/s, H₂, t_R (major) = 44.1 min, t_R (minor) = 43.1 min.

 $[\alpha]^{20}_{D} = +52.4 (c \ 0.25, \ CH_2Cl_2).$

(S)-2-(2-fluorophenyl)but-3-en-1-ol 2'm

Following the general procedure using 1-(buta-1,3-dien-2-yl)-2-fluorobenzene **1m** (54 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 μ L, 0.6 mmol, 2.0 equiv.). Conversions: 81%, **2m**:**3m** = 15:1.

The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'm** as a colorless oil (35 mg, 70% yield, **2'ml:3'm** > 20:1, 87% *ee*). All spectroscopic and spectrometric analyses were in agreement with the literature.⁷

HPLC: 87% *ee*, chiral stationary column: IC, mobile phase: hexane/*i*PrOH = 99.5/0.5, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 24.5 min, t_R (minor) = 23.6 min. [α]²⁵_D = +55.8 (*c* 0.45, CH₂Cl₂).

<Peak Table>

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	23.454	1918228	49.077
2	24.411	1990388	50.923
Total		3908616	100.000

<Chromatogram>

PDA C	n1 220nm		
Peak#	Ret. Time	Area	Area%
1	23.633	404657	6.652
2	24.488	5678593	93.348
Total		6083250	100.000

(S)-4-(1-hydroxybut-3-en-2-yl)benzonitrile 2'n

Following the general procedure using 4-(buta-1,3-dien-2-yl)benzonitrile **1n** (56 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-**L9** (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 μ L, 0.6 mmol, 2.0 equiv.). Conversions: 26%, **2n**:**4n**

= 13:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'n** as a colorless oil (13 mg, 24% yield, **2'n**:**4'n** = 18:1, 85% *ee*).

TLC: R_f = 0.3 (pentane/ethyl acetate 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.66 – 7.58 (m, 2H), 7.40 – 7.30 (m, 2H), 5.97 (ddd, ³J_{HH} = 17.2, 10.4, 7.6 Hz, 1H, *H*-3), 5.33 – 5.11 (m, 2H, *H*-4), 3.86 (d, ³J_{HH} = 6.8 Hz, 2H, *H*-1), 3.60 (dt, ³J_{HH} = 7.1, 7.0 Hz, 1H, *H*-2), 1.55 (br, 1H, *H*-0).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ (ppm) = 146.5 (C-Ar), 136.8 (CH-3), 132.5 (CH-Ar), 128.9 (CH-Ar), 118.8 (C-5), 118.3 (CH₂-4), 110.8 (C-Ar), 65.6 (CH₂-1), 52.4 (CH-2).

LRMS (ESI +): calculated for C₁₁H₁₁NO [M]⁺: 173.08; found: 191.12 [M+NH₄]⁺.

IR (neat) v (cm⁻¹): 3437, 2926, 2228,1741, 1643, 1604, 1504, 1377, 1266, 1022, 984, 825, 733.

HPLC: 85% *ee*, chiral stationary column: AD-H, mobile phase: hexane/^{*i*}PrOH = 97/3, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 44.9 min, t_R (minor) = 41.5 min. $[\alpha]^{20}_D = +71.9$ (*c* 0.15, CH₂Cl₂).

Peak#	Ret. Time	Area	Area%
1	41.386	4019518	5.917
2	44.953	4007721	5.899
3	49.352	59908782	88.184
Total		67936021	100.000

<Chromatogram>

PDA Ch1 220nm				
Peak#	Ret. Time	Area	Area%	
1	41.482	105826	7.596	
2	44.942	1287277	92.404	
Total		1393103	100.000	

(S)-2-(4-((trimethylsilyl)ethynyl)phenyl)but-3-en-1-ol 2'o

Following the general procedure using ((4-(buta-1,3-dien-2-yl)phenyl)ethynyl)-trimethylsilane **10** (82 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 μ L, 0.6 mmol, 2.0 equiv.). Conversions: 75%, **20:30** >

20:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'o** as a colorless oil (47 mg, 65% yield, **2'o**:**3'o** > 20:1, 89% *ee*).

TLC: $R_f = 0.5$ (pentane/ethyl acetate 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.43 (d, ³J_{HH} = 8.2 Hz, 2H), 7.17 (d, ³J_{HH} = 8.2 Hz, 2H), 5.97 (ddd, ³J_{HH} = 17.6, 10.4, 7.6 Hz, 1H, *H*-3), 5.27 – 5.11 (m, 2H, *H*-4), 3.80 (d, ³J_{HH} = 7.0 Hz, 2H, *H*-1), 3.51 (dt, ³J_{HH} = 7.2 Hz, 7.2 Hz, 1H, *H*-2), 1.51 (br, 1H, *H*-O), 0.24 (s, 9H, *H*-5). ¹³C{¹H} **NMR** (100 MHz, CDCl₃) δ (ppm) = 141.2 (C-Ar), 137.7 (CH-3), 132.3 (CH-Ar), 127.9 (CH-Ar), 121.8 (C-Ar), 117.4 (CH₂-4), 104.9 (C-7), 94.2 (C-6), 65.9 (CH₂-1), 52.3 (CH-2), 0.0 (CH₃-5).

