Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

> Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION

Carboxylate-directed C-H allylation with allyl alcohols or ethers

Xiao-Qiang Hu, Zhiyong Hu, A. Stefania Trita, Guodong Zhang and Lukas J. Gooßen*

Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum (Germany)

*Corresponding Author: lukas.goossen@rub.de

Table of Contents

General methods	3
Screening of the reaction conditions	3
General procedure for the <i>ortho</i> -allylation	4
Mechanistic investigations	4
Synthesis and characterisation of products	7
Synthesis of starting materials	23
NMR spectra	28

General methods

All reactions were performed in oven-dried glassware containing a Teflon-coated stirring bar and dry septum under argon atmosphere. All optimisation reactions were monitored by ¹H NMR using dibenzyl ether as internal standard. NMR spectra were recorded at ambient temperature using CDCl₃ as solvent, with proton, carbon, and fluorine resonances at 400/300/200, 101/75/63 and 377/235 MHz, respectively. All NMR data are reported in ppm relative to the solvent signal. Column chromatography was performed on a CombiFlash Companion (Isco) or on a Reveleris X2 (BUCHI) Flash Chromatography-System using Reveleris packed columns (12 g). GC analyses were carried out using an HP-5 capillary column (Phenyl methyl siloxane, 30 m × 320 × 0.25, 100/2.3-30-300/3, 2 min at 60 °C, heating rate 30 °C/min, 8 min at 300 °C). Mass spectrometric data were acquired on a GC-MS Agilent 5977B MSD. HRMS analyses and mass spectral data were acquired on a Waters GCT Premier CAB163 with a TOF mass analyser or on a Thermo Scientific LTQ Orbitrap XL with positive ion mod. Melting points were measured on a Mettler Toledo MP70. The MS ionisation was achieved by EI+. GC Melting points were measured on a Mettler FP 61. Infrared spectra were recorded on Bruker Vertex 70 Spectrometer with Universal ATR Sampling Accessory.

Commercial substrates were used as received unless otherwise stated. Solvents were purchased (puriss p.A.) from commercial suppliers and dried by standard procedures.^[1] 2,2,2-Trichloroethanol (TCE) and 2,2,2-trifluoroethanol (TFE) were purchased from Sigma Aldrich and used as received. Perdeuterated 2-methylbenzoic acid was synthesised following a literature procedure starting from *o*-xylene- d_{10} .^[2] Allyl-1,1- d_2 alcohol was synthesised following a literature procedure starting from acryloyl chloride.^[3] All solvents and liquid reactants were degassed by Argon sparge prior to use. Potassium phosphate tribasic (K₃PO₄) and potassium carbonate (K₂CO₃) were dried prior to use by heating at 120 °C under vacuum (10⁻³ mbar). Ruthenium catalysts were donated by Umicore. *E/Z* ratios were determined via ¹H NMR unless otherwise stated.

Screening of the reaction conditions

Table S1: Screening of the ortho-allylation conditions[a]

	ОН	H + OH solver	(0.5 eq) tt, T, 16 h	+ Он		
	1a	2a	3aa	3aa'		
Entry	Solvent	T (°C)	Base	3aa (%) (<i>E</i> : <i>Z</i>)	3aa' (%)	
1	TCE	60	K ₃ PO ₄	80 (2:1)		
2	TFE	60	K ₃ PO ₄	68 (1.7:1)		
3	MeOH	60	K ₃ PO ₄	6 (2.1:1)		
4	HFIP	60	K ₃ PO ₄	27 (2:1)	trace	
5	CH ₃ CN	60	K ₃ PO ₄	8 (2.1:1)	3	
6	acetic acid	60	K ₃ PO ₄			
7	toluene	60	K ₃ PO ₄	13 (2.5:1)	6	
8	NMP	60	K ₃ PO ₄			
9	dioxane	60	K ₃ PO ₄	trace		
10	TCE	60	K ₂ CO ₃	73 (2:1)		
11	TCE	60	Cs ₂ CO ₃	68 (2:1)		
12	TCE	60	K ₂ HPO ₄	58 (2:1)		
13	TCE	70	K ₃ PO ₄	51 (1.8:1)	5	
14	TCE	50	K ₃ PO ₄	89 (2:1)		
15	TCE	40	K ₃ PO ₄	81 (2:1)		
16 ^[b]	TCE	50	K ₃ PO ₄	trace		
17 ^[c]	TCE	50	K ₃ PO ₄			
18 ^[d]	TCE	50	K ₃ PO ₄	28 (2:1)	10	
19 ^[e]	TCE	50	K ₃ PO ₄			
20 ^[f]	TCE	50	K ₃ PO ₄			

21 ^[g]	TCE	50	K ₃ PO ₄	

[a] Reaction conditions: **1a** (0.5 mmol), **2a** (0.75 mmol), [Ru] (2 mol%), base, solvent (0.5 mL), 60 °C, 16 h, yields determined by ¹H NMR spectroscopy using dibenzyl ether as internal standard, E/Z ratios in parentheses. [b] [(C_6Me_6)RuCl₂]₂ (2 mol%). [c] Ru(COD)Cl₂ (2 mol%). [d] Ph₃P (4 mol%). [e] dppb (2 mol%). [f] Without catalyst. [g] Without base. [Ru] = [Ru(*p*-cymene)Cl₂]₂. HFIP = hexafluoro-2-propanol. TFE = 2,2,2-trifluoroethanol. TCE = 2,2,2-trichloroethanol. Ph₃P = triphenylphosphine. dppb = 1,4-bis(diphenylphosphino)butane.

General procedure for the ortho-allylation

General procedure for the ortho-allylation using allyl alcohols

An oven-dried 20 mL vial was charged with [Ru(*p*-cymene)Cl₂]₂ (6.46 mg, 0.01 mmol), K₃PO₄ (53.2 mg, 0.25 mmol) and a benzoic acid (0.50 mmol) and closed with a septum cap. Under exclusion of air and water, 2,2,2-trichloroethanol (0.5 mL) and an allyl alcohol (0.75 mmol) were added via syringe. The resulting mixture was stirred at 50 °C for 16 h. After the reaction was complete, MeCN (3 mL), K₂CO₃ (207 mg, 1.50 mmol) and Mel (358 mg, 2.50 mmol) were added and the mixture was stirred at 50 °C for 2 h. H₂O (20 mL) was added and the resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography (SiO₂, ethyl acetate/cyclohexane gradient) yielding the corresponding *ortho*-allylated product in the form of its methyl ester.

General procedure for the ortho-allylation using allyl ethers

An oven-dried 20 mL vial was charged with [Ru(*p*-cymene)Cl₂]₂ (12.9 mg, 0.02 mmol), K₃PO₄ (53.2 mg, 0.25 mmol) and a benzoic acid (0.50 mmol) and closed with a septum cap. Under exclusion of air and water, 2,2,2-trichloroethanol (0.5 mL) and an allyl methyl ether (0.75 mmol) were added via syringe. The resulting mixture was stirred at 50 °C for 16 h. The crude reaction mixture was diluted with CDCl₃ (1.5 mL), 1,2-dibenzylether (30.0 μ L, 0.15 mmol) as internal standard was added and the mixture was analysed via ¹H NMR spectroscopy. For internal olefins, *E/Z* ratios could not be determined.

General procedure for the ortho-allylation using allyl silyl ethers

An oven-dried 20 mL vial was charged with [Ru(*p*-cymene)Cl₂]₂ (6.46 mg, 0.01 mmol), K₃PO₄ (53.2 mg, 0.25 mmol), KF (34.8 mg, 0.6 mmol) and benzoic acid **1a** (0.50 mmol) and closed with a septum cap. Under exclusion of air and water, 2,2,2-trichloroethanol (0.5 mL) and **2x** (0.75 mmol) were added via syringe. The resulting mixture was stirred at 50 °C for 16 h. The crude reaction mixture was diluted with CDCl₃ (1.5 mL), 1,2-dibenzylether (30.0 μ L, 0.15 mmol) as internal standard was added and the mixture was analysed via ¹H NMR spectroscopy.

In presence of KF, **2x** reacted smoothly to yield the corresponding allylated product **3ah** in 65% yield (Eq.1). Using allyl silyl ether **2y**, a 35% yield of desired product **3ai** was obtained in the presence of TBAF·3H₂O salt (Eq.2).

Mechanistic investigations

Intermediacy of allyl-ruthenium experiment

An oven-dried 20 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (3.87 mg, 6.00 µmol), K_3PO_4 (32.8 mg, 0.15 mmol) and 2-methylbenzoic acid (41.3 mg, 0.30 mmol), and closed with a septum cap. Under exclusion of air and water, 2,2,2-trichloroethanol (0.5 mL) and allyl-1,1-d₂ alcohol (32.1 µL, 0.45 mmol) were added via syringe. The resulting mixture was stirred at 50 °C for 16 h. The

reaction mixture was diluted with EtOAc (10 mL) and extracted with aq. K_2CO_3 solution (3×10 mL). The combined aqueous phases were acidified with 2M HCI (pH 1-2), then extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. CDCl₃ (1 mL) and 1,2-dichloroethane (24.0 µL, 0.30 mmol) as internal standard and were added and the mixture was analysed via ¹H NMR spectroscopy. The determined ratio of γ [D₂]**3at**/ α [D₂]**3at** was 14:1.

An oven-dried 20 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (3.87 mg, 6.00 µmol), K₃PO₄ (32.8 mg, 0.15 mmol) and 2methylbenzoic acid (41.3 mg, 0.30 mmol), and closed with a septum cap. Under exclusion of air and water, 2,2,2-trichloroethanol (0.5 mL) and allyl-3,3-d₂ alcohol (32.1 µL, 0.45 mmol) with 77% D incorporation were added via syringe. The resulting mixture was stirred at 50 °C for 16 h. The reaction mixture was diluted with EtOAc (10 mL) and extracted with aq. K₂CO₃ solution (3x10 mL). The combined aqueous phases were acidified with 2M HCI (pH 1-2), then extracted with EtOAc (3x20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. CDCl₃ (1 mL) and dibenzyl ether as internal standard and were added and the mixture was analysed via ¹H NMR spectroscopy. The determined ratio of $\alpha[D_2]$ **3at** was 6.3:1.

Parallel kinetic isotope effect

An oven-dried 20 mL vial was charged with [Ru(*p*-cymene)Cl₂]₂ (1.93 mg, 3.00 µmol), K₃PO₄ (16.4 mg, 75.0 µmol), 2-methylbenzoic acid (20.6 mg, 0.15 mmol) or 2,3,4,5-tetradeuterio-6-(trideuteriomethyl)benzoic acid (21.5 mg, 0.15 mmol) and closed with a septum cap. Under exclusion of air and water, 2,2,2-trichloroethanol (0.4 mL) and 3-buten-2-ol (20.1 µL, 225 µmol) were added via syringe. The resulting mixture was stirred at 50 °C for 1 h. The crude reaction mixture was diluted with CDCl₃ (1.5 mL), 1,2-dichloroethane (11.9 µL, 0.15 mmol) as internal standard was added and the mixture was analysed via ¹H NMR spectroscopy. The yields were 30% and 10% respectively, resulting in a $k_{\rm H}/k_{\rm D}$ of 3.0.

Competitive kinetic isotope effect measurement

An oven-dried 20 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (3.87 mg, 8.00 µmol), K_3PO_4 (32.8 mg, 0.15 mmol), 2methylbenzoic acid (20.6 mg, 0.15 mmol), 2,3,4,5-tetradeuterio-6-(trideuteriomethyl)benzoic acid (21.5 mg, 0.15 mmol) and closed with a septum cap. Under exclusion of air and water, 2,2,2-trichloroethanol (0.5 mL) and allyl acetate (40.2 µL, 0.45 mmol) were added via syringe. The resulting mixture was stirred at 50 °C for 1 h. The reaction mixture was diluted with EtOAc (10 mL) and extracted with aq. K_2CO_3 solution (3x10 mL). The combined aqueous phases were acidified with 2M HCI (pH 1-2), then extracted with EtOAc (3x20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. CDCl₃ (1 mL) and 1,2-dichloroethane (24 µL, 0.30 mmol) as internal standard were added and the mixture was analysed via ¹H NMR spectroscopy. Based on the integration ratios, the determined k_H/k_D was 4.0.

Competitive kinetic isotope effect measurement

An oven-dried 20 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (3.87 mg, 8.00 µmol), K₃PO₄ (32.8 mg, 0.15 mmol), 2methylbenzoic acid (20.6 mg, 0.15 mmol), 2,3,4,5-tetradeuterio-6-(trideuteriomethyl)benzoic acid (21.5 mg, 0.15 mmol) and closed with a septum cap. Under exclusion of air and water, 2,2,2-trichloroethanol (0.5 mL) and allyl acetate (40.2 µL, 0.45 mmol) were added via syringe. The resulting mixture was stirred at 50 °C for 1 h. The reaction mixture was diluted with EtOAc (10 mL) and extracted with aq. K₂CO₃ solution (3x10 mL). The combined aqueous phases were acidified with 2M HCl (pH 1-2), then extracted with EtOAc (3x20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. CDCl₃ (1 mL) and 1,2-dichloroethane (24 µL, 0.30 mmol) as internal standard were added and the mixture was analysed via ¹H NMR spectroscopy. Based on the integration ratios, the determined k_H/k_D was 4.0.

