Supporting Information

Bimetallic Oxide Fe_{1.89}Mo_{4.11}O₇ Electrocatalyst with Highly Efficient Hydrogen Evolution Reaction Activity in Alkaline and Acidic Media

Zhaomin Hao,^a Shishuai Yang,^a Jingyang Niu,^a Zhiqiang Fang,^a Liangliang Liu,^b Qingsong Dong,^{*,a} Shuyan Song^c, and Yong Zhao^{*,b}

^aHenan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan Province, P. R. China ^bKey Lab for Special Functional Materials of Ministry of Education Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, Henan Province, P. R. China ^cState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

* Correspondence authors: <u>zmhao@henu.edu.cn</u>, <u>zhaoyong@henu.edu.cn</u>

Experimental Section
Chemicals3
Synthesis of precursors3
Synthesis of MoO ₂ , Fe/MoO ₂ and Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂ 4
Characterization5
Electrochemical characterization
Scheme S1 The synthesis route to prepare molybdenum-based nanomaterials7
Figure S1 The thermogravimetric studies7
Figure S2 The EDX elemental mapping images of Fe and Mo in Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂ 8
Figure S3 FESEM images of MoO ₂ and Fe/MoO ₂
Figure S4 HRTEM image of Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂ sample9
Figure S5 Polarization curves of $Fe_{1.89}Mo_{4.11}O_7/MoO_2$ with different loadings9
Figure S6 Polarization curves of Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂ prepared with different annealing temperature
Figure S7 XRD patterns of Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂ prepared with different annealing temperature
Figure S8 The onset potential of Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂ catalyst in 1 M KOH11
Figure S9 The onset potential of $Fe_{1.89}Mo_{4.11}O_7/MoO_2$ catalyst in 0.5 M H ₂ SO ₄ 11
Figure S10 The Tafel plots in 1 M KOH12
Figure S11 The exchange current density of $Fe_{1.89}Mo_{4.11}O_7/MoO_2$ catalyst in 1 M KOH 12
Figure S12 The Tafel plots in $0.5 M H_2 SO_4$
Figure S13 The exchange current density of $Fe_{1.89}Mo_{4.11}O_7/MoO_2$ catalyst 0.5 M H ₂ SO ₄ 13
Table S1 The HER performance of catalysts in this paper 14
Table S2 Comparison of HER performance for Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂ with other HER electrocatalysts 15
Figure S14 Polarization curves of $Fe_{1.89}Mo_{4.11}O_7/MoO_2$ after continuous potential sweeps at 20 mV s ⁻¹
Figure S15 Time-dependent current density curves (carbon as a counter electrode) of the Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂ in 1 M KOH16
Figure S16 The HRTEM images for $Fe_{1.89}Mo_{4.11}O_7/MoO_2$ in 1 M KOH and 0.5 M H_2SO_4 after 3000 potential sweeps
Figure S17 The DFT calculation of metal-hydrogen bond strength based on Mo and Fe element in $Fe_{1.89}Mo_{4.11}O_7$
Figure S18 Optimized structure of Fe _{1.89} Mo _{4.11} O ₇ /Fe _{1.89} Mo _{4.11} O ₇ -H, MoO ₂ /MoO ₂ -H, Mo ₅ O ₁₄ /Mo ₅ O ₁₄ -H and Mo ₈ O ₂₃ /Mo ₈ O ₂₃ -H

Experimental Section

Chemicals

All chemical reagents were used as received without further purification.

Synthesis of precursors

Ferrimolybdate: The solution of $H_3[PMo_{12}O_{40}]$ ·XH₂O, 1,10-phen, Fe₂O₃, NH₄VO₃, trea(triethylamine) and distilled water in a molar ratio of 1 : 1.5 : 1 : 0.5 : 2 : 1000 was stirred for 1h, and the pH value of solution was adjusted to 5.0 by 2 mol L⁻¹ HCl solution. The mixture was then transferred into a Teflon-lined autoclave reactor (20 mL) at 175 °C for 5 days. The reactor was slowly cooled to room temperature. The resulted red-black block crystals were filtered, washed with water, and dried at room temperature. Anal. Calcd: C, 21.19; H, 1.17; N, 4.12; Fe, 4.12. Found: C, 21.74; H, 1.76; N, 4.01; Fe, 4.08. The crystal structure of ferrimolybdate was checked by single crystal X-ray diffractometer before it was used as precursor.

Polymolybdate: $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$, 1,10-phen, H₃PO₄ and distilled water in a molar ratio of 1 : 0.05 : 0.1 : 2 : 1000 were mixed. The resulting suspension was stirred for 30min and then was transferred into a Teflon-lined autoclave reactor (20 mL). After heating at 170 °C for 3 days, the reactor was slowly cooled to room temperature. Yellow block crystals were filtered, washed with water, and dried at room temperature. Anal. Calcd: C, 18.31; H, 1.08; N, 3.55. Found: C, 18.28; H, 1.17; N, 3.56. The crystal structure of ferrimolybdate was checked by single crystal X-ray diffractometer before it was used as precursor.