LRMS (ESI +): calculated for C₁₅H₂₀OSi [M]⁺: 244.13; found: 262.15 [M+NH₄]⁺.

IR (neat) v (cm⁻¹): 3347, 3081, 2959, 2926, 2158, 1639, 1503, 1409, 1249, 1223, 1107, 1057, 1020, 995, 912, 861, 837, 758, 667.

HPLC: 89% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 99.5/0.5, 1.0 mL/min, 254 nm, 30 °C, t_R (major) = 20.9 min, t_R (minor) = 19.5 min.

 $[\alpha]^{20}_{D} = +66.3 (c 0.54, CH_2CI_2).$

 PDA Ch1 254nm

 Peak# Ret. Time
 Area
 Area%

 1
 19.530
 16066825
 49.569

 2
 20.929
 16346307
 50.431

 Total
 32413132
 100.000

<Chromatogram>

Peak#	Ret. Time	Area	Area%
1	19.553	2408679	5.558
2	20.956	40931323	94.442
Total		43340002	100.000

(S)-2-(1-methyl-1H-pyrrol-2-yl)but-3-en-1-ol 2'p

Following the general procedure using 2-(buta-1,3-dien-2-yl)-1-methyl-1*H*-pyrrole **1p** (48 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B_2pin_2 (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0 equiv.). Conversions: 60%,

2p:3p = 1.3:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'p** as a colorless oil (13 mg, 28% yield).

TLC: $R_f = 0.4$ (pentane/ethyl acetate 2:1).

¹**H NMR** (300 MHz, CDCl₃) δ (ppm) = 6.59 (dd, ³J_{HH} = 2.7, 1.8 Hz, 1H, *H*-8), 6.11 (dd, ³J_{HH} = 3.6, 2.7 Hz, 1H, *H*-9), 5.97 (dd, ³J_{HH} = 3.6, 1.8 Hz, 1H, *H*-7), 5.82 (ddd, ³J_{HH} = 17.1, 10.2, 7.5 Hz, 1H, *H*-3), 5.21 – 5.15 (m, 1H, *H*-4), 5.13 – 5.05 (m, 1H, *H*-4), 3.89 – 3.74 (m, 2H, *H*-1), 3.60 (t, ³J_{HH} = 7.2 Hz, 1H, *H*-2), 3.55 (s, 3H, *H*-5), 1.69 (br, 1H, *H*-0).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 137.5 (*C*H-3), 131.0 (*C*-6), 122.3 (*C*H-8), 117.2 (*C*H₂-4), 107.0 (*C*H-9), 105.1 (*C*H-7), 64.6 (*C*H₂-1), 44.5 (*C*H-2), 33.7 (*C*H₃-5).

LRMS (ESI+): calculated for C₉H₁₃NO [M]⁺: 151.10; found: 134.45 [M-OH]⁺.

IR (neat) v (cm⁻¹): 3358, 2958, 2925, 2864, 1731, 1637, 1592, 1464, 1422, 1395, 1364, 1300, 1248, 1176, 1148, 1057, 1032, 996, 917, 870, 792, 608.

HPLC: 86% *ee*, chiral stationary column: OD-H, mobile phase: hexane/*i*PrOH = 99/1, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 28.3 min, t_R (minor) = 37.2 min.

 $[\alpha]^{20}_{D} = +74.7 \ (c \ 0.12, \ CH_2Cl_2).$

<Peak Table>

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	28.262	3026412	49.673
2	37.141	3066280	50.327
Total		6092692	100.000

<Chromatogram>

mAU

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	28.258	3066306	93.144
2	37.186	225684	6.856
Total		3291990	100.000

tert-butyl (S)-3-(1-hydroxybut-3-en-2-yl)-1H-indole-1-carboxylate 2'q

Following the general procedure using *tert*-butyl 3-(buta-1,3-dien-2-yl)-1*H*-indole-1-carboxylate **1q** (97 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 μ L, 0.6 mmol, 2.0 equiv.). Conversions: 84%, **2q:3q** = 3.8:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column

chromatography to afford alcohol (S)-2'q as a colorless oil (55 mg, 64% yield, 2'q:4'q = 20:1, 60% *ee*).