Synthesis and characterisation of products

Methyl 2-[but-2-enyl]-6-methyl-benzoate (3aa):

Compound **3aa** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (89 mg, 87%, *E*/Z 2.0:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.23 (t, *J* = 7.7 Hz, 1 H), 7.06 (d, *J* = 7.7 Hz, 2 H), 5.18 - 5.84 (m, 2 H), 3.90 (s, 3 H), 3.27 - 3.35 (d, *J* = 5.1 Hz, 2 H), 2.32 (s, 3 H), 1.58 - 1.77 (m, 3 H) ppm; δ (*Z*-isomer) = 7.23 (t, *J* = 7.7 Hz, 1 H), 7.06 (d, *J* = 7.7 Hz, 2 H), 5.18 - 5.84 (m, 2 H), 3.90 (s, 3 H), 3.40 (d, *J* = 6.8 Hz, 2 H), 2.32 (s, 3 H), 1.58 - 1.77 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 170.27 (s), 138.0 (s), 135.0 (s), 133.45 (s), 129.39 (s), 129.2 (s), 127.9 (s), 126.8 (s), 126.7 (s), 51.7 (s), 36.9 (s), 19.6 (s), 17.8 (s) ppm; δ (*Z*-isomer) = 170.32 (s), 138.1 (s), 135.0 (s), 133.54 (s), 129.43 (s), 128.4 (s), 127.8 (s), 126.6 (s), 125.0 (s), 51.8 (s), 31.1 (s), 19.6 (s), 12.8 (s) ppm.

IR (ATR) 2950, 1726, 1435, 1266, 1114, 1070, 964, 827 cm⁻¹.

MS (EI-TOF) m/z (%) 204 (61) [M]⁺, 172 (100), 157 (45), 145 (37), 129 (48), 115 (22).

HRMS (EI-TOF) m/z calcd. for $C_{13}H_{16}O_2$ [M]⁺ 204.1150, found 204.1149.

Methyl 2-methyl-6-(-pent-2-enyl)benzoate (3ab):

Compound **3ab** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1-penten-3-ol (77.9 µL, 0.75 mmol) and isolated as a colorless oil (97.0 mg, 89%, *E*/*Z* 3:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.24 (t, *J* = 7.7 Hz, 1 H), 7.00 - 7.11 (m, 2 H), 5.37 - 5.61 (m, 2 H), 3.90 (s, 3 H), 3.34 (d, *J* = 5.0 Hz, 2 H), 2.32 (s, 3 H), 1.94 - 2.08 (m, 2 H), 0.99 (t, *J* = 7.5 Hz, 3 H) ppm; δ (*Z*-isomer) = 7.24 (t, *J* = 7.7 Hz, 1 H), 7.00 - 7.11 (m, 2 H), 5.37 - 5.61 (m, 2 H), 3.91 (s, 3 H), 3.39 (d, *J* = 6.1 Hz, 2 H), 2.32 (s, 3 H), 2.08 - 2.21 (m, 2 H), 1.02 (t, *J* = 7.5 Hz, 3 H) ppm. H), 5.37 - 5.61 (m, 2 H), 3.91 (s, 3 H), 3.39 (d, *J* = 6.1 Hz, 2 H), 2.32 (s, 3 H), 2.08 - 2.21 (m, 2 H), 1.02 (t, *J* = 7.5 Hz, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 170.3 (s), 138.1 (s), 134.99 (s), 133.9 (s), 133.5 (s), 129.4 (s), 127.9 (s), 127.0 (s), 126.9 (s), 51.8 (s), 36.9 (s), 25.5 (s), 19.68 (s), 13.7 (s) ppm; δ (*Z*-isomer) = 170.4 (s), 138.2 (s), 134.95 (s), 133.6 (s), 132.9 (s), 129.5 (s), 127.8 (s), 126.7 (s), 126.5 (s), 51.9 (s), 31.3 (s), 20.6 (s), 19.66 (s), 14.2 (s) ppm.

IR (ATR) 2962, 1721, 1436, 1266, 1111, 1070, 967, 775 cm⁻¹.

MS (EI-TOF) m/z (%) 218 (100) [M]⁺, 186 (79), 171 (64), 158 (66), 143 (31), 128 (36), 115 (27), 105 (19). HRMS (EI-TOF) m/z calcd. for C₁₄H₁₈O₂ [M]⁺ 218.1307, found 218.1299.

Methyl 2-(hex-2-enyl)-6-methyl-benzoate (3ac):

Compound **3ac** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1-hexen-3-ol (90.3 µL, 0.75 mmol) and isolated as a colorless oil (100 mg, 86%, *E*/*Z* 4:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.25 (t, *J* = 7.5 Hz, 1 H), 7.02 - 7.12 (m, 2 H), 5.33 - 5.62 (m, 2 H), 3.90 (s, 3 H), 3.35 (d, *J* = 5.0 Hz, 2 H), 2.33 (s, 3 H), 1.93 - 2.05 (m, 2 H), 1.25 - 1.52 (m, 2 H), 0.91 (t, *J* = 7.3 Hz, 3 H) ppm; δ (*Z*-isomer) = 7.25 (t, *J* = 7.5 Hz, 1 H), 7.02 - 7.12 (m, 2 H), 5.33 - 5.62 (m, 2 H), 3.91 (s, 3 H), 3.41 (d, *J* = 5.5 Hz, 2 H), 2.33 (s, 3 H), 2.06 - 2.18 (m, 2 H), 1.25 - 1.52 (m, 2 H), 0.95 (t, *J* = 7.3 Hz, 3 H) ppm.

 $^{13}C \text{ NMR } (75 \text{ MHz, CDCl}_3) \ \delta(\textit{E}\text{-isomer}) = 170.26 \ (s), 138.1 \ (s), 135.0 \ (s), 133.47 \ (s), 132.1 \ (s), 129.39 \ (s), 128.1 \ (s), 127.9 \ (s), 126.8 \ (s), 51.7 \ (s), 36.9 \ (s), 34.6 \ (s), 22.5 \ (s), 19.7 \ (s), 13.6 \ (s) \text{ ppm}; \ \delta(\textit{Z}\text{-isomer}) = 170.34 \ (s), 138.2 \ (s), 138.49 \ (s), 133.54 \ (s), 131.0 \ (s), 129.42 \ (s), 127.8 \ (s), 127.5 \ (s), 126.5 \ (s), 51.8 \ (s), 31.3 \ (s), 29.3 \ (s), 22.7 \ (s), 19.6 \ (s), 138.6 \ (s) \text{ ppm}.$

IR (ATR) 2956, 1758, 1435, 1266, 1238, 1111, 1070, 968, 774 cm⁻¹.

MS (EI-TOF) m/z (%) 232 (18) [M]+, 175 (10), 158 (100).

HRMS (EI-TOF) m/z calcd. for C₁₅H₂₀O₂ [M]⁺ 232.1463, found 232.1454.

Methyl 2-(dec-2-enyl)-6-methyl-benzoate (3ad):

Compound **3ad** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1-decen-3-ol (143 µL, 0.75 mmol) and isolated as a colorless oil (121 mg, 84%, *E/Z* 4:1).

¹H NMR (400 MHz, CDCl₃) δ (*E*-isomer) = 7.24 (t, *J* = 7.6 Hz, 1 H), 7.07 (m, 2 H), 5.39 - 5.57 (m, 2 H), 3.90 (s, 3 H), 3.34 (d, *J* = 5.1 Hz, 2 H), 2.33 (s, 3 H), 1.89 - 2.06 (m, 2 H), 1.18 - 1.44 (m, 10 H), 0.80 - 0.98 (m, 3 H) ppm; δ (*Z*-isomer) = 7.24 (t, *J* = 7.6 Hz, 1 H), 7.07 (m, 2 H), 5.39 - 5.57 (m, 2 H), 3.91 (s, 3 H), 3.40 (d, *J* = 5.8 Hz, 2 H), 2.33 (s, 3 H), 2.07 - 2.20 (m, 2 H), 1.18 - 1.44 (m, 10 H), 0.80 - 0.98 (m, 3 H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ(*E*+*Z*) = 170.34 (s, *Z*), 170.27 (s, *E*), 138.2 (s, *Z*), 138.1 (s, *E*), 134.94 (s, *E*), 134.91 (s, *Z*), 133.54 (s, *Z*), 133.48 (s, *E*), 132.4 (s, *E*), 131.3 (s, *Z*), 129.42 (s, *Z*), 129.39 (s, *E*), 127.9 (s, *E*), 127.8 (s, *Z*), 127.3 (s, *Z*), 126.8 (s, *E*), 126.5 (s, *Z*), 51.8 (s, *Z*), 51.7 (s, *E*), 36.9 (s, *E*), 32.5 (s, *E*), 31.8 (s, *E*+*Z*), 31.3 (s, *Z*), 29.6 (s, *E* or *Z*), 29.4 (s, *E* or *Z*), 29.3 (s, *E* or *Z*), 29.2 (s, *E* or *Z*), 29.1 (s, *E* or *Z*), 27.3 (s, *Z*), 22.6 (s, *E*+*Z*), 19.7 (s, *E*+*Z*), 14.0 (s, *E*+*Z*) ppm.

IR (ATR) 2953, 1729, 1436, 1266, 1112, 1072, 967, 774 cm⁻¹.

MS (EI-TOF) m/z (%) 288 (42) [M]⁺, 257 (10), 175 (25), 158 (100), 143 (14), 128 (26). HRMS (EI-TOF) m/z calcd. for C₁₉H₂₈O₂ [M]⁺ 288.2089, found 288.2087.

Methyl 2-(cinnamyl)-6-methyl-benzoate (3ae):

Compound **3ae** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1-phenylprop-2-en-1-ol (103 µL, 0.75 mmol) and isolated as a colorless oil (105 mg, 79%, *E*/*Z*1:1).

¹H NMR (400 MHz, CDCl₃) δ (*E*-isomer) = 7.18 - 7.42 (m, 6 H), 7.06 - 7.18 (m, 2 H), 6.45 (d, *J* = 15.9 Hz, 1 H), 6.31 (dt, *J* = 15.7, 6.8 Hz, 1 H), 3.89 (s, 3 H), 3.58 (dd, *J* = 7.3, 1.3 Hz, 2 H), 2.36 (s, 3 H) ppm; δ (*Z*-isomer) = 7.18 - 7.42 (m, 6 H), 7.06 - 7.18 (m, 2 H), 6.58 (d, *J* = 11.4 Hz, 1 H), 5.79 (dt, *J* = 11.4, 7.3 Hz, 1 H), 3.73 (s, 3 H), 3.70 (dd, *J* = 7.3, 1.5 Hz, 2 H), 2.34 (s, 3 H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ (*E*+*Z*) = 170.3 (s, *E* or *Z*), 170.1 (s, *E* or *Z*), 137.8 (s, *E* or *Z*), 137.3 (s, *E* or *Z*), 137.2 (s, *E* or *Z*), 137.0 (s, *E* or *Z*), 135.2 (s, *E* or *Z*), 133.7 (s, *E* or *Z*), 133.6 (s, *E* or *Z*), 131.3 (s, *E*), 130.1 (s, *Z*), 129.9 (s, *Z*), 129.6 (s, *E* or *Z*), 128.7 (s, *E* or *Z*), 128.5 (s, *E* or *Z*), 128.4 (s, *E*), 128.2 (s, *E* or *Z*), 128.1 (s, *E* or *Z*), 127.13 (s, *E* or *Z*), 127.08 (s, *E* or *Z*), 126.9 (s, *E* or *Z*), 126.5 (s, *E* or *Z*), 126.1 (s, *E* or *Z*), 51.9 (s, *E* or *Z*), 51.8 (s, *E* or *Z*), 37.3 (s, *E*), 32.7 (s, *Z*), 19.72 (s, *E* or *Z*), 19.67 (s, *E* or *Z*) ppm.

IR (ATR) 3024, 1725, 1435, 1267, 1113, 1071, 963, 755, 694 cm⁻¹.

MS (EI-TOF) *m*/*z* (%) 234 (100) [M-OMe-H], 191 (13), 175 (13).

HRMS (EI-TOF) m/z calcd. for C₁₇H₁₄O [M-OMe-H] 234.1045, found 234.1039.