Synthesis of MoO₂, Fe/MoO₂ and Fe_{1.89}Mo_{4.11}O₇/MoO₂

 MoO_2 : 0.5 g polymolybdates powder was homogeneously dispersed in a ceramic boat that was then put into a tube furnace. The sample was annealed under a continuous nitrogen flux of 10 sccm at 1000 °C for 1 hour, and then the ceramic boat was slowly cooled to room temperature. After the annealing was completed, the powders were collected. The heat-treated MoO_2 was then pre-leached in 0.5 M H₂SO₄ at 40 °C for 8 hours to remove unstable and inactive species from the catalyst, and thoroughly washed in de-ionized water. Finally, the catalyst was heat-treated again at nitrogen-gas atmosphere for 1 hour to get the final MoO₂.

Fe/MoO₂: 0.5 g polymolybdates and 0.533 g Fe(NO₃)₃·9H₂O were homogeneously mixed and then dispersed in a ceramic boat. Next, the samples were annealed in a tube furnace under a continuous nitrogen flux of 10 sccm at 1000 °C for 1 hour, and then the ceramic boat was slowly cooled to room temperature. The heat-treated Fe/MoO₂ was then pre-leached in 0.5 M H₂SO₄ at 40 °C for 8 hours to remove unstable and inactive species from the catalyst, and thoroughly washed in de-ionized water. Finally, the catalyst was heat-treated again in nitrogen-gas atmosphere for 1 hour to get the final Fe/MoO₂.

 $Fe_{1.89}Mo_{4.11}O_7/MoO_2$: 0.5 g Ferrimolybdate powder was homogeneously dispersed in a ceramic boat that was then put into a tube furnace. The samples were annealed under a continuous nitrogen flux of 10 sccm at 1000 °C for 1 hour, and then the ceramic boat was slowly cooled to room temperature. After the annealing was completed, the powders were collected. The heat-treated $Fe_{1.89}Mo_{4.11}O_7/MoO_2$ was then pre-leached in 0.5 M H₂SO₄ at 40 °C for 8 hours to remove unstable and inactive species from the catalyst, and thoroughly washed in de-ionized water. Finally, the catalyst was heat-treated again in nitrogen-gas atmosphere for 1 hour to get the final $Fe_{1.89}Mo_{4.11}O_7/MoO_2$.

Characterization

Powder X-ray diffraction (XRD) measurement was performed on a Bruker D8 Focus Powder X-ray diffractometer using Cu K α (λ = 0.15405 nm) radiation (40 kV, 40 mA). X-ray phototelectron spectra (XPS) was measured with VG ESCALAB MK (VK Company, UK) at room temperature by using a Al K α X-ray source at 12 KV and 20 mA. The morphology of the nickel sulfide was analyzed by on a JSM-6701Feld-emission scanning electron microscope (FE-SEM) with 10KV and 10mA. Energy dispersive spectroscopy (EDS) data was collected with an ensemble measurement in the FE-SEM. Transmission electron microscope (TEM) was performed using a FEI Tecnai G2 S-Twin instrument with a field emission gun operating at 200 kV. Nitrogen adsorption measurements were performed on a Micromeritics ASAP 2020 adsorption analyzer. Specific surface areas were calculated by the Brunaure-Emmert-Teller method. Mass analysis of the generated gases was performed using an Ominstar-Thermostar GSD 320 system (Pfeiffer Vacuum) mass spectrometer, wherein argon gas was chosen as carrier gas. The electrochemical experiments were carried out with a ModuLab XM electrochemical workstation (Solartron Analytical, UK).

Electrochemical characterization

Electrochemical measurements were performed at room temperature in a standard threeelectrode system. A platinum gauze electrode and a saturated calomel electrode (SCE) served as the counter electrode and the reference electrode, respectively. The preparation of working electrode was described with the following procedures: 5 mg of catalyst powder was dispersed in diluted Nafion alcohol solution containing 1 mL ethanol and 50 μ L Nafion, and then ultrasonicated for 2 h to obtain a homogeneous suspension. Next, the suspension was homogeneously loaded on a bare carbon paste and dried at room temperature. Potentials were referenced to a reversible hydrogen electrode (RHE): E(RHE) = E(SCE) + 0.242 + 0.059 × *p*H. Linear sweep voltammetry (LSV) was recorded in 1.0 M KOH and 0.5 M H_2SO_4 at a scan rate of 5 mV s⁻¹ to obtain the polarization curves. The long-term stability tests were performed by continuous LSV scans at a sweep rate of 20 mV s⁻¹.

Scheme S1 The synthesis route to prepare molybdenum-based nanomaterials

Figure S1 The thermogravimetric studies: CO2 signals detected by mass spectrum during

the thermal treatment of ferrimolybdate, polymolybdates and polymolybdates + Fe³⁺

Figure S2 The EDX elemental mapping images of Fe and Mo in

Fe_{1.89}Mo_{4.11}O₇/MoO₂

Mo La1

Fe Ka1

Figure S3 FESEM images of MoO₂ and Fe/MoO₂ for a) precursors of MoO₂, b)

precursors of Fe/MoO₂, c) final products of MoO₂, d) final products of Fe/MoO₂.