TLC: $R_f = 0.4$ (pentane/ethyl acetate 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.15 (d, ${}^{3}J_{HH}$ = 8.4 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.47 (s, 1H, *H*-**5**), 7.36 – 7.30 (m, 1H), 7.25 – 7.19 (m, 1H), 6.06 (ddd, ${}^{3}J_{HH}$ = 17.4, 10.3, 7.3 Hz, 1H, *H*-**3**), 5.31 – 5.25 (m, 2H, *H*-**4**), 4.02 – 3.94 (m, 1H, *H*-**1**), 3.80 (td, ${}^{3}J_{HH}$ = 7.1, 6.1, Hz, 1H, *H*-**2**), 3.83 – 3.73 (m, 1H, *H*-**1**), 1.68 (br, 10H, *H*-**O and** *H***-8**).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 149.7 (C-6), 137.1 (CH-3), 135.6 (C-Ar), 129.7 (C-Ar), 124.5 (CH-Ar), 122.8 (CH-Ar), 122.4 (CH-Ar), 119.5 (C-Ar), 119.4 (CH-5), 117.5 (CH₂-4), 115.4 (CH-Ar), 83.7 (C-7), 64.8 (CH₂-1), 43.7 (CH-2), 28.2 (CH₃-8).

LRMS (ESI +): calculated for $C_{17}H_{21}NO_3$ [M]⁺: 287.15; found: 288.05 [M+H]⁺; 305.35 [M+NH₄]⁺.

IR (neat) v (cm⁻¹): 3405, 3055, 2978, 2930, 1728, 1639, 1608, 1567, 1452, 1369, 1308, 1255, 1068, 1020, 919, 856, 765, 739, 704, 636.

HPLC: 60% *ee*, chiral stationary column: OD-H, mobile phase: hexane/*i*PrOH = 98/2, 1.0 mL/min, 254 nm, 30 °C, t_R (major) = 16.1 min, t_R (minor) = 21.3 min.

 $[\alpha]^{20}_{D} = +36.6 \ (c \ 0.96, \ CH_2CI_2).$

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	16.095	12539360	49.724	
2	21.215	12678451	50.276	
Total		25217811	100.000	

<Chromatogram>

mAU

PDA C	n1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.087	4799842	79.999
2	21.327	1200007	20.001
Total		5999849	100.000

(S)-2-(6-methoxypyridin-3-yl)but-3-en-1-ol 2'r

Following the general procedure using 5-(buta-1,3-dien-2-yl)-2methoxypyridine **1r** (65 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (R,R)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (S)-2'r (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0 equiv.).

Conversions: 46%, $2\mathbf{r}$: $3\mathbf{r}$: $4\mathbf{r}$ = 50:10:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)- $2\mathbf{r}$ as a colorless oil (24 mg, 45% yield, $2\mathbf{r}$: $3\mathbf{r}$: $4\mathbf{r}$ = 50:10:1, 80% *ee*).

TLC: $R_f = 0.2$ (pentane/acetone 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.02 (d, ³J_{HH} = 2.4 Hz, 1H), 7.45 (dd, ³J_{HH} = 8.5, 2.5 Hz, 1H), 6.72 (dd, ³J_{HH} = 8.5, 0.7 Hz, 1H), 5.96 (ddd, ³J_{HH} = 17.5, 10.4, 7.4 Hz, 1H, *H***-3**), 5.26 – 5.11 (m, 2H, *H***-4**), 3.91 (s, 3H, *H***-5**), 3.83 – 3.77 (m, 2H, *H***-1**), 3.48 (dt, ³J_{HH} = 7.1 Hz, 7.1 Hz, 1H, *H***-2**), 1.70 – 1.64 (m, 1H, *H***-0**).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 163.3 (C-Ar), 146.2 (CH-Ar), 138.2 (CH-Ar), 137.6 (CH-3), 128.8 (C-Ar), 117.5 (CH₂-4), 110.9 (CH-Ar), 65.8 (CH₂-1), 53.4 (CH₃-5), 48.9 (CH-2).

LRMS (ESI +): calculated for $C_{10}H_{13}NO_2$ [M]⁺: 179.09; found: 180.05 [M+H]⁺; 162.25 [M-OH]⁺.

IR (neat) v (cm⁻¹): 3328, 3080, 2980, 2946, 2871, 2816, 1844, 1639, 1605, 1572, 1492, 1391, 1312, 1286, 1130, 1055, 1023, 996, 919, 878, 827, 762, 662.

HPLC: 80% *ee*, chiral stationary column: OD-H, mobile phase: hexane/*i*PrOH = 99/1, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 55.2 min, t_R (minor) = 59.3 min.

 $[\alpha]^{20}_{D} = +44.8 \ (c \ 0.36, \ CH_2Cl_2).$

<Peak Table>

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	54.937	12925541	51.547
2	58.563	12149586	48.453
Total		25075128	100.000

<Chromatogram>

mAU

PDA C	h1 220nm		
Peak#	Ret. Time	Area	Area%
1	55.166	17718140	90.002
2	59.326	1968260	9.998
Total		19686400	100.000

(S)-2-(cyclohex-1-en-1-yl)but-3-en-1-ol 2's

Following the general procedure using 1-(buta-1,3-dien-2-yl)cyclohex-1-ene **1s** (48 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 μ L, 0.6 mmol, 2.0 equiv.). Conversions: 99%, **2s:4s** = 25:1.