Methyl 2-methyl-6-[3-(1-naphthyl)allyl]benzoate (3af):

Compound **3af** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1-(1-naphthyl)prop-2-en-1-ol (141 µL, 0.75 mmol) and isolated as a colorless oil (130 mg, 82%, *E*/Z 1.9:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 8.08 - 8.19 (m, 1 H), 7.70 - 7.93 (m, 2 H), 7.35 - 7.62 (m, 4 H), 6.96 - 7.34 (m, 4 H), 6.32 (dt, *J* = 15.5, 6.8 Hz, 1 H), 3.88 (s, 3 H), 3.70 (dd, *J* = 6.4, 1.3 Hz, 2 H), 2.37 (s, 3 H) ppm; δ (*Z*-isomer) = 7.97 - 8.08 (m, 1 H), 7.70 - 7.93 (m, 2 H), 7.35 - 7.62 (m, 4 H), 6.96 - 7.34 (m, 4 H), 6.06 (dt, *J* = 11.3, 7.3 Hz, 1 H), 3.59 (s, 3 H), 3.52 (dd, *J* = 7.3, 1.7 Hz, 2 H), 2.29 (s, 3 H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ(*E*+*Z*) = 170.3 (s, *E*), 170.1 (s, *Z*), 137.6 (s, *Z*), 137.2 (s, *E*), 135.3 (s, *E* or *Z*), 135.1 (s, *E* or *Z*), 134.0 (s, *E*), 133.7 (s, *Z*), 133.5 (s, *E* or *Z*), 131.9 (s, *E* or *Z*), 131.8 (s, *E* or *Z*), 131.6 (s, *E* or *Z*), 131.1 (s, *E* or *Z*), 129.6 (s, *E* or *Z*), 129.5 (s, *E* or *Z*), 128.6 (s, *E* or *Z*), 128.4 (s, *E* or *Z*), 128.3 (s, *E* or *Z*), 128.0 (s, *E* or *Z*), 127.51 (s, *E* or *Z*), 127.48 (s, *E* or *Z*), 127.1 (s, *E* or *Z*), 126.6 (s, *E* or *Z*), 126.3 (s, *E* or *Z*), 125.9 (s, *E* or *Z*), 125.84 (s, *E* or *Z*), 125.79 (s, *E* or *Z*), 125.63 (s, *E* or *Z*), 125.58 (s, *E* or *Z*), 125.3 (s, *E* or *Z*), 125.0 (s, *E* or *Z*), 123.8 (s, *E* or *Z*), 51.9 (s, *E*), 51.7 (s, *Z*), 37.6 (s, *E*), 32.8 (s, *Z*), 19.8 (s, *E*), 19.6 (s, *Z*), 128.8 (s, *Z*) ppm.

IR (ATR) 2949, 1724, 1435, 1268, 1113, 1072, 779 cm⁻¹.

MS (EI-TOF) m/z (%) 316 (55) [M]⁺, 284 (95), 266 (63), 255 (28), 239 (52), 175 (100), 153 (23). HRMS (EI-TOF) m/z calcd. for C₂₂H₂₀O₂ [M]⁺ 316.1463, found: 316.1480.

Methyl 2-[3-(2-furyl)allyl]-6-methyl-benzoate (3ag):

Compound **3ag** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1-(2-furyl)prop-2-en-1-ol (95.3 µL, 0.75 mmol) and isolated as a colorless oil (86 mg, 67%, *E/Z* 1.5:1).

¹H NMR (400 MHz, CDCl₃) δ (*E*-isomer) = 7.27 (d, *J* = 1.3 Hz, 1 H), 7.17 - 7.24 (m, 1 H), 7.01 - 7.13 (m, 2 H), 6.03 - 6.44 (m, 4 H), 3.84 (s, 3 H), 3.50 (d, *J* = 5.6 Hz, 2 H), 2.31 (s, 3 H) ppm; δ (*Z*-isomer) = 7.39 (d, *J* = 1.3 Hz, 1 H-(*Z*)), 7.17 - 7.24 (m, 1 H), 7.01 - 7.13 (m, 2 H), 6.03 - 6.44 (m, 3 H), 5.59 (dt, *J* = 11.6, 7.3 Hz, 1 H), 3.84 (dd, *J* = 7.3, 1.8 Hz, 2 H), 3.77 (s, 3 H), 2.31 (s, 3 H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ (*E*+*Z*) = 170.1 (s, *E*+*Z*), 152.83 (s, *Z*), 152.76 (s, *E*), 141.6 (s, *Z*), 141.4 (s, *E*), 137.7 (s, *E* or *Z*), 136.9 (s, *E* or *Z*), 135.2 (s, *E* or *Z*), 133.6 (s, *E* or *Z*), 129.5 (s, *E*+*Z*), 128.2 (s, *E*+*Z*), 128.1 (s, *Z*), 127.2 (s, *E*+*Z*), 127.1 (s, *E*+*Z*), 126.7 (s, *E*+*Z*), 128.2 (s, *E*+*Z*), 128.1 (s, *Z*), 127.2 (s, *E*+*Z*), 127.1 (s, *E*+*Z*), 126.7 (s, *E*+*Z*), 128.2 (s, *E*+*Z*), 128.1 (s, *Z*), 127.2 (s, *E*+*Z*), 127.1 (s, *E*+*Z*), 126.7 (s, *E*+*Z*), 128.2 (s, *E*+*Z*), 128.1 (s, *Z*), 127.2 (s, *E*+*Z*), 127.1 (s, *E*+*Z*), 126.7 (s, *E*+*Z*), 128.2 (s, *E*+*Z*), 128.1 (s, *Z*), 127.2 (s, *E*+*Z*), 127.1 (s, *E*+*Z*), 126.7 (s, *E*+*Z*), 128.2 (s, *E*+*Z*), 127.2 (s, *E*+*Z*), 127.1 (s, *E*+*Z*), 126.7 (s, *E*+*Z*), 128.2 (s, *E*+*Z*), 12

119.9 (s, *E*), 117.7 (s, *Z*), 111.1 (s, *Z*), 111.0 (s, *E*), 109.5 (s, *Z*), 106.7(s, *E*), 51.73 (s, *E* or *Z*), 51.70 (s, *E* or *Z*), 36.8 (s, *E*), 33.5 (s, *Z*), 19.7 (s, *E* or *Z*), 19.6 (s, *E* or *Z*) ppm. IR (ATR) 2927, 1722, 1436, 1269, 1114, 1072, 776, 733 cm⁻¹. MS (EI-TOF) m/z (%) 256 (14) [M]⁺, 224 (100), 195 (49), 181 (26), 175 (14), 153 (16), 147 (17). HRMS (EI-TOF) m/z calcd. for C₁₆H₁₆O₃ [M]⁺ 256.1099, found 256.1110.

Methyl 2-methyl-6-(3-methylbut-2-enyl)benzoate (3ah):

Compound **3ah** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 2-methyl-3-buten-2-ol (107 µL, 0.75 mmol) and isolated as a colorless oil (97 mg, 89%).

¹H NMR (300 MHz, CDCl₃) δ = 7.23 (t, J = 7.5 Hz, 1 H), 7.01 - 7.09 (m, 2 H), 5.24 (tq, J = 7.2, 1.3 Hz, 1 H), 3.90 (s, 3 H), 3.35 (d, J = 7.2 Hz, 2 H), 2.32 (s, 3 H), 1.74 (s, 3 H), 1.70 (s, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ = 170.4 (s), 138.7 (s), 134.9 (s), 133.5 (s), 132.8 (s), 129.4 (s), 127.7 (s), 126.6 (s), 122.5 (s), 51.8 (s), 32.3 (s), 25.7 (s), 19.6 (s), 17.8 (s) ppm.

IR (ATR) 2950, 1727, 1436, 1267, 1111, 1070, 774 cm⁻¹.

MS (EI-TOF) m/z (%) 218 (2) [M]+, 186 (100).

HRMS (EI-TOF) *m*/*z* calcd. for C₁₄H₁₈O₂ [M]⁺ 218.1307, found 218.1313.

Methyl 2-(3,3-diphenylallyl)-6-methyl-benzoate (3ai):

Compound **3ai** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1,1-diphenylprop-2-en-1-ol (157 µL, 0.75 mmol) and isolated as a colorless oil (154 mg, 90%).

¹H NMR (300 MHz, CDCl₃) δ = 7.19 - 7.39 (m, 3 H), 7.08 - 7.19 (m, 8 H), 6.97 (d, *J* = 7.7 Hz, 2 H), 6.09 (t, *J* = 7.2 Hz, 1 H), 3.69 (s, 3 H), 3.39 (d, *J* = 7.3 Hz, 2 H), 2.22 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 170.2 (s), 142.5 (s), 142.4 (s), 139.6 (s), 138.0 (s), 135.1 (s), 133.6 (s), 129.9 (s), 129.5 (s), 128.2 (s), 128.07 (s), 128.05 (s), 127.4 (s), 127.3 (s), 127.2 (s), 127.1 (s), 126.7 (s), 51.9 (s), 33.9 (s), 19.7 (s) ppm. IR (ATR) 3023, 1725, 1463, 1113, 1072, 760, 698 cm⁻¹.

MS (EI-TOF) *m/z* (%) 342 (5) [M]⁺, 310 (100), 295 (27), 282 (11), 267 (21), 233 (11), 175 (15), 162 (24).

HRMS (EI-TOF) m/z calcd. for $C_{21}H_{22}O_2$ [M]⁺ 342.1620, found 342.1635.

Methyl 2-[3,3-bis(p-tolyl)allyl]-6-methyl-benzoate (3aj):

Compound **3aj** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1,1-bis(p-tolyl)prop-2-en-1-ol (216 µL, 0.75 mmol) and isolated as a colorless oil (170 mg, 92%).

¹H NMR (400 MHz, CDCl₃) δ = 7.21 - 7.27 (m, 3 H), 7.13 - 7.20 (m, 4 H), 7.04 - 7.13 (m, 4 H), 6.15 (t, *J* = 7.2 Hz, 1 H), 3.82 (s, 3 H), 3.53 (d, *J* = 7.3 Hz, 2 H), 2.42 (s, 3 H), 2.35 (s, 3 H) 2.34 (s, 3 H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ = 170.2 (s), 142.3 (s), 139.8 (s), 138.2 (s), 136.71 (s), 136.66 (s), 136.62 (s), 135.0 (s), 133.6 (s), 129.8 (s), 129.4 (s), 128.9 (s), 128.7 (s), 127.9 (s), 127.3 (s), 126.7 (s), 126.1 (s), 51.8 (s), 33.9 (s), 21.2 (s), 21.0 (s), 19.6 (s) ppm. IR (ATR) 2948, 1721, 1269, 1112, 1073, 822, 780, 729 cm⁻¹. MS (EI-TOF) *m/z* (%) 370 (5) [M]⁺, 338 (17), 323 (25), 219 (44), 210 (40), 195 (52), 147 (21), 119 (100). HRMS (EI-TOF) *m/z* calcd. for C₂₆H₂₆O₂ [M]⁺ 370.1933, found 370.1937.

Methyl 2-[3,3-bis(3-fluorophenyl)allyl]-6-methyl-benzoate (3ak):

Compound **3ak** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1,1-bis(3-fluorophenyl)prop-2-en-1-ol (223 µL, 0.75 mmol) and isolated as a colorless oil (161 mg, 85%).

¹H NMR (400 MHz, CDCl₃) δ = 7.33 - 7.44 (m, 1 H), 7.15 - 7.30 (m, 2 H), 6.99 - 7.15 (m, 5 H), 6.86 - 6.98 (m, 3 H), 6.24 (t, *J* = 7.3 Hz, 1 H), 3.82 (s, 3 H), 3.48 (d, *J* = 7.3 Hz, 2 H), 2.33 (s, 3 H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ = 170.1 (s), 162.8 (d, *J* = 247.1 Hz), 144.0 (d, *J* = 8.3 Hz), 141.2 (d *J* = 6.6 Hz), 140.3 (s), 137.3 (s), 135.3 (s), 133.6 (s), 130.0 (d, *J* = 8.3 Hz), 129.6 (d, *J* = 9.9 Hz), 129.1 (s), 128.3 (s), 126.7 (s), 125.6 (d, *J* = 3.3 Hz), 122.9 (d, *J* = 8.3 Hz), 116.8 (d, *J* = 19.9 Hz), 114.5 (d, *J* = 19.9 Hz), 114.2 (d, *J* = 21.6 Hz), 114.1 (d, *J* = 19.9 Hz), 51.9 (s), 33.9 (s), 19.7 (s) ppm. ¹⁹F NMR (235 MHz, CDCl₃) δ = -112.79, -113.46 ppm.

IR (ATR) 2951, 1725, 1580, 1435, 1264, 1230, 1113, 1072, 780, 731 cm⁻¹.

MS (EI-TOF) m/z (%) 378 (3) [M]⁺, 360 (39), 346 (100), 331 (31), 317 (19), 303 (20), 251 (15), 175 (13). HRMS (EI-TOF) m/z calcd. for C₂₄H₂₀O₂F₂ [M]⁺ 378.1413, found: 378.1447.

