
S1 
 

A Two-Qubit Molecular Architecture for Electron-mediated 

Nuclear Quantum Simulation 

Matteo Atzori,a,* Alessandro Chiesa,b,c Elena Morra,d Mario Chiesa,d Lorenzo Sorace,a Stefano 

Carretta,b,* and Roberta Sessolia,* 

a Dipartimento di Chimica “Ugo Schiff” & INSTM, Università degli Studi di Firenze, I-

50019 Sesto Fiorentino, Italy. 

b Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-

43124 Parma, Italy. 

 c Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, 

Germany. 

d Dipartimento di Chimica & NIS Centre, Università di Torino, Via P. Giuria 7, I-10125 

Torino, Italy. 

 

Corresponding Authors: 

matteo.atzori@unifi.it 

stefano.carretta@fis.unipr.it 

roberta.sessoli@unifi.it 

 

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) 

 

 

 

 

 

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2018



S2 
 

HYSCORE experiments 

 

Figure S1. Q-band 6-pulse HYSCORE spectra of 1 in frozen solution (0.75 mM) of DMF (left) and DMSO 

(right), recorded at 15 K. The 13C diagonal peak, indicated in the figures, is due to the hyperfine interaction 

to the matrix 13C carbon nuclei. Due to the low natural abundance (1.07 %) of 13C isotopes, only remote 

carbon nuclei are detected, the observation of directly coupled carbon nuclei being hampered by the low 

signal intensity. 

X-band Continuous Wave Electron Paramagnetic Resonance Spectroscopy 

 

Figure S2. Comparison between experimental frozen solution (0.75 mM) spectra of 1 at X-band frequency 

(9.39 GHz) (T = 10 K) in DMF (red line) and DMSO (black line). 
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Static magnetic properties 

 

Figure S3. Temperature dependence of the molar magnetic susceptibility (cm-1) for 1 in the temperature 

range 2.0-300 K under an applied static magnetic field of 1.0 T (T > 20 K) and 0.1 T (T < 20 K). Solid line 

represents the best-fit of the data according to the Curie-Weiss law c = C/T-q (C = 0.77 cm3 mol-1, q = 

-0.19(2) cm-1, which are consistent with two essentially uncoupled S = ½ and g ~ 2.0 centers, C = 0.75 cm3 

mol-1). 

Q-band Continuous Wave Electron Paramagnetic Resonance Spectroscopy 

 
Figure S4. Experimental frozen solution (0.75 mM on DMF) spectrum of 1 recorded at Q-band frequency 

(33.7 GHz) and T = 10 K (black line). Spectrum simulation (red line) obtained by using the same spin 

Hamiltonian parameters reproducing the X-band spectrum (Figure 3a). To account for the larger strain effects 

expected in Q-band with respect to X-band we assumed a H strain effect approximately four times larger at 

the higher frequency.  Asterisk indicates the signal related to a spurious signal of the cavity. 
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Zeeman diagram 

 

Figure S5. Energy diagram for 1 calculated for field applied along z. Red sticks represent the calculated 

resonance field for allowed transitions (left). Zoom of the central energy region evidencing the different states 

involved in the transitions (right). 

Pulsed EPR 

 
Figure S6. Echo decay traces recorded at X-band for 1 in frozen solution of DMSO at different temperatures. 

𝑇"#" = 𝑎𝑇 + 𝑏𝑇( 

Equation S1. Equation of the model used for the fit of the temperature dependence of the spin-lattice 

relaxation rate (T1
-1) obtained through pulsed-EPR spectroscopy for 1. The first terms accounts for the direct 

mechanism of relaxation and the second term for a Raman mechanism of relaxation. The fit provides a value 

of n = 2.8(1), which is typical for vanadyl-based complexes (see main text).  
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Figure S7. Rabi oscillations (left panels) and Fourier transform (central panels) for 1 in frozen solution of 

DMF recorded at X-band at 4.5 K and 80 K with different microwave attenuations. The linear dependence 

of the Rabi frequencies as a function of the relative intensity of the oscillating field B1 is shown in the right 

panels. 
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Figure S8. Rabi oscillations (left panels) and Fourier transform (central panels) for 1 in frozen solution of 