The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2's** as a colorless oil (40 mg, 88% yield, **2's**:**4's** = 25:1, 89% *ee*).

TLC: $R_f = 0.2$ (pentane/ diethyl ether 9:1).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 5.75 (m, 1H, *H*-9), 5.55 (m, 1H, *H*-4), 5.12 (d, ³*J*_{HH} = 10.9 Hz, 1H, *H*-10), 5.11 (d, ³*J*_{HH} = 16.4 Hz, 1H, *H*-10), 3.60 (m, 2H, *H*-1) 2.81 (m, 1H, *H*-2), 2.03 (m, 2H, *H*-5), 1.94 (m, 2H, *H*-8), 1.58 (m, 4H, *H*-6 + *H*-7), 1.45 (t, ³*J*_{HH} = 6.1 Hz, 1H, **OH**).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 137.8 (CH-9), 136.5 (C-3), 124.1 (CH-4), 116.7 (CH₂-10), 63.4 (CH₂-1), 54.2 (CH-2), 26.6 (CH₂-8), 25.4 (CH₂-5), 23.0 (CH₂-6 or CH₂-7), 22.6 (CH₂-6 or CH₂-7).

GC-MS (EI) (C₁₀H₁₆O): 152.1 (3, M⁺), 134.1 (5, M⁺–18), 121.1 (53, M⁺–31), 105.1 (53,

M⁺-47), 105.1 (12, M⁺-47), 93.1 (49, M⁺-49), 91.1 (63, M⁺-61), 79.1 (100, M⁺-73), 77.1 (48, M⁺-75), 67.1 (39, M⁺-85).

IR (neat) v (cm⁻¹): 3347, 2925, 2858, 2837, 1635, 1438, 1341, 1207, 1138, 1054, 102, 994, 913, 838, 801.

HPLC: 89% *ee*, chiral stationary column: AD-H, mobile phase: hexane/'PrOH = 99/1, 1.0 mL/min, 208 nm, 30 °C, t_R (major) = 14.5 min, t_R (minor) = 16.1 min. $[\alpha]^{25}_{D} = +38.3$ (*c* 0.30, CH₂Cl₂).

<Peak Table>

PDA C	h1 208nm		
Peak#	Ret. Time	Area	Area%
1	14.584	11121471	49.635
2	16.051	11284970	50.365
Total		22406441	100.000

<Chromatogram>

mAU

PDA Ch1 207nm				
Peak#	Ret. Time	Area	Area%	
1	14.538	29971109	94.521	
2	16.083	1737448	5.479	
Total		31708556	100.000	

(S,E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)-2-vinylbut-3-en-1-ol 2't

Following the general procedure using (*E*)-1,3,3-trimethyl-2-(3methylenepenta-1,4-dien-1-yl)cyclohex-1-ene **1t** (73 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-**L9** (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27

 μ L, 0.6 mmol, 2.0 equiv.). Conversions: 99%, **2t**:**3t** = 50:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*,*E*)-**2't** as a colorless oil (40 mg, 60% yield, **2't**:**3't** = 50:1, 80% *ee*).

TLC: $R_f = 0.3$ (pentane/ diethyl ether 4:1).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 5.98 (d, ${}^{3}J_{HH}$ = 16.0 Hz, 1H, *H*-4), 5.80 (ddd, ${}^{3}J_{HH}$ = 17.4, 10.5, 7.1 Hz, 1H, *H*-13), 5.29 (dd, ${}^{3}J_{HH}$ = 16.0, 7.9 Hz, 1H, *H*-3), 5.18 (m, 2H, *H*-14), 3.58 (m, 2H, *H*-1), 3.03 (m, 1H, *H*-2), 1.97 (m, 2H, *H*-9), 1.67 (s, 3H, *H*-11), 1.60 (s, 1H, *H*-8), 1.46 (m, 1H, *H*-7), 0.99 (s, 3H, *H*-12), 0.98 (s, 3H, *H*-12).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 138.1 (CH-13), 137.4 (C-10), 132.3 (CH-3), 130.7 (CH-13), 128.7 (C-5), 116.8 (CH₂-14), 65.5 (CH₂-1), 50.6 (CH-2), 39.5 (CH₂-7), 34.0 (C-6), 32.8 (CH₂-9), 29.0 (CH₃-12), 28.9 (CH₃-12), 21.7 (CH₃-11), 19.4 (CH₂-8).