Methyl 2-methyl-6-(3-phenylbut-2-enyl)benzoate (3al):

Compound **3al** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 2-phenylbut-3-en-2-ol (134 µL, 0.75 mmol) and isolated as a colorless oil (135 mg, 96%, *E/Z* 4:1).

¹H NMR (400 MHz, CDCl₃) δ (*E*-isomer) = 7.23 - 7.51 (m, 6 H), 7.15 (dd, *J* = 13.3, 7.7 Hz, 2 H), 5.93 (tq, *J* = 7.1, 1.3 Hz, 1 H), 3.92 (s, 3 H), 3.63 (d, *J* = 7.3 Hz, 2 H), 2.39 (s, 3 H), 2.18 (d, *J* = 1.3 Hz, 3 H) ppm; δ (*Z*-isomer) = 7.23 - 7.51 (m, 6 H), 7.06 - 7.11 (m, 2 H), 5.65 (td, *J* = 7.1, 1.3 Hz, 1 H), 3.81 (s, 3 H), 3.39 (d, *J* = 7.3 Hz, 2 H), 2.35 (s, 3H), 2.13 (d, *J* = 1.3 Hz, 3 H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ (*E*-isomer) = 170.3 (s), 143.4 (s), 138.1 (s), 135.8 (s), 135.1 (s), 133.6 (s), 129.5 (s), 128.1 (s), 128.0 (s), 126.7 (s), 126.1 (s), 125.7 (s), 51.9 (s), 33.0 (s), 19.7 (s), 15.9 (s) ppm; δ (*Z*-isomer) = 170.2 (s), 141.5 (s), 138.4 (s), 137.5 (s), 134.9 (s), 133.5 (s), 129.4 (s), 128.1 (s), 127.9 (s), 127.8 (s), 126.5 (s), 125.1 (s), 51.8 (s), 33.2 (s), 25.6 (s), 19.6 (s) ppm. IR (ATR) 2949, 1725, 1434, 1267, 1113, 1070, 761, 696 cm⁻¹.

MS (EI-TOF) *m/z* (%) 249 (26) [M-OMe], 248 (100), 233 (50), 205 (33), 175 (28), 162 (39), 147 (23).

HRMS (EI-TOF) *m/z* calcd. for C₁₈H₁₇O [M-OMe] 249.1279, found 249.1281.

Methyl 2-methyl-6-(4-methyl-3-phenyl-pent-2-enyl)benzoate (3am):

Compound **3am** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 4-methyl-3-phenyl-pent-1-en-3-ol (160 µL, 0.75 mmol) and isolated as a colorless oil (150 mg, 97%, *E/Z* >20:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.21 - 7.31 (m, 4 H), 7.16 - 7.21 (m, 2 H), 7.15 (d, *J* = 7.0 Hz, 1 H), 7.08 (d, *J* = 7.2 Hz, 1 H), 5.38 (s, 1 H), 3.91 (s, 3 H), 3.57 (d, *J* = 7.2 Hz, 2 H), 3.02 - 3.25 (m, 1 H), 2.33 (s, 3 H), 1.08 (d, *J* = 7.0 Hz, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 170.4 (s), 147.9 (s), 142.8 (s), 138.3 (s), 135.0 (s), 133.6 (s), 129.5 (s), 128.6 (s), 127.9 (s), 127.4 (s), 126.5 (s), 126.4 (s), 126.3 (s), 51.9 (s), 31.6 (s), 29.2 (s), 21.7 (s), 19.7 (s) ppm. IR (ATR) 2961, 1727, 1439, 1268, 1111, 1071, 763, 701 cm⁻¹. MS (EI-TOF) *m/z* (%) 308 (7) [M]⁺, 276 (22), 233 (100), 218 (10), 162 (18). HRMS (EI-TOF) *m/z* calcd. for C₂₁H₂₄O₂ [M]⁺ 308.1776, found 308.1771.

Methyl 2-(3-cyclohexyl-3-phenyl-allyl)-6-methyl-benzoate (3an):

Compound **3an** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1-cyclohexyl-1-phenyl-prop-2-en-1-ol (196 µL, 0.75 mmol) and isolated as a colorless oil (160 mg, 92%, *E/Z* >20:1).

¹H NMR (400 MHz, CDCl₃) δ (*E*-isomer) = 7.20 - 7.30 (m, 4 H), 7.10 - 7.19 (m, 3 H), 7.06 (d, *J* = 7.6 Hz, 1 H), 5.35 (t, *J* = 7.2 Hz, 1 H), 3.91 (s, 3 H), 3.56 (d, *J* = 7.1 Hz, 2 H), 2.58 - 2.80 (m, 1 H), 2.32 (s, 3 H), 1.59 - 1.82 (m, 6 H), 1.20 - 1.42 (m, 4 H), 0.99 - 1.18 (m, 1 H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ (*E*-isomer) = 170.4 (s), 147.6 (s), 143.5 (s), 138.3 (s), 135.0 (s), 133.6 (s), 129.5 (s), 128.6 (s), 127.9 (s), 127.4 (s), 126.6 (s), 126.5 (s), 126.2 (s), 51.9 (s), 40.4 (s), 31.9 (s), 31.6 (s), 26.7 (s), 26.0 (s), 19.7 (s) ppm.

IR (ATR) 2925, 1728, 1441, 1268, 1113, 1071, 768, 702 cm⁻¹.

MS (EI-TOF) *m/z* (%) 348 (6) [M]⁺, 316 (13), 234 (100), 175 (14), 162 (25), 129 (12).

HRMS (EI-TOF) m/z calcd. for $C_{24}H_{28}O_2\,[M]^+$ 348.2089, found 348.2073.

Methyl 2-(3-cyclobutyl-3-phenyl-allyl)-6-methyl-benzoate (3ao):

Compound **3ao** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1-cyclobutyl-1-phenyl-prop-2-en-1-ol (170 µL, 0.75 mmol) and isolated as a colorless oil (148 mg, 92%, *E*/*Z* 9:1).

¹H NMR (400 MHz, CDCl₃) δ (*E*-isomer) = 7.18 - 7.36 (m, 4 H), 7.07 - 7.17 (m, 3 H), 6.98 - 7.07 (m, 1 H), 5.35 - 5.56 (m, 1 H), 3.89 (s, 3 H), 3.58 - 3.73 (m, 1 H), 3.50 (d, *J* = 7.1 Hz, 2 H), 2.31 (s, 3 H), 2.07 - 2.23 (m, 2 H), 1.77 - 2.02 (m, 3 H), 1.58 - 1.71 (m, 1 H) ppm; δ (*Z*-isomer) = 7.18 - 7.36 (m, 4 H), 7.07 - 7.17 (m, 3 H), 6.98 - 7.07 (m, 1 H), 5.35 - 5.56 (m, 1 H), 3.77 (s, 3 H), 3.58 - 3.73 (m, 1 H), 3.25 (d, *J* = 6.8 Hz, 2 H), 2.31 (s, 3 H), 2.07 - 2.02 (m, 3 H), 1.58 - 1.71 (m, 1 H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ (*E*-isomer) = 170.3 (s), 145.4 (s), 142.9 (s), 138.3 (s), 135.0 (s), 133.6 (s), 129.5 (s), 127.9 (s), 127.74 (s), 127.69 (s), 126.6 (s), 126.5 (s), 126.2 (s), 51.9 (s), 37.1 (s), 32.2 (s), 29.1 (s), 19.7 (s), 18.9 (s) ppm; δ (*Z*-isomer, detectable signals) = 145.8 (s), 138.5 (s), 129.4 (s), 128.4 (s), 128.0 (s), 122.5 (s), 51.8 (s), 42.6 (s), 32.8 (s), 27.8 (s), 19.6 (s), 17.7 (s) ppm. IR (ATR) 2947, 1726, 1440, 1267, 1112, 1070, 762, 700 cm⁻¹.

MS (EI-TOF) *m/z* (%) 320 (12) [M]⁺, 288 (27), 260 (64), 245 (78), 233 (100), 215 (29), 202 (26), 162 (32), 147 (30).

HRMS (EI-TOF) m/z calcd. for $C_{22}H_{24}O_2$ [M+] 320.1776, found 320.1786.

Methyl 2-(2-cyclohexylideneethyl)-6-methyl-benzoate (3ap):

Compound **3ap** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 1-ethenylcyclohexan-1-ol (104 μ L, 0.75 mmol) and isolated as a colorless oil (117 mg, 90%).

¹H NMR (300 MHz, CDCl₃) δ = 7.22 (d, J = 7.7 Hz, 1 H), 7.06 (d, J = 7.2 Hz, 1 H), 5.15 - 5.25 (m, 1 H), 3.91 (s, 3 H), 3.36 (d, J = 7.2 Hz, 2 H), 2.32 (s, 3 H), 2.04 - 2.26 (m, 4 H), 1.48 - 1.62 (m, 6 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ = 170.4 (s), 140.9 (s), 138.9 (s), 134.8 (s), 133.5 (s), 129.4 (s), 127.6 (s), 126.5 (s), 119.0 (s), 51.8 (s), 37.1 (s), 31.2 (s), 28.7 (s), 28.5 (s), 27.7 (s), 26.8 (s), 19.6 (s) ppm.

IR (ATR) 2925, 1728, 1445, 1267, 1112, 1071, 825 cm⁻¹.

MS (EI-TOF) *m/z* (%) 258 (15) [M]⁺, 226 (100), 171 (16), 162 (29), 145 (24), 132 (22), 115 (12).

HRMS (EI-TOF) m/z calcd. for $C_{17}H_{22}O_2$ [M]⁺ 258.1620, found 258.1604.

Methyl 2-[2-(2-adamantylidene)ethyl]-6-methyl-benzoate (3aq):

Compound **3aq** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 2-vinyladamantan-2-ol (135 mg, 0.75 mmol) and isolated as a colorless oil (83 mg, 53%).

¹H NMR (400 MHz, CDCl₃) δ = 7.24 (t, *J* = 7.6 Hz, 1 H), 7.10 (d, *J* = 7.6 Hz, 1 H), 7.05 (d, *J* = 7.6 Hz, 1 H), 5.18 (t, *J* = 7.2 Hz, 1 H), 3.93 (s, 3 H), 3.34 (d, *J* = 7.3 Hz, 2 H), 2.84 - 2.97 (m, 1 H), 2.36 - 2.42 (m, 1 H), 2.33 (s, 3 H), 1.94 - 2.02 (m, 2 H), 1.69 - 1.94 (m, 10 H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ = 170.5 (s), 148.8 (s), 139.1 (s), 134.0 (s), 133.5 (s), 129.4 (s), 127.5 (s), 126.4 (s), 114.0 (s), 51.8 (s), 40.5 (s), 39.7 (s), 38.9 (s), 37.2 (s), 32.1 (s), 30.5 (s), 28.6 (s), 19.6 (s), ppm.

IR (ATR) 2901, 1728, 1447, 1266, 1112, 1069, 774, 716 cm⁻¹.

MS (EI-TOF) *m/z* (%) 310 (7) [M]⁺, 278 (100), 162 (30).

HRMS (EI-TOF) *m*/*z* calcd. for C₂₁H₂₆O₂ [M]⁺ 310.1933, found 310.1938.

Methyl 2-(2-fluoren-9-ylideneethyl)-6-methyl-benzoate (3ar):

An oven-dried 20 mL vial was charged with [Ru(*p*-cymene)Cl₂]₂ (6.46 mg, 0.01 mmol), K₂CO₃ (69.2 mg, 0.5 mmol) and 2-methylbenzoic acid (0.50 mmol) and closed with a septum cap. Under exclusion of air and water, MeCN (2 mL) and 9-vinylfluoren-9-ol (188 μ L, 0.75 mmol) were added via syringe. The resulting mixture was stirred at 80 °C for 16 h. After the reaction was complete, MeCN (2 mL), K₂CO₃ (207 mg, 1.50 mmol) and Mel (358 mg, 2.50 mmol) were added and the mixture was stirred at 50 °C for 2 h. H₂O (20 mL) was added and the resulting mixture was extracted with EtOAc (3x20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography (SiO₂, ethyl acetate/cyclohexane gradient) yielding compound **3ar** as a colorless oil (49 mg, 29%).