DMF recorded at Q-band at 4.5 K and 80 K with different microwave attenuations. The linear dependence 

of the Rabi frequencies as a function of the relative intensity of the oscillating field B1 is shown in the right 

panels. 
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AC susceptometry 

𝜒**(𝜔) = (𝜒. − 𝜒0)
(𝜔𝜏)"#2 cos 6𝜋𝛼2 :

1 + 2(𝜔𝜏)"#2 sin 6𝜋𝛼2 : + (𝜔𝜏)
>#>2

 

Equation S2. Equation of the Debye model used for the extrapolation of the relaxation times t through AC 

susceptibility measurements. c'' is the imaginary susceptibility, cT is the isothermal susceptibility, cS is the 

adiabatic susceptibility, w is the angular frequency, and a is the distribution width of the relaxation time. 

 

Figure S9. Frequency dependence of the real component c' (left) and the imaginary component c'' (right) of 

the magnetic susceptibility of 1 as a function of the temperature (2.0-20 K range) under an applied static 

magnetic field of 1.0 T. For c'', the continuous lines represent the best-fit to the Debye equation (Eq. S1). 

 

Figure S10. Frequency dependence of the real component c' (left) and the imaginary component c'' (right) 

of the magnetic susceptibility of 1 as a function of the static magnetic field (0.00-8.5 T range) at T = 5 K. 

For c'', the continuous lines represent the best-fit to the Debye equation (Eq. S1). 
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Figure S11. (a) Temperature and (b) field dependence of t extracted from AC susceptibility measurements 

for compounds 1 and 2. 

 

Computational details 

Dynamics of Open Quantum Systems. The dynamics of the system subject to the pulse 

sequence used to implement quantum gates and quantum simulations reported in Figures 4-5 

(main text) is determined by the numerical solution of the Lindblad equation: 

𝑑𝜌
𝑑𝑡 = −𝑖[𝐻, 𝜌] +GℒI[𝜌]

I

 

Here ρ is the system density matrix, H the full system Hamiltonian (Eq. 1, main text) and 

ℒI[𝜌] =
1
𝑇J

62𝑠LI𝜌𝑠LI −
𝜌
2: 

is the Lindblad superoperator, depending on spin ½ operators si acting on the electronic spins. 

It accounts for the pure dephasing dynamics induced by the finite value of Tm. See Ref. 1 for a 

detailed treatment on modeling the effect of the environment on the evolution of open quantum 

systems. Since the nuclear Tm (as well as nuclear and electronic relaxation times) is much longer 

than the gating time, it has been neglected in the present simulations. 
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Quantum Gates. We overview here some basic concepts about single- and two-qubit gates2 

and provide some details about their implementation with the present architecture. Single-qubit 

gates are independent rotations of the qubits. They can be expressed in terms of Pauli matrices, 

which, in the standard basis representation, read 

𝜎N = 60 1
1 0:							𝜎Q = 60 −𝑖

𝑖 0 :								𝜎L = 61 0
0 −1: . 

In particular, a rotation about 𝛼 axis of the Bloch sphere of an angle 𝜗 is given by 

𝑅2(𝜗) = 𝑒#I
UV
W X . 

Hence, rotations about the z axis 

𝑅L(𝜗) = Y𝑒
#IX/> 0
0 𝑒IX/>

[ 

account for a relative phase shift between the two components of the single-qubit wave-

function. Conversely, rotations about x  

𝑅N(𝜗) = \
cos

𝜗
2 −𝑖 sin

𝜗
2

−𝑖 sin
𝜗
2 cos

𝜗
2

] 

or y axis 

𝑅Q(𝜗) = \
cos

𝜗
2 −sin

𝜗
2

sin
𝜗
2 cos

𝜗
2

] 

correspond to a population transfer (with the proper phases) between |0⟩ and |1⟩ components.  

A generic rotation about an arbitrary axis of the Bloch sphere can be obtained by combining 

rotations about two non-parallel axes. We implement single-qubit rotations about x or y axis by 

means of radio-frequency, uniform (transverse, e.g. along x) Gaussian pulses, described by the 

time-dependent Hamiltonian term 

𝐻"(𝑡) = 𝜇a𝐵"𝑔N(𝑠"N + 𝑠>N)𝑒
#(dedf)

W

WUW cos(𝜔𝑡 + 𝜙), 
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in which the frequency 𝜔/2𝜋 corresponds to the |0⟩ − |1⟩ gap, while 𝜙 selects the rotation axis 

in the x-y plane and the pulse-duration 𝜎 determines the rotation angle 𝜗. The pulse amplitude 

𝐵" must be sufficiently small to ensure spectral resolution of the desired transition. 