LRMS (ESI +): calculated for C₁₅H₂₄O [M]⁺: 220.18; found: 238.4 [M+NH₄]⁺;

IR (neat) v (cm⁻¹): 3344, 2927, 2865, 1638, 1457, 1360, 1205, 1039, 973, 916.

SFC: 80% *ee*; chiral stationary phase: AZ column; 2% MeOH; t_R (major) = 8.4 min, t_R (minor) = 7.4 min.

 $[\alpha]^{25}_{D} = +30.0 (c \ 0.55, \ CH_2Cl_2)$

(R)-6-methyl-2-vinylhept-5-en-1-ol 2'u

Following the general procedure using myrcene **1u** (25 mg, 0.18 mmol, 1.2 equiv.), CuO*t*Bu (2.1 mg, 0.015 mmol, 10 mol%), (*R*,*R*)-**L9** (11 mg, 0.0015 mmol, 10 mol%), B₂pin₂ (38 mg, 0.15 mmol, 1.0 equiv.) and MeOH (12 μ L, 0.3 mmol, 2.0 equiv.). Reaction temperature: 0°C.

Reaction time: 24 h. Conversions: 94%, 2u:3u = 1:5.7. Then it was oxidized under basic condition following the general procedure to afford mixture of alcohols 2'u:3'u, whose ratio was determined by ¹H NMR 2'u:3'u = 1:5.7. All spectroscopic and spectrometric analyses of 2'u and 3'u were in agreement with the literature.⁸

Determination of enantiomeric excess was carried out on the crude mixture of homoallylic boronates **2u** and **3u**.

GC: HYDRODEX TBDM, 160°C-1°C/min-180°C, 45 cm/s, H₂, t_R (major) = 67.98 min, t_R (minor) = 67.74 min.

(R)-2-phenethylbut-3-en-1-ol 2'v

Following the general procedure using (3-methylenepent-4-en-1-yl)benzene 1v (57 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B₂pin₂ (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0 equiv.).

Reaction temperature: 0°C. Reaction time: 24 h. Conversions: 84%, 2v:3v = 1:3. Then it was oxidized under basic condition following the general procedure to afford the alcohol (*R*)-2'v as a colorless oil (7.6 mg, 14% yield, 2'v:3'v > 20:1, 35% *ee*). All spectroscopic and spectrometric analyses were in agreement with the literature.⁹

SFC: 35% *ee*; chiral stationary phase: AY column, 2% MeOH, 3 ml/min, 210 nm, t_R (major) = 3.6 min, t_R (minor) = 3.9 min.

 $[\alpha]^{20}_{D} = +3.5 (c \ 0.10, \ CH_2Cl_2).$

	Retention Time	Area	% Area
1	3.623	360067	67.77
2	3.877	171251	32.23

(S)-2-cyclohexylbut-3-en-1-ol 2'w

Following the general procedure using buta-1,3-dien-2-ylcyclohexane **1w** (49 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (4.1 mg, 0.03 mmol, 10 mol%), (*R*,*R*)-L9 (22 mg, 0.03 mmol, 10 mol%), B_2pin_2 (76.2 mg, 0.3 mmol, 1.0 equiv.) and MeOH (27 µL, 0.6 mmol, 2.0 equiv.). Conversions: 77%, **2w:3w:4w** =

10:12:1. Then it was oxidized under basic condition following the general procedure to afford the alcohol (*S*)-**2'w** as a yellow oil (11 mg, 23% yield, **2'w**:**3'w**:**4'w** = 20:1:4, 87% *ee*). All spectroscopic and spectrometric analyses were in agreement with the literature.⁷

GC: HYDRODEX G-DiMOM, 100°C-1°C/min-170°C, 45 cm/s, H₂, t_R (major) = 35.4 min, t_R (minor) = 34.4 min.

 $[\alpha]^{20}_{D} = +11.5 (c \ 0.10, \ CH_2Cl_2).$

(S)-2-((3r,5r,7r)-adamantan-1-yl)but-3-en-1-ol 2'x

Following the general procedure using (3r,5r,7r)-1-(buta-1,3-dien-2-yl)adamantine **1x** (34 mg, 0.18 mmol, 1.2 equiv.), CuO*t*Bu (2.1 mg, 0.015 mmol, 10 mol%), (*R*,*R*)-**L9** (11 mg, 0.015 mmol, 10 mol%), B₂pin₂ (38 mg, 0.15 mmol, 1.0 equiv.) and MeOH (13 µL, 0.3 mmol, 2.0 equiv.). Conver-

sions: 87%, 2x:3x:4x = 14:2:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*)-**2'x** as a colorless oil (24 mg, 78% yield, **2'x:4'x** = 25:1, 94% *ee*).

TLC: $R_f = 0.4$ (pentane/ethyl acetate 9:1).