Figure S4 HRTEM image of Fe_{1.89}Mo_{4.11}O₇/MoO₂ sample.

Figure S5 Polarization curves of Fe_{1.89}Mo_{4.11}O₇/MoO₂ with different

loadings.

Figure S6 Polarization curves of Fe_{1.89}Mo_{4.11}O₇/MoO₂ prepared with

different annealing temperature.

Figure S7 XRD patterns of Fe_{1.89}Mo_{4.11}O₇/MoO₂ prepared with different

annealing temperature.

Figure S8 The onset potential of Fe_{1.89}Mo_{4.11}O₇/MoO₂ catalyst in 1 M KOH

Figure S9 The onset potential of $Fe_{1.89}Mo_{4.11}O_7/MoO_2$ catalyst in 0.5 M H_2SO_4

Figure S10 The Tafel plots in 1 M KOH

Figure S11 The exchange current density of Fe_{1.89}Mo_{4.11}O₇/MoO₂ catalyst in

1 M KOH

Figure S12 The Tafel plots in 0.5 M H₂SO₄

Figure S13 The exchange current density of Fe_{1.89}Mo_{4.11}O₇/MoO₂ catalyst

0.5 M H₂SO₄

Samples	Electrolyte	Tafel slope (mV dec ⁻¹)	η (mV) at 10 mA cm ⁻²
Cabon paste	1 M KOH	232	514
	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	180	321
20% Pt/C	1 M KOH	27	103
	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	22	33
MoO2	1 M KOH	205	431
	0.5 M H ₂ SO ₄	162	318
Fe/MoO ₂	1 M KOH	194	322
	0.5 M H ₂ SO ₄	128	194
Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂	1 M KOH	79	197
	0.5 M H ₂ SO ₄	47	125

Table S2 Comparison of HER performance for Fe_{1.89}Mo_{4.11}O₇/MoO₂ with

other HER electrocatalysts

Samples	Electrolyte	Onset η (mV)	Tafel slope (mV dec ⁻¹)	η (mV) at 10 mA cm ⁻²	Ref.	
Double-gyroid MoS ₂ /FTO	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	200-150	50	240	Nat. Mater. 2012, 11, 963	
MoS ₂ /CoSe ₂ hybrid	0.5 M H ₂ SO ₄	11	36	68	Nat. Commun. 2015, 6, 5982	
Exfoliated metallic MoS ₂ nanosheets	$0.1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	135	43	187	Nat. Mater. 2013, 12, 850.	
MoO3-MoS2	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	200	50-60	250	Nano Lett. 2011, 11, 4168	
NiMoN _x /C	0.1 M HClO ₄	78	35.9	170	Angew. Chem. Int. Ed. 2012 , 51, 6131	
MoS ₂ /RGO	0.5 M H ₂ SO ₄	100	41	140	J. Am. Chem. Soc. 2011 , 133, 7296.	
MoO2/MoSe2	$0.5 \mathrm{MH_2SO_4}$	63	49.1	181	Adv. Funct. Mater. 2016 , 26, 8537	
MoSe ₂ /Mo	0.5 M H ₂ SO ₄	89	34.7	166	Adv. Mater. 2016, 28, 9831.	
Co–Mo–S _x	0.1 M KOH			>200	Nat. Mater.	
	0.1 M HC104			>200	2016 , <i>15</i> , 197	
Fe _{1.89} Mo ₄₋₁₁ O ₇ / MoO ₂	1 M KOH	70	79	197	This work	
	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	40	47	125		

Figure S14 Polarization curves of Fe_{1.89}Mo_{4.11}O₇/MoO₂ after continuous

potential sweeps at 20 mV s⁻¹

Figure S15 Time-dependent current density curves (carbon as a counter

electrode) of the Fe_{1.89}Mo_{4.11}O₇/MoO₂ in 1 M KOH

Figure S16 The HRTEM images for Fe_{1.89}Mo_{4.11}O₇/MoO₂ in 1 M KOH and

0.5 M H₂SO₄ after 3000 potential sweeps

Figure S17 The DFT calculation of metal-hydrogen bond strength based on

Mo and Fe element in Fe_{1.89}Mo_{4.11}O₇.

Models

Figure S18 Optimized structure of Fe_{1.89}Mo_{4.11}O₇/Fe_{1.89}Mo_{4.11}O₇-H, MoO₂ /MoO₂-H, Mo₅O₁₄/Mo₅O₁₄-H and Mo₈O₂₃/Mo₈O₂₃-H.

We perform DFT calculation using the Vienna Ab Initio Simulation Package (VASP), the Perdew-Becke-Ernzerhof (PBE) is used for the exchange-correlation functional. The cut-off energies for plane waves is 450 eV, providing a convergence of 10^{-4} eV in total energy and 0.02 eV/Å in Hellmann Feynman force on each atom. The metal-hydrogen bond strength in Fe_{1.89}Mo_{4.11}O₇ is calculated to state the Mo active sites with MoO₂, Mo₅O₁₄ and Mo₈O₂₃. All adsorption sites were based on Mo for comparison, and all initial structures and optimized intermediates were listed as following.