It is worth noting that the computational basis states are defined into the subspace in which the 

electron spins are frozen into the ↓↓ state and the electron and nuclear spin wavefunctions are 

practically factorized. However, the small mixing between electronic and nuclear states leads 

to a remarkable enhancement of the single-qubit transition matrix element, thus significantly 

reducing the time required for nuclear rotation. This mixing effect also renormalizes nuclear 

|Mj⟩ → 	 |Mj ± 1⟩ gaps, making the |7/2⟩ → |5/2⟩ transition distinguishable from all the others. 

We finally note that, although in the idle state (with both electrons frozen in ↓) the qubits are 

practically decoupled, a weak residual interaction (mediated by electron virtual excitations) is 

still present. However, this is a tiny effect o~ qrW st
(uvwa)W

x that only influences the dynamics of the 

system in the long-time limit and can be reduced by increasing the static magnetic field.     

Among the various examples of two-qubit entangling gates, we propose in this work the 

implementation of the controlled-phase (𝐶z) gate. As mentioned in the main text, this gate adds 

a phase 𝜑 only to the |00⟩ component of the two-qubit wave-function, and it is thus represented 

(in the {|00⟩, |01⟩, |10⟩, |11⟩} basis) by the matrix 

𝑈�� = \		
𝑒#Iz 0
0 1

0 0
0 0

			0 		0
			0 		0

1 0
0 1

]. 

Although it looks very simple, this transformation is able to generate maximally entangled 

states starting from factorized ones. The CZ gate is a particular 𝐶z gate with 𝜑 = 𝜋. 

As explained in the main text, the CZ is implemented by a full Rabi oscillation of the electron-

spin component of the wave-function, conditioned by the state of the nuclei. This is obtained 

by a 2p-pulse resonant with the transition |00⟩|M� = −1⟩ → |00⟩|M� = 0⟩, that adds a 𝜋 phase 

to the |00⟩ component. 

Conversely, a semi-resonant pulse3 can be exploited to implement a generic 𝐶z gate. Indeed, if 

the 2p oscillating Gaussian pulse is detuned from the |00⟩|𝑀0 = −1⟩ → |00⟩|𝑀0 = 0⟩ 

transition of an amount d, a phase 𝜑 = 𝜋 − 𝜋 �
√��W��W

 is added. Here G represents the matrix 

element between the two involved states. 
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Digital Quantum Simulation. The simulation of quantum systems by a classical computer is 

intrinsically inefficient because the required number of bits grows exponentially with the 

system size. This makes many important problems in physics and chemistry intractable with 

standard computational approaches and resources. Such a limitation might be overcome by 

quantum simulators (QSs), whose dynamics can be controlled so as to mimic the evolution of 

the target system.4 Quantum simulators can be broadly classified in two categories. In analog 

simulators the quantum hardware directly emulates another (target) quantum system, while in 

digital simulators the state of the target system is encoded in qubits and the time evolution of 

any target system can be discretized into a sequence of logical gates. While analog simulators 

are restricted to specific target problems, digital architectures are small, general purpose 

quantum computers, able to simulate broad classes of Hamiltonians.5 

In this work, we propose our system for a proof-of-principle experiment of digital quantum 

simulation. Therefore, we now focus on how to decompose the time evolution induced by any 

target Hamiltonian into a sequence of elementary steps, controlled by the experimenter, i.e., a 

sequence of one- and two-qubit gates, as formalized by Lloyd.6 

Most Hamiltonian of physical interest can be written as the sum of L local (time-independent) 

terms, ℋ = ∑ ℋ�
�
��" .  Hence, the system dynamics can be approximated by a sequence of local 

unitary operators according to the Trotter-Suzuki formula (ℏ = 1): 

𝑈(𝑡) = 𝑒#Iℋ� ≈ �𝑒#Iℋ��𝑒#IℋW� 	⋯	𝑒#Iℋ���( 

where 𝜏 = 𝑡/𝑛 and the total digital error of this approximation can be made as small as desired 

by choosing n sufficiently large.6 Commuting terms in the Hamiltonian do not require any 

Trotter decomposition. In this way, the simulation reduces to the sequential implementation of 

local unitary operators, each one corresponding to a small time interval t/n. These can be 

implemented by a proper sequence of single- and two-qubit gates. The problem then reduces to 

finding a suitable mapping between the physical hardware (consisting of many qubits, described 

by means of Pauli algebra) and the target Hamiltonian ℋ. 