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 5.73 (ddd, ${}^{3}J_{HH}$ = 17.0, 10.1 Hz, 1H, *H*-3), 5.25 (dd, ${}^{3}J_{HH}$ = 10.1 Hz, ${}^{2}J_{HH}$ = 2.2 Hz, 1H, *H*-4), 5.12 (dd, ${}^{3}J_{HH}$ = 17.0 Hz, ${}^{2}J_{HH}$ = 2.2 Hz, 1H, *H*-4), 3.80 (m, 1H, *H*-1), 3.42 (t, ${}^{3}J_{HH}$ = 10.3 Hz, 1H, *H*-1), 1.95 (m, 3H, C*H*-adamantyl), 1.82 (dt, ${}^{3}J_{HH}$ = 10.1, 5.0 Hz, 1H, *H*-2), 1.71 – 1.50 (m, 12H, C*H*₂-adamantyl), 1.30 (bs, 1H, O*H*). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 137.1 (CH-3), 119.4 (CH₂-4), 60.5 (CH₂-1), 58.9 (CH-2), 40.7 (CH₂-adamantyl), 37.3 (CH₂-adamantyl), 34.1 (C-5), 28.8 (CH-adamantyl). LRMS (ESI +): calculated for C₁₄H₂₂O [M]⁺: 206.17; found: 224.6 [M+NH₄]⁺; 229.1 [M+Na]⁺. IR (neat) v (cm⁻¹): 3338, 1902, 2849, 1447, 1344, 1260, 1024, 913, 797. GC: 94% *ee*; chiral stationary phase: Hydrodex DiMOM, method: 100 °C for 120 minutes then 100–170 °C in 70 minutes, t_R (major) = 56.3 min, t_R (minor) = 55.7 min. [α]²⁰_D = +27.1 (*c* 0.25, CH₂Cl₂).

(S)-2-((S)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)but-3-en-1-ol 2'y

Following the general procedure using (*S*)-1-(buta-1,3-dien-2-yl)-4-(prop-1-en-2-yl)cyclohex-1-ene **1y** (41 mg, 0.24 mmol, 1.0 equiv.), CuO*t*Bu (2.8 mg, 0.020 mmol, 10 mol%), DrewPhos-**L10** (12 mg, 0.020 mmol, 10 mol%), B₂pin₂ (51 mg, 0.2 mmol, 1.0 equiv.) and MeOH (16 μ L, 0.4 mmol, 2.0 equiv.). Conversions: 80%, **2y**:**4y** = 20:1, dr 1.8:1. The reaction mix-

ture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*,*S*)-**2'y** as a colorless oil (22 mg, 57% yield, **2'y:4'y** = 20:1, *dr* 1.8:1). **TLC**: $R_f = 0.3$ (pentane/diethyl ether 4:1). $[\alpha]_{D}^{25} = -68.3$ (*c* 0.55, CH₂Cl₂).

(S)-2-((S)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)but-3-en-1-ol 2'y

Following the general procedure using (*S*)-1-(buta-1,3-dien-2-yl)-4-(prop-1-en-2-yl)cyclohex-1-ene **1y** (41 mg, 0.24 mmol, 1.0 equiv.), CuO*t*Bu (2.8 mg, 0.020 mmol, 10 mol%), (*R*,*R*)-**L9** (14.6 mg, 0.020 mmol, 10 mol%), B₂pin₂ (51 mg, 0.2 mmol, 1.0 equiv.) and MeOH (16 μ L, 0.4 mmol, 2.0 equiv.). Conversions: 99%, **2y**:**3y** = 50:1, dr >20:1.

The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (*S*,*S*)-**2'y** as a colorless oil (34 mg, 86% yield, **2'y**:**4'y** > 50:1, *dr* >20:1). *Diasteroisomeric ratio (dr) calculated by integration of non isochronic signals by* ¹³*C*{¹*H*} *NMR*.

TLC: $R_f = 0.3$ (pentane/diethyl ether 4:1).

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 5.75 (ddd, ³*J*_{HH} = 16.9, 10.7, 7.8 Hz, 1H, *H*-12), 5.58 (m, 1H, *H*-4), 5.12 (m, 2H, *H*-13), 4.71 (m, 2H, *H*-11), 3.62 (m, 2H, *H*-1), 2.84 (m, 1H, *H*-2), 2.14 (m, 3H, *H*-6 + *H*-5), 2.02 (m, 2H, *H*-8), 1.98 (m, 1H, *H*-5), 1.83 (m, 1H, *H*-7), 1.73 (s, 3H, *H*-10), 1.47 (m, 2H, *H*-7 + *H*-10).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ (ppm) = 149.9 (C-9), 137.8 (CH-12), 136.3 (C-3), 123.7 (CH-4), 116.7 (CH₂-13), 108.8 (CH₂-11), 63.4 (CH₂-1), 53.8 (CH-2), 41.2 (CH-6), 30.9 (CH₂-5), 27.8 (CH₂-7), 26.9 (CH₂-8), 20.9 (CH₃-10).