¹H NMR (300 MHz, CDCl₃) δ = 7.89 - 7.97 (m, 1 H), 7.77 - 7.83 (m, 1 H), 7.70 - 7.76 (m, 1 H), 7.61 - 7.69 (m, 1 H), 7.25 - 7.47 (m, 5 H), 7.23 (d, *J* = 7.0 Hz, 1 H), 7.18 (d, *J* = 7.3 Hz, 1 H), 6.79 (t, *J* = 7.2 Hz, 1 H), 4.24 (d, *J* = 7.3 Hz, 2 H), 3.78 (s, 3 H), 2.41 (s, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ = 170.1 (s), 141.0 (s), 139.2 (s), 138.7 (s), 137.1 (s), 137.0 (s), 135.9 (s), 135.6 (s), 133.7 (s), 129.8 (s), 128.6 (s), 128.1 (s), 128.0 (s), 127.7 (s), 127.04 (s), 126.95 (s), 126.9 (s), 124.9 (s), 119.92 (s), 119.86 (s), 119.5 (s), 52.0 (s), 33.7 (s), 19.8 (s) ppm.

IR (ATR) 2949, 1723, 1446, 1268, 1113, 1073, 776, 728 cm⁻¹.

MS (EI-TOF) m/z (%) 340 (18) [M]⁺, 308 (100), 249 (25), 265 (68), 180 (67), 162 (54), 147 (55), 132 (47). HRMS (EI-TOF) m/z calcd. for C₂₄H₂₀O₂ [M]⁺ 340.1463, found 340.1468.

Methyl 2-[3-(5-chloro-2-thienyl)but-2-enyl]-6-methyl-benzoate (3as):

Compound **3as** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 2-(5-chloro-2-thienyl)but-3-en-2-ol (171 µL, 0.75 mmol) and isolated as a colorless oil (118 mg, 73%, *E*/*Z* 1.3:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.26 (t, *J* = 7.7 Hz, 1 H), 7.05 - 7.14 (m, 2 H), 6.77 (d, *J* = 7.9 Hz, 1 H), 6.76 (d, *J* = 7.7 Hz, 1 H), 5.82 - 5.98 (m, 1 H), 3.89 (s, 3 H), 3.56 (d, *J* = 7.3 Hz, 2 H), 2.35 (s, 3 H), 2.08 (d, *J* = 1.1 Hz, 3 H) ppm; δ (*Z*-isomer) = 7.26 (t, *J* = 7.7 Hz, 1 H), 7.05 - 7.14 (m, 2 H), 6.87 (d, *J* = 3.9 Hz, 1 H), 6.80 (d, *J* = 3.9 Hz, 1 H), 5.54 - 5.66 (m, 1 H), 3.83 (s, 3 H), 3.64 (dt, *J* = 7.4, 0.7 Hz, 2 H), 2.35 (s, 3 H), 2.12 (q, *J* = 1.4 Hz, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*+*Z*) = 170.2 (s, *E*), 170.0 (s, *Z*), 145.8 (s, *E* or *Z*), 141.5 (s, *E* or *Z*), 137.6 (s, *E* or *Z*), 137.3 (s, *E* or *Z*), 135.20 (s, *Z*), 135.17 (s, *E*), 133.5 (s, *E*), 133.4 (s, *Z*), 129.5 (s, *E*), 129.4 (s, *Z*), 128.9 (s, *Z*), 128.6 (s, *E*), 128.2 (s, *E*), 128.1 (s, *Z*), 127.44 (s, *E*+*Z*), 127.39 (s, *Z*), 126.6 (s, *E*), 126.5 (s, *Z*), 126.2 (s, *E*), 125.8 (s, *Z*), 125.1 (s, *E*), 124.7 (s, *Z*), 121.6 (s, *E*), 51.9 (s, *E*), 51.8 (s, *Z*), 33.9 (s, *E*), 32.6 (s, *E*), 25.2 (s, *Z*), 19.6 (s, *E*+*Z*), 15.2 (s, *E*), ppm.

IR (ATR) 2990, 1724, 1463, 1113, 1071, 958, 785 cm⁻¹.

MS (EI-TOF) m/z (%) 322 (6) [M (³⁷Cl)]⁺, 320 (18) [M (³⁵Cl)]⁺, 288 (84), 273 (33), 253 (100), 225 (26), 175 (28), 162 (54), 147 (36). HRMS (EI-TOF) m/z calcd. for C₁₇H₁₇O₂S³⁷Cl [M]⁺ 322.0608 and C₁₇H₁₇O₂S³⁵Cl 320.0638, found 322.0625 and 320.0653.

Methyl 2-allyl-6-methyl-benzoate (3at):

Compound **3au** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and allyl alcohol (51.9 mg, 0.75 mmol) and isolated as a 2:1 mixture with its isomer (68 mg, 71%).

¹H NMR (300 MHz, CDCl₃) δ = 7.18 - 7.29 (m, 1 H), 7.02 - 7.11 (m, 2 H), 5.79 - 6.01 (m, 1 H), 4.96 - 5.15 (m, 2 H), 3.90 (s, 3 H), 3.40 (d, *J* = 6.8 Hz, 1 H), 2.33 (s, 3 H) ppm; δ (isomer) = 7.31 - 7.37 (m, 1 H), 7.18 - 7.29 (m, 1 H), 7.02 - 7.11 (m, 1 H), 6.40 (dq, *J* = 15.6, 1.7 Hz, 1 H), 6.20 (dq, *J* = 15.4, 6.6 Hz, 1 H), 3.94 (s, 3 H), 2.31 (s, 3 H), 1.88 (dd, *J* = 6.6, 1.7 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (mixture) = 170.4 (s), 170.2 (s), 137.0 (s), 136.7 (s), 135.3 (s), 135.1 (s), 134.8 (s), 133.5 (s), 132.2 (s), 129.5 (s), 129.3 (s), 128.7 (s), 128.4 (s), 128.1 (s), 127.9 (s), 126.9 (s), 122.9 (s), 116.0 (s), 52.0 (s), 51.8 (s), 38.1 (s), 19.7 (s), 19.5 (s), 18.7 (s) ppm.

Methyl 2-methyl-6-[(6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]benzoate (4aa):

Compound **4aa** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and nerolidol (170 mg, 0.75 mmol) and isolated as a colorless oil (153 mg, 86%, *E/Z* determined by GC analysis and by analogy with the other compounds 1.4:1).

Gram-scale synthesis of **4aa**: An oven-dried 100 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (129 mg, 0.20 mmol), K_3PO_4 (1.06 g, 5.00 mmol) and 2-methylbenzoic acid (1.38 g, 10.0 mmol) and closed with a septum cap. Under exclusion of air and water, 2,2,2-trichloroethanol (10 mL) and nerolidol (3.40 g, 15.0 mmol) were added via syringe. The resulting mixture was stirred at 50 °C for 16 h.

After the reaction was complete, MeCN (30 mL), K_2CO_3 (4.15 g, 30.0 mmol) and MeI (3.11 mL, 50.0 mmol) were added and the mixture was stirred at 50 °C for 10 h. H_2O (50 mL) was added and the resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (30 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography (SiO₂, ethyl acetate/cyclohexane gradient) yielding the corresponding *ortho*-allylated product in the form of its methyl ester.

¹H NMR (300 MHz, CDCl₃) δ (*E*+*Z*) = 7.23 (t, *J* = 7.5 Hz, 1 H), 7.07 (t, *J* = 6.4 Hz, 2 H), 5.24 - 5.35 (m, 1 H), 5.08 - 5.23 (m, 2 H), 3.91 (s, 3 H), 3.38 (dt, *J* = 7.2, 1.6 Hz, 2 H), 2.34 (s, 3 H), 2.12 - 2.21 (m, 3 H), 2.02 - 2.12 (m, 5 H), 1.75 - 1.80 (m, 2 H), 1.67 - 1.74 (m, 7 H), 1.58 - 1.66 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*+*Z*) = 170.36 (s), 170.24 (s), 138.7 (s), 138.6 (s), 136.48 (s), 136.45 (s), 135.4 (s), 135.1 (s), 134.8 (s), 133.49 (s), 133.47 (s), 131.42 (s), 131.39 (s), 129.3 (s), 127.6 (s), 126.6 (s), 126.4 (s), 124.84 (s), 124.78 (s), 124.3 (s), 124.2 (s), 123.1 (s), 122.3 (s), 51.8 (s), 51.7 (s), 39.9 (s), 32.2 (s), 32.0 (s), 31.92 (s), 31.90 (s), 31.88 (s), 26.6 (s), 26.5 (s), 26.3 (s), 26.2 (s), 25.6 (s), 23.4 (s), 23.32 (s), 23.31 (s), 19.6 (s), 17.6 (s), 17.5 (s), 16.1 (s) ppm.

IR (ATR) 2950, 1730, 1268, 1112, 1071, 775 cm⁻¹.

MS (EI-TOF) m/z (%) 354 (16) [M]⁺, 253 (12), 211 (21), 185 (39), 171 (18), 157 (100), 142 (56), 128 (28). HRMS (EI-TOF) m/z calcd. for C₂₄H₃₄O₂ [M]⁺ 354.2559, found 354.2574.

Methyl 2-methyl-6-[(6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl]benzoate (4ab):

An oven-dried 20 mL vial was charged with [Ru(*p*-cymene)Cl₂]₂ (6.46 mg, 0.01 mmol), K₂CO₃ (69.2 mg, 0.5 mmol) and 2-methylbenzoic acid (0.50 mmol) and closed with a septum cap. Under exclusion of air and water, MeCN (2 mL) and geranyllinalool (260 μ L, 0.75 mmol) were added via syringe. The resulting mixture was stirred at 80 °C for 16 h. After the reaction was complete, MeCN (2 mL), K₂CO₃ (207 mg, 1.50 mmol) and Mel (358 mg, 2.50 mmol) were added and the mixture was stirred at 50 °C for 2 h. H₂O (20 mL) was added and the resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography (SiO₂, ethyl acetate/cyclohexane gradient) yielding compound **4ab** as a colorless oil (115 mg, 54%, *E/Z* determined by GC analysis and by analogy with the other compounds 1.8:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*+*Z*) = 7.23 (d, *J* = 7.7 Hz, 1 H), 7.07 (dd, *J* = 6.7, 6.1 Hz, 2 H), 5.24 - 5.32 (m, 1 H), 5.07 - 5.23 (m, 3 H), 3.90 (s, 3 H), 3.37 (d, *J* = 7.0 Hz, 2 H), 2.33 (s, 3 H), 1.95 - 2.18 (m, 12 H), 1.76 (d, *J* = 1.3 Hz, 2 H), 1.71 (s, 4 H), 1.65 (d, *J* = 0.9 Hz, 2 H), 1.63 (s, 6 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*+*Z*) = 170.4 (s), 138.68 (s), 138.67 (s), 136.6 (s), 136.5 (s), 135.3 (s), 135.1 (s), 134.9 (s), 134.82 (s), 134.77 (s), 133.49 (s), 133.47 (s), 131.2 (s), 129.3 (s), 127.66 (s), 127.65 (s), 126.54 (s), 126.46 (s), 124.4 (s), 124.19 (s), 124.16 (s), 124.0 (s), 123.9 (s), 123.0 (s), 122.3 (s), 51.8 (s), 39.68 (s), 39.65 (s), 32.01 (s), 31.97 (s), 31.9 (s), 26.7 (s), 26.6 (s), 26.5 (s), 26.4 (s), 25.7 (s), 23.4 (s), 19.6 (s), 17.6 (s), 16.1 (s), 15.98 (s), 15.95 (s)ppm.

IR (ATR) 2916, 1730, 1436, 1267, 1112, 1071, 826, 774 cm⁻¹.

MS (EI) *m/z* (%) 422 (5) [M]⁺, 353 (8), 253 (15), 211 (27), 185 (35), 157 (79), 109 (35), 81 (59), 69 (100).

HRMS (ESI) m/z calcd. for C₂₉H₄₂NaO₂ [M+Na]⁺ 455.3077, found 455.3087.

Methyl 2-methyl-6-(3,7,11,15-tetramethylhexadec-2-enyl)benzoate (4ac):

Compound **4ac** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and isophytol (273 µL, 0.75 mmol) and isolated as a colorless oil (154 mg, 72%, *E*/*Z* 1.9:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*+*Z*) = 7.25 (t, *J* = 7.5 Hz, 1 H), 7.03 - 7.12 (m, 2 H), 5.28 (t, *J* = 7.1 Hz, 1 H), 3.92 (s, 3 H), 3.37 (d, *J* = 7.2 Hz, 2 H), 2.34 (s, 3 H), 2.11 (t, *J* = 7.3 Hz, 2 H-*E*), 2.02 (t, *J* = 7.5 Hz, 2 H-*Z*), 1.76 (d, *J* = 1.3 Hz, 3 H-*E*), 1.71 (s, 3 H-*Z*), 1.01 - 1.62 (m, 19 H), 0.82 - 0.94 (m, 12 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ = 170.4 (s), 138.8 (s), 137.1 (s), 136.9 (s), 134.81 (s), 134.79 (s), 133.5 (s), 129.4 (s), 127.7 (s), 126.6 (s), 126.5 (s), 122.7 (s), 122.1 (s), 51.8 (s), 40.0 (s), 37.43 (s), 37.42 (s), 37.39 (s), 37.38 (s), 37.34 (s), 37.27 (s), 37.1 (s), 37.0 (s), 36.8 (s), 120.7 (s), 1

(s), 36.7 (s), 32.77 (s), 32.75 (s), 32.72 (s), 32.69 (s), 32.66 (s), 32.6 (s), 32.12 (s), 32.08 (s), 31.9 (s), 28.0 (s), 25.41 (s), 25.39 (s), 25.36 (s), 25.35 (s), 24.8 (s), 24.4 (s), 23.4 (s), 22.7 (s), 22.6 (s), 19.73 (s), 19.68 (s), 16.1 (s) ppm. IR (ATR) 2925, 1731, 1463, 1267, 1112, 1071, 774, 733 cm⁻¹. MS (EI) m/z (%) 428 (10) [M]⁺, 396 (13), 381 (5), 213 (16), 186 (54), 172 (100), 146 (39), 132 (12), 105 (13). HRMS (ESI) m/z calcd. for C₂₉H₄₈NaO₂ [M+Na]⁺ 451.3546, found 451.3544.