The mapping of 𝑠 = 1/2 models onto an array of qubits is straightforward. Let’s consider here 

two kinds of significant local terms in the target Hamiltonian, namely one- (ℋ2
(")) and two-

body (ℋ2�
(>)) terms, with 𝛼 = 𝑥, 𝑦, 𝑧. The unitary time evolution corresponding to one-body 

terms ℋ2
(") = 𝑏𝑠2 is directly implemented by single-qubit rotations 𝑅2(𝑏𝜏). Conversely, two-
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body terms describe a generic spin-spin interaction of the form ℋ2�
(>) = 𝜆𝑠"2𝑠>� , for any choice 

of 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧. The evolution operator, 𝑒#IℋV�
(W)� can be decomposed as:7,8 

𝑒#I���V�W�� =  𝑢"2 ⊗ 𝑢>�£𝑒#I���¤�W¤� 𝑢"2 ⊗ 𝑢>�£
¥
 

with 𝑢N = 𝑅Q 6
¦
>
:, 𝑢Q = 𝑅N 6

§¦
>
:, 𝑢L = 𝐼. 

The Ising evolution operator, 𝑒#I���¤�W¤�, can be obtained starting from the two-qubit 𝐶z gate 

and exploiting the identity (apart from an overall phase) 

𝑒#I���¤�W¤� = 𝑈�� o𝑅"L 6−
𝜑
2:⊗ 𝑅>L 6−

𝜑
2:
x 

Here the 𝑅IL(𝜑) gates can be simultaneously implemented on both the involved qubits, by 

combining 𝑅N and 𝑅Q rotations: 𝑅L(𝜑) = 𝑅Q
¥ 6¦

>
:𝑅N(𝜑)𝑅Q 6

¦
>
:. 

This gate can also be directly implemented by exploiting the excited nuclear state |𝑀© = 3/2⟩. 

Indeed, a 2π semi-resonant3 rf pulse targeting the |𝑀© = 5/2⟩ → |𝑀© = 3/2⟩ transition can be 

used to add the desired phase to the |1⟩	(|𝑀© = 5/2⟩) component of the single-qubit wave-

function (see above). 

Besides the trivial case of spin-1/2 Hamiltonians, most models of physical interest can be re-

written in terms of spin-1/2 operators. For instance, the simulation of Hamiltonians involving 

𝑆 > 1/2 spins can be performed by encoding the state of each spin S onto that of 2S qubits. The 

example reported in the main text (the simulation of the quantum tunnelling of the 

magnetization for a S = 1 system) falls in this category. Indeed, we have re-written the total 

spin S as 𝑠" + 𝑠> and then mapped the quadratic terms in the target Hamiltonian 𝑆2> into 

2𝑠"2𝑠>2: 

𝑆2 = 𝑠"2 + 𝑠>2  

𝑆2> = (𝑠"2 + 𝑠>2)> = 2𝑠"2𝑠>2 + const. 

 A sketch representing the mapping of the target S=1 system into the hardware Hamiltonian is 

reported in Figure S12. The nuclear qubits (bottom) are the physical hardware, consisting of 

𝑠I = 1/2 qubits (red arrows). These are used to encode the target Hamiltonian, consisting of a 
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giant S = 1 (blue arrow). The corresponding time evolution is then simulated as outlined above. 