LRMS (ESI +): calculated for $C_{13}H_{20}O[M]^+$: 192.15; found: 210.4 [M+NH₄]⁺.

GC-MS (EI) ($C_{13}H_{20}O$): 161.2 (19, M⁺-31), 131.1 (19, M⁺-61), 121.1 (13, M⁺-71), 117.1 (23, M⁺-75), 105.1 (52, M⁺-87), 91.1 (100, M⁺-101), 79.1 (58, M⁺-113), 67.1 (34, M⁺-125), 53.1 (23, M⁺-139).

IR (neat) v (cm⁻¹): 3352, 3078, 2920, 1642, 1643, 1436, 1375, 1292, 1202, 1146, 1055, 1027, 994, 914, 886.

 $[\alpha]^{25}_{D} = -37.9 (c \ 0.80, \ CH_2Cl_2).$

(R)-2-((S)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)but-3-en-1-ol 2'y

Following the general procedure using (*S*)-1-(buta-1,3-dien-2-yl)-4-(prop-1-en-2-yl)cyclohex-1-ene **1y** (41 mg, 0.24 mmol, 1.0 equiv.), CuO*t*Bu (2.8 mg, 0.020 mmol, 10 mol%), (*S*,*S*)-L9 (14.6 mg, 0.020 mmol, 10 mol%), B₂pin₂ (51 mg, 0.2 mmol, 1.0 equiv.) and MeOH (16 μ L, 0.4 mmol, 2.0 equiv.). Conversions: 99%, **2y:3y:4y** = 20:1:1, dr 1:7.

The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford alcohol (R,S)-**2'y** as a colorless oil (33 mg, 85% yield, **2'y**:**4'y** = 20:1, *dr* 1:7).

Diasteroisomeric ratio (dr) calculated by integration of non isochronic signals by $^{13}C{^{1}H}$ NMR.

TLC: $R_f = 0.3$ (pentane/diethyl ether 4:1).

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 5.74 (m, 1H, *H*-12), 5.57 (m, 1H, *H*-4), 5.13 (m, 2H, *H*-13), 4.71 (m, 2H, *H*-11), 3.61 (m, 2H, *H*-1), 2.84 (m, 1H, *H*-2), 2.16 (m, 3H, *H*-6 + *H*-5), 2.03 (m, 2H, *H*-8), 1.98 (m, 1H, *H*-5), 1.83 (m, 1H, *H*-7), 1.73 (s, 3H, *H*-10), 1.46 (m, 2H, *H*-7 + *H*-10).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ (ppm) = 149.9 (C-9), 137.6 (CH-12), 136.2 (C-3), 123.4 (CH-4), 117.0 (CH₂-13), 108.8 (CH₂-11), 63.6 (CH₂-1), 53.8 (CH-2), 41.2 (CH-6), 30.9 (CH₂-5), 27.9 (CH₂-7), 27.1 (CH₂-8), 20.9 (CH₃-10).

LRMS (ESI +): calculated for $C_{13}H_{20}O[M]^+$: 192.15; found: 210.4 [M+NH₄]⁺.

GC-MS (EI) ($C_{13}H_{20}O$): 161.2 (19, M⁺-31), 131.1 (19, M⁺-61), 121.1 (13, M⁺-71), 117.1 (23, M⁺-75), 105.1 (52, M⁺-87), 91.1 (100, M⁺-101), 79.1 (58, M⁺-113), 67.1 (34, M⁺-125), 53.1 (23, M⁺-139).

IR (neat) v (cm⁻¹): 3357, 3079, 2920, 1726, 1642, 1436, 1375, 1291, 1203, 1145, 1055, 1027, 994, 914, 886.

 $[\alpha]^{25}_{D} = -94.6 \ (c \ 0.80, \ CH_2Cl_2).$

(2S,2'S)-2,2'-(1,4-phenylene)bis(but-3-en-1-ol) 2'z

Following the general procedure using 1,4-di(buta-1,3-dien-2-yl)benzene **1z** (65.6 mg, 0.36 mmol, 1.2 equiv.), CuO*t*Bu (6.2 mg, 0.045 mmol, 15 mol%), (R,R)-L9 (33 mg, 0.045 mmol, 15 mol%), B₂pin₂ (152.4 mg, 0.6 mmol, 2.0 equiv.) and MeOH (54 µL, 1.2 mmol,

4.0 equiv.). Conversion: 79%, 2z:3z:4z = 24:2:1. The reaction mixture was then oxidized under basic conditions following the general procedure and purified by column chromatography to afford the isomers of alcohol as a colorless oil (45 mg, 68% yield, 2'z:3'z:4'z = 10:1:0.3). For the alcohol (*S*,*S*)-2'z (8:1 *dr*, 99% ee). *Diasteroisomeric ratio (dr) estimated by integration of the HPLC chromatogram.*