Methyl 2-(3,7-dimethylocta-2,6-dienyl)-6-methyl-benzoate (4ad):

Compound **4ad** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and linalool (139 μ L, 0.75 mmol) and isolated as a colorless oil (115 mg, 80%, *E/Z* determined by GC analysis and by analogy with the other compounds 1.3:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*+*Z*) = 7.22 (d, *J* = 7.7 Hz, 1 H), 7.02 - 7.11 (m, 2 H), 5.22 - 5.33 (m, 1 H), 5.07 - 5.20 (m, 1 H), 3.91 (s, 3 H), 3.37 (dt, *J* = 7.2, 1.5 Hz, 2 H), 2.33 (s, 3 H), 2.03 - 2.18 (m, 4 H), 1.68 - 1.79 (m, 6 H), 1.59 - 1.66 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ = 170.4 (s), 138.68 (s), 138.67 (s), 136.6 (s), 136.5 (s), 134.78 (s), 134.76 (s), 133.48 (s), 131.6 (s), 131.4 (s), 129.3 (s), 127.7 (s), 126.54 (s), 126.46 (s), 124.2 (s), 124.1 (s), 123.1 (s), 122.3 (s), 51.8 (s), 39.6 (s), 32.0 (s), 31.94 (s), 31.86 (s), 26.5 (s), 26.4 (s), 25.7 (s), 25.6 (s), 23.4 (s), 19.6 (s), 19.59 (s), 17.63 (s), 17.58 (s), 16.1 (s) ppm.

IR (ATR) 2949, 1729, 1436, 1267, 1111, 1070, 774, 749 cm⁻¹.

MS (EI) m/z (%) 286 (13) [M]⁺, 254 (31), 211 (43), 185 (76), 157 (100), 123 (83).

HRMS (ESI) *m*/*z* calcd. for C₁₉H₂₆NaO₂ [M+Na]⁺ 309.1825, found 309.1825.

Methyl 2-methyl-6-[3-methyl-5-(2,6,6-trimethylcyclohexen-1-yl)pent-2-enyl]benzoate (4ae):

Compound **4ae** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and 3-methyl-5-(2,6,6-trimethylcyclohexen-1-yl)pent-1-en-3-ol (171 mg, 0.75 mmol) and isolated as a colorless oil (158 mg, 89%, *E/Z* determined by GC analysis and by analogy with the other compounds 2.4:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*+*Z*) = 7.20 - 7.27 (m, 1 H), 7.00 - 7.13 (m, 2 H), 5.18 - 5.35 (m, 1 H), 3.90 (s, 3 H), 3.34 - 3.46 (m, 2 H), 2.33 (s, 3 H), 2.04 - 2.23 (m, 4 H), 1.94 (q, *J* = 6.2 Hz, 2 H), 1.81 (q, *J* = 1.3 Hz, 2 H), 1.72 - 1.78 (m, 1 H), 1.68 (s, 2 H), 1.53 - 1.66 (m, 3 H), 1.39 - 1.50 (m, 2 H), 1.05 (s, 4 H), 1.02 (s, 2 H) ppm.

¹³C NMR (75 MHz, CDCl₃) $\delta(E+Z) = 170.4$ (s), 170.3 (s), 138.8 (s), 138.7 (s), 137.5 (s), 137.3 (s), 136.92 (s), 136.89 (s), 134.84 (s), 134.81 (s), 133.52 (s), 133.50 (s), 129.4 (s), 127.7 (s), 127.2 (s), 127.0 (s), 126.54 (s), 126.48 (s), 122.5 (s), 121.7 (s), 51.8 (s), 40.2 (s), 39.8 (s), 34.9 (s), 32.74 (s), 32.70 (s), 32.66 (s), 32.1 (s), 32.0 (s), 28.60 (s), 28.57 (s), 27.8 (s), 27.2 (s), 23.3 (s), 19.84 (s), 19.78 (s), 19.63 (s), 19.60 (s), 19.5 (s), 16.2 (s), ppm.

IR (ATR) 2926, 1730, 1435, 1267, 1112, 1070, 774, 732 cm⁻¹.

MS (EI-TOF) *m/z* (%): 354 (12) [M]⁺, 216 (67), 186 (42), 157 (66), 137 (100), 121 (17), 95 (53).

HRMS (EI-TOF) m/z calcd. for $C_{24}H_{34}O_2\,[M]^+$ 354.2559, found 354.2555.

Methyl 2-[2-[(8R,10S,13R,17R)-17-(1,5-dimethylhexyl)-10,13-dimethyl-1,2,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-ylidene]ethyl]-6-methyl-benzoate (4af):

Compound **4af** was prepared following the general procedure for the *ortho*-allylation from 2-methylbenzoic acid (68.9 mg, 0.50 mmol) and (8R,10S,13R,17R)-17-(1,5-dimethylhexyl)-10,13-dimethyl-3-vinyl-1,2,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-ol (371 μ L, 0.75 mmol) and isolated as a colorless oil (110 mg, 44%, *E/Z* determined by GC analysis and by analogy with the other compounds 1.5:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*+*Z*) = 7.22 (d, *J* = 7.7 Hz, 1 H), 6.99 - 7.09 (m, 2 H), 5.17 (t, *J* = 7.3 Hz, 1 H), 3.91 (s, 3 H), 3.34 (d, *J* = 7.9 Hz, 2 H), 2.31 (s, 3 H), 2.15 - 2.59 (m, 4 H), 1.45 - 2.13 (m, 10 H), 0.96 - 1.45 (m, 18 H), 0.78 - 0.96 (m, 14 H), 0.67 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 170.5 (s), 140.8 (s), 140.7 (s), 138.9 (s), 134.8 (s), 133.5 (s), 129.42 (s), 129.40 (s), 127.6 (s), 126.52 (s), 126.51 (s), 118.7 (s), 118.6 (s), 56.5 (s), 56.3 (s), 54.44 (s), 54.39 (s), 51.9 (s), 48.2 (s), 47.4 (s), 42.58 (s), 42.57 (s), 40.04 (s), 40.00 (s), 39.5 (s), 39.42 (s), 39.36 (s), 36.5 (s), 36.4 (s), 36.2 (s), 35.8 (s), 35.5 (s), 32.02 (s), 31.96 (s), 31.4 (s), 31.2 (s), 29.1 (s), 28.8 (s), 28.2 (s), 28.0 (s), 24.4 (s), 24.2 (s), 23.8 (s), 22.8 (s), 22.6 (s), 21.12 (s), 21.07 (s), 19.7 (s), 18.7 (s), 12.1 (s), 11.82 (s), 11.78 (s) ppm.

IR (ATR) 2925, 1731, 1443, 1267, 1112, 1071, 774, 733 cm $^{\text{-}1}$. HRMS (ESI) m/z calcd. for $C_{38}H_{58}NaO_2\,[\text{M+Na}]^+$ 569.4329, Found 569.4329.

Methyl 2-(but-2-enyl)-6-phenyl-benzoate (3ba):

Compound **3ba** was prepared following the general procedure for the *ortho*-allylation from 2-phenylbenzoic acid (101 mg, 0.50 mmol) and 3-buten-2-ol (67.3 μL, 0.75 mmol) and isolated as a colorless oil (74 mg, 56%, *E*/*Z* 2:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.31 - 7.44 (m, 6 H), 7.21 - 7.30 (m, 2 H), 5.43 - 5.71 (m, 2 H), 3.56 (s, 3 H), 3.44 (d, *J* = 5.1 Hz, 2 H), 1.67 - 1.71 (m, 3 H) ppm; δ (*Z*-isomer) = 7.31 - 7.44 (m, 6 H), 7.21 - 7.30 (m, 2 H), 5.43 - 5.71 (m, 2 H), 3.57 (s, 3 H), 3.50 (d, *J* = 6.2 Hz, 2 H), 1.71 - 1.76 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*+*Z*) = 170.2 (s), 170.1 (s), 140.88 (s), 140.87 (s), 140.2 (s), 138.6 (s), 138.5 (s), 132.9 (s), 132.8 (s), 129.6 (s), 129.5 (s), 129.1 (s), 128.4 (s), 128.24 (s), 128.19 (s), 128.1 (s), 127.6 (s), 127.5 (s), 127.3 (s), 126.9 (s), 125.3 (s), 51.8 (s), 51.7 (s), 36.7 (s), 30.9 (s), 17.9 (s), 12.9 (s), ppm.

IR (ATR) 2948, 1725, 1427, 1265, 1103, 1064, 806, 729, 700 cm⁻¹.

MS (EI) *m/z* (%) 266 (66) [M]⁺, 233 (100), 209 (25), 191 (37), 179 (23), 165 (46), 152 (22). HRMS (ESI) *m/z* calcd. for C₁₈H₁₈NaO₂ [M+Na]⁺ 289.1199, found 289.1198.

Methyl 2-(but-2-enyl)-6-methoxy-benzoate (3ca):

OMe

Compound **3ca** was prepared following the general procedure for the *ortho*-allylation from 2-methoxybenzoic acid (76.8 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (82 mg, 75%, *E*/*Z*1.9:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.28 (t, *J* = 8.1 Hz, 1 H), 6.83 (d, *J* = 7.7 Hz, 1 H), 6.78 (d, *J* = 8.3 Hz, 1 H), 5.39 - 5.68 (m, 2 H), 3.90 (s, 3 H), 3.82 (s, 3 H), 3.28 (d, *J* = 4.4 Hz, 2 H), 1.64 - 1.68 (m, 3 H) ppm; δ (*Z*-isomer) = 7.28 (t, *J* = 8.1 Hz, 1 H), 6.85 (d, *J* = 7.7 Hz, 1 H), 6.78 (d, *J* = 8.3 Hz, 1 H), 5.39 - 5.68 (m, 2 H), 3.90 (s, 3 H), 3.82 (s, 3 H), 3.37 (d, *J* = 6.6 Hz, 2 H), 1.68 - 1.72 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 168.6 (s), 156.3 (s), 139.4 (s), 130.3 (s), 128.8 (s), 126.8 (s), 123.25 (s), 121.5 (s), 108.68 (s), 55.79 (s), 52.0 (s), 36.5 (s), 17.8 (s) ppm; δ (*Z*-isomer) = 168.7 (s), 156.3 (s), 139.6 (s), 130.4 (s), 127.9 (s), 125.2 (s), 123.2 (s), 121.3 (s), 108.65 (s), 55.81 (s), 52.1 (s), 30.7 (s), 12.8 (s) ppm. IR (ATR) 2949, 1728, 1261, 1110, 1067, 964, 760, 735 cm⁻¹. MS (EI) *m*/*z* (%) 220 (85) [M⁺], 189 (70), 173 (100), 161 (49), 145 (64), 129 (46), 115 (81). HRMS (ESI) *m*/*z* calcd. for C₁₃H₁₆NaO₃ [M+Na]⁺ 243.0992, Found 243.0999.

Methyl 2-(but-2-enyl)-6-iodo-benzoate (3da):

Compound **3da** was prepared following the general procedure for the *ortho*-allylation from 2-iodobenzoic acid (127 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (85 mg, 54%, *E/Z* 1.9:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.67 (dd, *J* = 7.9, 1.3 Hz, 1 H), 7.21 (dd, *J* = 7.7, 1.1 Hz, 1 H), 7.03 (t, *J* = 8.1 Hz, 1 H), 5.37 - 5.69 (m, 2 H), 3.93 (s, 3 H), 3.24 - 3.34 (m, 2 H), 1.66 - 1.68 (m, 3 H) ppm; δ (*Z*-isomer) = 7.67 (dd, *J* = 7.9, 1.3 Hz, 1 H), 7.21 (dd, *J* = 7.7, 1.1 Hz, 1 H), 7.03 (t, *J* = 8.1 Hz, 1 H), 5.37 - 5.69 (m, 2 H), 3.94 (s, 3 H), 3.39 (d, *J* = 7.2 Hz, 2 H), 1.69 - 1.71 (m, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 169.3 (s), 139.8 (s), 136.7 (s), 130.8 (s), 129.0 (s), 128.2 (s), 127.5 (s), 92.2 (s), 52.4 (s), 37.2 (s), 17.8 (s) ppm; δ (*Z*-isomer) = 169.4 (s), 139.9 (s), 139.7 (s), 136.6 (s), 130.7 (s), 128.6 (s), 127.3 (s), 125.9 (s), 92.1 (s), 52.5 (s

(s), 31.3 (s), 12.8 (s) ppm.