In particular  

𝑒#Iz��t�Wt = 𝑅Q 6
𝜋
2:𝑒

#Iz��¤�W¤𝑅Q
¥ 6
𝜋
2: 

with  

𝑒#Iz��¤�W¤ = 𝑈��𝑅L 6−
𝜑
2: 

and 𝑅L 6−
z
>
: = 𝑅Q

¥ 6¦
>
:𝑅N 6−

z
>
: 𝑅Q 6

¦
>
:. Here 𝑅2(𝜑) are simultaneous rotations on both 

qubits. By combining these decompositions, we obtain the pulse sequence reported in Fig. 5, 

where some gates cancel each other out. Indeed, by collecting all the unitary gates together we 

find:  

𝑒#Iz��t�Wt = 𝑅Q 6
¦
>
:𝑈��𝑅Q

¥ 6¦
>
: 𝑅N 6−

z
>
: 𝑅Q 6

¦
>
: 𝑅Q

¥ 6¦
>
: = 𝑅Q 6

¦
>
:𝑈��𝑅Q

¥ 6¦
>
: 𝑅N 6−

z
>
:. 

 
We finally note that, due to the symmetric role of the two qubits, the system dynamics is 

restricted to the S = 1 subspace, corresponding to the target Hamiltonian. For instance, if the 

system is initialized in 00 (as in the simulation reported in the main text), gates corresponding 

to the evolution e#°±²�³²W³´/>ℏ do not affect the system dynamics. Hence, the giant spin 

oscillates between opposite sides of the anisotropy barrier (𝑀 = ±1) as a result of the rhombic 

term in the target Hamiltonian. 

 
Figure S12. Mapping between the physical hardware (a pair nuclear spins with a switchable 

interaction), the 𝑠I = 1/2 qubits and the target S = 1. 
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Initialization. At experimentally achievable temperatures all the (nuclear) computational basis 

states are nearly equally populated, while a sufficiently large magnetic field ensures electron 

polarization. Pumping techniques9,10,11 exploiting a proper combination of microwave (mw) 

and radio-frequency (rf) pulses11 could be used to transfer polarization from electronic to 

nuclear spins, thus initializing the system in a practically pure state. The procedure is 

exemplified in Ref. [11] for a single NV center: let |𝑚©𝑚�⟩ be the initial state of the system, 

with equal population on all 𝑚© states (fully depolarized nuclear spin) and only the electronic 

ground 𝑚� = 𝑔� state populated. The aim is to transfer population to the ground nuclear state 

𝑔©. Mw p pulses are used to induce the transitions |𝑚©𝑔�⟩ → |𝑚©𝑒�⟩ for all 𝑚© ≠ 𝑔©, thus 

exciting the electronic spins to 𝑒�. Then, rf p pulses are applied to transfer population between 

the excited electron states, from |𝑚©𝑒�⟩ to |𝑔©𝑒�⟩. These transitions are spectroscopically 

resolved from those within the 𝑚� = 𝑔� manifold, thanks to the hyperfine interaction. Finally, 

electronic spins are re-polarized by a laser pulse.  

A similar procedure could be envisaged here, by letting the electron spin relax to its ground 

state (from |𝑔©𝑒�⟩ to |𝑔©𝑔�⟩), thus increasing the nuclear polarization. This works under the safe 

assumption that nuclear spin relaxation times (and also cross relaxation times) are much longer 

than the electron spin relaxation times. 

Alternatively, only the first step (excitation of unwanted nuclear states by mw p pulses) is 

sufficient to freeze populations not corresponding to the right initial nuclear state.  

Spectral resolution required for controlled-Z gates. As explained in the main text, the energy 

required to excite the electron spins is renormalized by the effective magnetic field produced 

by the hyperfine coupling with the nuclear spins. This allows us to implement an entangling 

controlled-Z (CZ) two qubit gate.  

However, in the present regime of parameters (with 𝐴L > 𝐽N), the spectral resolution required 

to implement a CZ gate results from the combined effect of both hyperfine and exchange 

interactions. Indeed, the energy difference between the |00⟩|𝑀0 = −1⟩ → |00⟩|𝑀0 = 0⟩ and 

the closest unwanted transition is 𝛥 = q¤
>
+ st�sº

�
− "

>
»𝐴L> +

�st�sº�
W

�
 (z being the direction of 

the static field). Here transverse components of A have been neglected for simplicity, since 

𝐴N,Q ≪ 𝑔𝜇a𝐵. This expression for the closest unwanted excitation motivated the choice of z as 

the direction of the external field. Indeed, putting the field in this direction maximizes Δ. Notice 

that in the large-J limit the Δ reduces to q¤
>

, while if 𝐴L ≫ 𝐽N,Q it only depends on the transverse 

component of the exchange interaction. 
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