TLC: $R_f = 0.4$ (pentane/acetone 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.21 (s, 4H, *H*-6), 5.99 (ddd, ³*J*_{HH} = 17.1, 10.4, 7.8 Hz, 2H, *H*-3), 5.10 – 5.26 (m, 4H, *H*-4), 3.81 (d, ³*J*_{HH} = 7.1 Hz, 4H, *H*-1), 3.60 – 3.43 (m, 2H, *H*-2), 1.56 (s, 2H, *H*-O).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 139.3 (C-5), 138.2 (CH-3), 128.3 (CH-6), 117.1 (CH₂-4), 66.0 (CH₂-1), 52.2 (CH-2).

LRMS (ESI +): calculated for C₁₄H₁₈O₂ [M]⁺: 218.13; found: 236.1 [M+NH₄]⁺.

IR (neat) v (cm⁻¹): 3334, 3080, 2928, 2878, 1638, 1511, 1412, 1300, 1189, 1111, 1051, 1025, 994, 915, 829, 732, 641.

HPLC: 99% *ee*, chiral stationary column: OD-H, mobile phase: hexane/*i*PrOH = 95/5, 1.0 mL/min, 220 nm, 30 °C, t_R (major) = 24.7 min, t_R (minor) = 21.5 min.

 $[\alpha]^{25}_{D} = +89.3 (c \ 0.90, \ CH_2Cl_2).$

mAU

<Peak Table>

PDA Ch1 220nm

Peak#	Ret. Time	Area	Area%	
1	21.224	19376017	25.285	
2	22.390	37680591	49.173	
3	24.674	19572765	25.542	
Total		76629373	100.000	

<Chromatogram>

mAU

PDA C	'DA Ch1 220nm			
Peak#	Ret. Time	Area	Area%	
1	21.453	14923	0.306	
2	22.629	545919	11.188	
3	24.714	4318779	88.506	
Total		4879621	100.000	

5. Non-linear effect

Table S4^a

Entry	ee L9 (%)	conv. (%)	2a : 3a : 4a	ee 2a (%)
1	25	86	> 20 : 1 : -	70
2	50	82	> 20 : 1 : -	79
3	75	83	> 20 : 1 : -	76

^a Reaction conditions: all reactions were performed with **1a** (0.12 mmol), (*R*,*R*)-**L9**/CuO*t*Bu (1:1, 10 mol%), B₂pin₂ (0.10 mmol), MeOH (0.20 mmol) in *n*-pentane (0.7 mL, 0.15 M) at - 40 °C for 40 h. Average of two experiments.

6. References

- ¹ D. Fiorito, S. Folliet, Y. Liu and C. Mazet, ACS Catal. 2018, 8, 1392.
- ² Y. Sasaki, C. Zhong, M. Sawamura and H. Ito, *J. Am. Chem. Soc.* 2010, **132**, 1226.
- ³ (a) L. Palais, I. S. Mikhel, C. Bournaud, L. Micouin, C. A. Falciola, M. V. Augustin, S. Ros-
- set, G. Bernardinelli and A. Alexakis, Angew. Chem., Int. Ed. 2007, 46, 7462; (b) C. Hawner,
- K. Li, V. Cirriez and A. Alexakis, Angew. Chem., Int. Ed. 2008, 47, 8211; (c) L. Palais and A.
- Alexakis, Chem. Eur. J. 2009, 15, 10473; (d) L. Palais, C. Bournaud, L. Micouin and A.
- Alexakis, Chem. Eur. J. 2010, 16, 2567; (e) D. Müller and A. Alexakis, Org. Lett. 2012, 14,
- 1842; (f) D. Müller, L. Guénée and A. Alexakis, Eur. J. Org. Chem. 2013, 6335; (g) H. Li, D.
- Grassi, L. Guénée, T. Bürgi and A. Alexakis, Chem. Eur. J. 2014, 20, 16694.
- ⁴ B. Yu, F. Menard, N. Isono and M. Lautens, *Synthesis* 2009, **5**, 853.
- ⁵ V. J. Garza and M. J. Krische, *J. Am. Chem. Soc.* 2016, **138**, 3655.
- ⁶ T. Miura, Y. Takahashi and M. Murakami, *Chem. Commun.* 2007, **6**, 595.
- ⁷ Y. Shi and A. H. Hoveyda, *Angew. Chem., Int. Ed.* 2016, **55**, 3455.
- ⁸ M. Zaidlewicz and J. Meller, *Tetrahedron Lett.* 1997, **38**, 7279.
- ⁹ J. Kim, S. Park, J. Park and S. H. Cho, *Angew. Chem., Int. Ed.* 2016, **55**, 1498.

7. NMR spectra of new compounds

S66

S75

S78

S84

S91

141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 11 f1 (ppm)