IR (ATR) 2948, 1729, 1558, 1438, 1269, 1097, 1058, 956, 823, 689 cm⁻¹. MS (EI) m/z (%) 316 (96) [M]⁺, 284 (99), 259 (40), 157(41), 129 (100), 115 (48). HRMS (ESI) m/z calcd. for C₁₂H₁₄O₂ [M+H]⁺ 317.0033, Found 317.0032.

Methyl 2-(but-2-enyl)-5-methyl-benzoate (3ea):

Compound **3ea** was prepared following the general procedure for the *ortho*-allylation from 3-methylbenzoic acid (68.8 mg, 0.50 mmol) and 3-buten-2-ol (67.3 μL, 0.75 mmol) and isolated as a colorless oil (73 mg, 72%, *E*/Z 2.1:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.68 (m, 1 H), 7.24 (dd, *J* = 7.9, 1.7 Hz, 1 H), 7.18 (t, *J* = 6.2 Hz, 1 H), 5.33 - 5.69 (m, 2 H), 3.89 (s, 3 H), 3.64 (d, *J* = 6.4 Hz, 2 H), 2.35 (s, 3 H), 1.67 (dq, *J* = 6.2, 1.5 Hz, 3 H) ppm; δ (*Z*-isomer) = 7.68 (m, 1 H), 7.24 (dd, *J* = 7.9, 1.7 Hz, 1 H), 7.18 (t, *J* = 6.2 Hz, 1 H), 5.33 - 5.69 (m, 2 H), 3.90 (s, 3 H), 3.72 (d, *J* = 5.7 Hz, 2 H), 2.35 (s, 3 H), 1.70 - 1.76 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 168.34 (s), 139.5 (s), 135.5 (s), 132.68 (s), 130.86 (s), 130.7 (s), 130.1 (s), 129.35 (s), 126.0 (s), 51.79 (s), 36.8 (s), 20.74 (s), 17.9 (s) ppm; δ (*Z*-isomer) = 168.29 (s), 139.4 (s), 135.4 (s), 132.70 (s), 130.94 (s), 130.3 (s), 129.42 (s), 129.1 (s), 124.6 (s), 51.84 (s), 31.2 (s), 20.74 (s), 12.9 (s) ppm.

IR (ATR) 2950, 1720, 1434, 1265, 1206, 1075, 967, 827, 788, 679 $\rm cm^{-1}.$

MS (EI) *m*/z (%) 204 (54) [M]⁺, 172 (100), 157 (32), 145 (47), 129 (79), 115 (34).

HRMS (ESI) *m*/*z* calcd. for C₁₃H₁₇O₂ [M+H]⁺ 205.1223, found 205.1222.

Methyl 2-(but-2-enyl)-5-(trifluoromethyl)benzoate (3fa):

F₃C

Compound **3fa** was prepared following the general procedure for the *ortho*-allylation from 3-(trifluoromethyl)benzoic acid (97 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (69 mg, 53%, *E/Z* 2.3:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 8.14 (m, 1 H), 7.67 (dd, *J* = 8.2, 1.7 Hz, 1 H), 7.43 (t, *J* = 6.4 Hz, 1 H), 5.42 - 5.73 (m, 2 H), 3.93 (s, 3 H), 3.74 (d, *J* = 5.9 Hz, 2 H), 1.64 - 1.70 (m, 3 H) ppm; δ (*Z*-isomer) = 8.13 (m, 1 H), 7.67 (dd, *J* = 8.2, 1.7 Hz, 1 H), 7.43 (t, *J* = 6.4 Hz, 1 H), 5.42 - 5.73 (m, 2 H), 3.93 (s, 3 H), 3.83 (d, *J* = 6.8 Hz, 2 H), 1.71 - 1.76 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*+*Z*) = 166.9 (s, *E*), 166.8 (s, *Z*), 146.8 (q, *J* = 1.7 Hz, *Z*), 146.7 (q, *J* = 1.7 Hz, *E*), 131.4 (s, *E*), 131.0 (s, *Z*), 130.2 (s, *Z*), 130.1 (s, *E*), 128.7 (s, *E* or *Z*), 128.2 - 128.4 (m, *E*+*Z*), 128.4 (q, *J* = 33.2 Hz, *E*+*Z*), 127.6 (s, *E* or *Z*), 127.5 (q, *J* = 4.3 Hz, *E*+*Z*), 127.4 (s, *E* or *Z*), 126.0 (s, *E* or *Z*), 127.2 (q, *J* = 272.0 Hz, *E*+*Z*), 52.3 (s, *E* or *Z*), 52.2 (s, *E* or *Z*), 37.1 (s, *E*), 31.5 (s, *, Z*), 17.9 (s, *E*), 12.9 (s, *Z*) ppm. ¹⁹F NMR (235 MHz, CDCl₃) δ = -62.63 ppm. IR (ATR) 2955, 1727, 1336, 1241, 1168, 1123, 1076, 969, 838, 812 cm⁻¹. MS (EI) *m/z* (%) 258 (29) [M]⁺, 226 (100), 201 (32), 177 (27), 129 (48), 115 (14).

HRMS (EI-TOF) m/z calcd. for $C_{13}H_{13}F_3O_2$ [M]⁺ 258.0868, found 258.0860.

Dimethyl 4-(but-2-enyl)benzene-1,3-dicarboxylate (3ga):

Compound **3ga** was prepared following the general procedure for the *ortho*-allylation from 3-methoxycarbonylbenzoic acid (92.9 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (82 mg, 66%, *E/Z* 1.4:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 8.49 - 8.54 (m, 1 H), 8.07 (dd, *J* = 8.0, 1.9 Hz, 1 H), 7.36 (d, *J* = 8.1 Hz, 1 H), 5.38 - 5.69 (m, 2 H), 3.92 (s, 3 H), 3.91 (s, 3 H), 3.72 (d, *J* = 6.1 Hz, 2 H), 1.63 - 1.69 (m, 3 H) ppm; δ (*Z*-isomer) = 8.49 - 8.54 (m, 1 H), 8.07 (dd, *J* = 8.0, 1.9 Hz, 1 H), 7.39 (d, *J* = 8.1 Hz, 1 H), 5.38 - 5.69 (m, 2 H), 3.92 (s, 3 H), 3.91 (s, 3 H), 3.81 (d, *J* = 7.0 Hz, 2 H), 1.69 - 1.74 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 167.28 (s), 166.3 (s), 147.8 (s), 132.67 (s), 131.8 (s), 131.7 (s), 129.8 (s), 128.9 (s), 129.1 (s), 127.2 (s), 52.23 (s), 52.16 (s), 37.3 (s), 18.0 (s) ppm; δ (*Z*-isomer) = 167.35 (s), 163.3 (s), 148.0 (s), 132.70 (s), 131.9 (s), 130.7 (s), 129.9 (s), 128.0 (s), 127.8 (s), 125.8 (s), 52.23 (s), 52.21 (s), 31.7 (s), 24.2 (s), 13.0 (s) ppm.

IR (ATR) 2953, 1718, 1434, 1303, 1228, 1118, 1074, 991, 761 cm⁻¹.

MS (EI) m/z (%) 248 (44) [M]⁺, 219 (100), 185 (34), 157 (77), 129 (60), 115 (25).

HRMS (ESI) *m/z* calcd. for C₁₄H₁₆NaO₄ [M+Na]⁺ 271.0941, Found 271.0588.

Methyl 5-acetamido-2-(but-2-enyl)benzoate (3ha):

Compound **3ha** was prepared following the general procedure for the *ortho*-allylation from 3-acetamidobenzoic acid (91.4 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a white solid (86 mg, 70%, *E/Z* 1.9:1).

m.p. 88 – 89 °C

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 8.25 (br. s, 1 H), 7.93 - 7.99 (m, 1 H), 7.61 - 7.69 (m, 1 H), 7.17 (d, *J* = 8.3 Hz, 1 H), 5.34 - 5.62 (m, 2 H), 3.81 (s, 3 H), 3.59 (d, *J* = 6.4 Hz, 2 H), 2.15 (s, 3 H), 1.63 (dq, *J* = 6.2, 1.3 Hz, 3 H) ppm; δ (*Z*-isomer) = 8.25 (br. s, 1 H), 7.93 - 7.99 (m, 1 H), 7.61 - 7.69 (m, 1 H), 7.21 (d, *J* = 8.3 Hz, 1 H), 5.34 - 5.62 (m, 2 H), 3.82 (s, 3 H), 3.68 (d, *J* = 6.2 Hz, 2 H), 2.15 (s, 3 H), 1.66 - 1.72 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 169.0 (s), 167.76 (s), 138.2 (s), 136.02 (s), 131.3 (s), 129.70 (s), 129.65 (s), 126.2 (s), 123.6 (s), 121.8 (s), 51.9 (s), 36.6 (s), 24.2 (s), 17.8 (s) ppm; δ (*Z*-isomer) = 169.0 (s), 167.81 (s), 138.3 (s), 135.96 (s), 130.9 (s), 129.8 (s), 128.7 (s), 124.8 (s), 123.7 (s), 121.9 (s), 52.0 (s), 31.0 (s), 24.2 (s), 12.8 (s) ppm.

IR (ATR) 3296, 2950, 1724, 1665, 1536, 1499, 1279, 1212, 1074, 967, 807 cm⁻¹.

MS (EI) m/z (%) 247 (42) [M]⁺, 215 (29), 173 (100), 146 (38), 130 (29), 115 (12).

HRMS (ESI) *m/z* calcd. for C₁₄H₁₇NaNO₃ [M+Na]⁺ 270.1101, Found 270.1108.

Methyl 2-(but-2-enyl)-4,6-dimethyl-benzoate (3ia):

Compound **3ia** was prepared following the general procedure for the *ortho*-allylation from 2,4-dimethylbenzoic acid (76.6 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (88 mg, 81%, *E*/*Z* 2:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 6.80 - 6.92 (m, 2 H), 5.40 - 5.64 (m, 2 H), 3.88 (s, 3 H), 3.29 (d, *J* = 5.3 Hz, 2 H), 2.30 (s, 3 H), 2.29 (s, 3 H), 1.65 - 1.69 (m, 3 H) ppm; δ (*Z*-isomer) = 6.80 - 6.92 (m, 2 H), 5.40 - 5.64 (m, 2 H), 3.88 (s, 3 H), 3.38 (d, *J* = 6.6 Hz, 1 H), 2.30 (s, 3 H), 2.29 (s, 3 H), 1.69 - 1.73 (m, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ (*E*-isomer) = 170.53 (s), 139.42 (s), 138.3 (s), 135.1 (s), 130.7 (s), 129.4 (s), 128.8 (s), 127.6 (s), 126.5 (s), 51.7 (s), 36.9 (s), 21.16 (s), 19.7 (s), 17.9 (s) ppm; δ (*Z*-isomer) = 170.48 (s), 139.39 (s), 138.1 (s), 135.1 (s), 130.6 (s), 128.7 (s), 128.6 (s), 127.3 (s), 124.9 (s), 51.8 (s), 31.1 (s), 21.18 (s), 19.7 (s), 12.9 (s) ppm. IR (ATR) 2950, 1725, 1379, 1265, 1164, 1081, 966, 854, 811 cm⁻¹. MS (EI) *m/z* (%) 218 (74) [M]⁺, 186 (100), 171 (76), 159 (63), 143 (66), 128 (51), 115 (32). HRMS (ESI) *m/z* calcd. for C₁₄H₁₈NaO₂ [M+Na]⁺ 241.1199, Found 241.1199.

Methyl 2-(but-2-enyl)-4,6-dimethoxy-benzoate (3ja):

OMe (MeO

Compound **3ja** was prepared following the general procedure for the *ortho*-allylation from 2,4-dimethoxybenzoic acid (127 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (105 mg, 84%, *E/Z* 1.9:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 6.28 - 6.37 (m, 2 H), 5.38 - 5.66 (m, 2 H), 3.85 (s, 3 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.23 - 3.30 (m, 2 H), 1.61 - 1.73 (m, 3 H) ppm; δ (*Z*-isomer) = 6.28 - 6.37 (m, 2 H), 5.38 - 5.66 (m, 2 H), 3.86 (s, 3 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.34 (d, *J* = 7.0 Hz, 2 H), 1.61 - 1.73 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 168.48 (s), 161.37 (s), 158.0 (s), 141.1 (s), 128.7 (s), 126.8 (s), 116.6 (s), 105.9 (s), 96.22 (s), 55.76 (s), 55.21 (s), 52.0 (s), 36.9 (s), 17.8 (s) ppm; δ (*Z*-isomer) = 168.53 (s), 161.41 (s), 158.0 (s), 141.3 (s), 127.9 (s), 125.3 (s), 116.1 (s), 105.6 (s), 96.18 (s), 55.78 (s), 55.20 (s), 51.9 (s), 31.0 (s), 128.8 (s) ppm.

IR (ATR) 2947, 1722, 1602, 1429, 1325, 1261, 1155, 1097, 1045, 966, 831 $\rm cm^{-1}.$

MS (EI) *m*/*z* (%) 250 (62) [M]⁺, 219 (100), 191 (45), 175 (40), 145 (21), 115 (21).

HRMS (ESI) m/z calcd. for C₁₄H₁₈NaO₄ [M+Na]⁺ 273.1097, found 273.1102.

Methyl 3-bromo-6-(but-2-enyl)-2-methyl-benzoate (3ka):

Br

Compound **3ka** was prepared following the general procedure for the *ortho*-allylation from 3-bromo-2-methylbenzoic acid (111 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (110 mg, 78%, *E/Z* 1.9:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.50 (d, *J* = 8.3 Hz, 1 H), 6.93 (dd, *J* = 8.3, 0.6 Hz, 1 H), 5.38 - 5.67 (m, 2 H), 3.91 (s, 3 H), 3.18 - 3.27 (m, 2 H), 2.35 (s, 3 H), 1.64 - 1.69 (m, 3 H) ppm; δ (*Z*-isomer) = 7.50 (d, *J* = 8.3 Hz, 1 H), 6.95 (dd, *J* = 8.4, 0.7 Hz, 1 H), 5.38 - 5.67 (m, 2 H), 3.91 (s, 3 H), 3.32 (d, *J* = 7.0 Hz, 2 H), 2.35 (s, 3 H), 1.69 - 1.72 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 169.61 (s), 137.1 (s), 135.5 (s), 134.2 (s), 133.43 (s), 128.5 (s), 128.4 (s), 127.3 (s), 123.1 (s), 52.2 (s), 36.6 (s), 20.4 (s), 17.9 (s) ppm; δ (*Z*-isomer) = 168.55 (s), 137.3 (s), 135.4 (s), 134.2 (s), 132.40 (s), 128.1 (s), 127.6 (s), 125.7 (s), 123.0 (s), 52.3 (s), 30.7 (s), 20.4 (s), 12.9 (s) ppm.

IR (ATR) 2949, 1728, 1434, 1266, 1236, 1147, 1089, 964, 835, 737 cm⁻¹.

MS (EI) m/z (%) 284 (42) [M⁺(⁸¹Br)], 282 (43) [M⁺(⁷⁹Br)], 253 (50), 225 (35), 171 (100), 143 (59), 128 (75), 115 (32). HRMS (ESI) m/z calcd. for C₁₃H₁₅NaO₂Br [M+Na]⁺ 305.0148, Found 305.0147.

Methyl 6-(but-2-enyl)-2-methyl-3-nitro-benzoate (3la):

021

Compound **3Ia** was prepared following the general procedure (T = 60 °C) for the *ortho*-allylation from 2-methyl-3nitrobenzoic acid (91.5 mg, 0.50 mmol) and 3-buten-2-ol (67.3 μ L, 0.75 mmol) and isolated as a colorless oil (47 mg, 38%, *E*/Z 2.3:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.86 (d, *J* = 8.4 Hz, 1 H), 7.22 (d, *J* = 8.4 Hz, 1 H), 5.35 - 5.74 (m, 2 H), 3.94 (s, 3 H), 3.33 (d, *J* = 5.1 Hz, 2 H), 2.46 (s, 3 H), 1.64 - 1.73 (m, 3 H) ppm; δ (*Z*-isomer) = 7.86 (d, *J* = 8.4 Hz, 1 H), 7.22 (d, *J* = 8.4 Hz, 1 H), 5.35 - 5.74 (m, 2 H), 3.95 (s, 3 H), 3.41 (d, *J* = 7.2 Hz, 2 H), 2.46 (m, 3 H), 1.64 - 1.73 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 168.56 (s), 148.3 (s), 143.2 (s), 136.6 (s), 128.5 (s), 127.9 (s), 127.4 (s), 126.8 (s), 125.25 (s), 52.4 (s), 36.3 (s), 17.8 (s), 16.7 (s) ppm; δ (*Z*-isomer) = 168.61 (s), 148.3 (s), 143.4 (s), 136.7 (s), 130.1 (s), 127.5 (s), 126.7 (s), 126.4 (s), 125.30 (s), 52.5 (s), 31.1 (s), 16.7 (s), 12.9 (s) ppm.

IR (ATR) 2953, 1731, 1522, 1436, 1415, 1275, 1239, 1116, 968, 867 cm⁻¹.

MS (EI) *m/z* (%) 249 (77) [M]⁺, 220 (91), 192 (52), 172 (52), 156 (29), 128 (100), 103 (18).

HRMS (EI-TOF) *m*/*z* calcd. for C₁₃H₁₅NO₂ [M]⁺ 249.1001, found 249.1007.

Methyl 2-(but-2-enyl)naphthalene-1-carboxylate (3ma):

Compound **3ma** was prepared following the general procedure for the *ortho*-allylation from 1-naphthalenecarboxylic acid (89.7 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (105 mg, 87%, *E*/*Z* 1.9:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.75 - 7.90 (m, 3 H), 7.50 (ddd, *J* = 9.4, 7.7, 1.5 Hz, 2 H), 7.37 (d, *J* = 8.4 Hz, 1 H), 5.43 - 5.71 (m, 2 H), 4.04 (s, 3 H), 3.50 (dd, *J* = 5.2, 1.4 Hz, 2 H), 1.70 (dt, *J* = 4.8, 1.4 Hz, 3 H) ppm; δ (*Z*-isomer) = 7.75 - 7.90 (m, 3 H), 7.50 (ddd, *J* = 9.4, 7.7, 1.5 Hz, 2 H), 7.37 (d, *J* = 8.4 Hz, 1 H), 5.43 - 5.71 (m, 2 H), 4.05 (s, 3 H), 3.57 (d, *J* = 6.4 Hz, 2 H), 1.75 - 1.80 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*+*Z*) = 170.01 (s), 170.96 (s), 136.4 (s), 136.1 (s), 131.8 (s), 131.7 (s), 130.0 (s), 129.9 (s), 129.80 (s), 129.77 (s), 129.0 (s), 128.2 (s), 128.0 (s), 127.4 (s), 127.2 (s), 127.0 (s), 126.9 (s), 125.61 (s), 125.59 (s), 125.2 (s), 124.6 (s), 124.5 (s), 52.2 (s), 52.1 (s), 37.3 (s), 31.5 (s), 17.8 (s), 12.9 (s) ppm.

IR (ATR) 2949, 1724, 1434, 1245, 1210, 1136, 1034, 968, 850, 746 cm⁻¹.

MS (EI) *m/z* (%) 240 (69) [M]⁺, 211 (100), 181 (45), 165 (99), 152 (22), 139 (21), 115 (13).

HRMS (ESI) *m*/*z* calcd. for C₁₆H₁₆NaO₂ [M+Na]⁺ 263.1043, Found 263.1047.

Methyl 3-(but-2-enyl)-1-methyl-indole-2-carboxylate (3na):

Compound **3na** was prepared following the general procedure for the *ortho*-allylation from 1-methylindole-2-carboxylic acid (89.4 mg, 0.50 mmol) and 3-buten-2-ol (67.3 µL, 0.75 mmol) and isolated as a colorless oil (100 mg, 75%, *E/Z* 1.2:1).

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 7.70 (ddt, *J* = 8.1, 3.1, 0.9, 1 H), 7.37 (d, *J* = 3.9 Hz, 2 H), 7.09 - 7.19 (m, 1 H), 5.38 - 5.70 (m, 2 H), 4.02 (s, 3 H), 3.96 (s, 3 H), 3.88 (d, *J* = 6.1 Hz, 2 H), 1.83 - 1.89 (m, 3 H) ppm; δ (*Z*-isomer) = 7.70 (ddt, *J* = 8.1, 3.1, 0.9 Hz, 1 H), 7.37 (d, *J* = 3.9 Hz, 2 H), 7.09 - 7.19 (m, 1 H), 5.38 - 5.70 (m, 2 H), 4.02 (s, 3 H), 3.96 (s, 3 H), 3.80 (d, *J* = 5.9 Hz, 2 H), 1.61 - 1.67 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*+*Z*) = 163.2 (s), 138.8 (s), 129.7 (s), 129.5 (s), 126.4 (s), 125.22 (s), 125.20 (s), 125.1 (s), 124.4 (s), 123.7 (s), 123.3 (s), 120.89 (s), 120.86 (s), 119.8 (s), 110.1 (s), 51.4 (s), 51.3 (s), 32.0 (s), 28.6 (s), 23.4 (s), 17.8 (s), 13.0 (s) ppm. IR (ATR) 2948, 1701, 1438, 1342, 1239, 1129, 1102, 965, 737 cm⁻¹.

MS (EI) m/z (%) 243 (100) [M]⁺, 228 (35), 184 (66), 168 (54), 128 (12), 115 (12).

HRMS (ESI) *m*/z calcd. for C₁₅H₁₇NaNO₂ [M+Na]⁺ 266.1152, Found 266.1158.

2-(But-2-enyl)-4-methoxy-thiophene-3-carboxylic acid (3oa):

MeC

An oven-dried 20 mL vial was charged with [Ru(p-cymene)Cl₂]₂ (6.46 mg, 0.01 mmol), K₃PO₄ (53.2 mg, 0.25 mmol) and 4-methoxythiophene-3-carboxylic acid (83.3 g, 0.50 mmol) and closed with a septum cap. Under exclusion of air and water, 2,2,2-

trichloroethanol (0.5 mL) and 3-buten-2-ol (67.3 μ L, 0.75 mmol) were added via syringe. The resulting mixture was stirred at 50 °C for 16 h. After the reaction was complete, it was diluted with EtOAc (10 mL) and extracted with aq. K₂CO₃ solution (3×10 mL). The combined aqueous phases were acidified with 2M HCl (pH 1-2), then extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography (SiO₂, ethyl acetate/cyclohexane gradient, 1% HCOOH) and compound **3oa** was isolated as a white solid (69 mg, 64%, *E/Z* 1.9:1).

m.p. 62 - 63 °C.

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 6.20 (s, 1 H), 5.56 - 5.80 (m, 2 H), 3.99 (s, 3 H), 3.86 - 3.92 (m, 2 H), 1.65 - 1.75 (m, 3 H) ppm; δ (*Z*-isomer) = 6.20 (s, 1 H), 5.56 - 5.80 (m, 2 H), 3.99 (s, 3 H), 3.97 - 4.01 (m, 2 H), 1.65 - 1.75 (m, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 162.76 (s), 157.4 (s), 155.2 (s), 129.2 (s), 126.8 (s), 116.6 (s), 94.93 (s), 58.1 (s), 38.8 (s), 17.8 (s) ppm; δ (*Z*-isomer) = 162.82 (s), 157.1 (s), 155.2 (s), 128.0 (s), 125.7 (s), 116.7 (s), 94.87 (s), 58.1 (s), 28.4 (s), 12.8 (s) ppm. IR (ATR) 3305, 2938, 1729, 1676, 1554, 1468, 1381, 1287, 1089, 967, 705 cm⁻¹. HRMS (ESI) *m*/z calcd. for C₁₀H₁₂NaSO₃ [M+Na⁺] 235.0399, Found 235.0400.

2-(but-2-enyl)cyclohexene-1-carboxylic acid (3pa):

An oven-dried 20 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (6.46 mg, 0.01 mmol), K_2CO_3 (69.1 mg, 0.50 mmol) and 1cyclohexene-1-carboxylic acid (65.0 mg, 0.50 mmol) and closed with a septum cap. Under exclusion of air and water, 2,2,2trichloroethanol (0.5 mL) and 3-buten-2-ol (67.3 µL, 0.75 mmol) were added via syringe. The resulting mixture was stirred at 60 °C for 16 h. After the reaction was complete, it was diluted with EtOAc (10 mL) and extracted with aq. K_2CO_3 solution (3×10 mL). The combined aqueous phases were acidified with 2M HCl (pH 1-2), then extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography (SiO₂, ethyl acetate/cyclohexane gradient, 1% HCOOH) and compound **3pa** was isolated as a white solid (average of 2 runs, 39 mg, 43%, *E/Z* 1.9:1).

m.p. 76 – 77 °C

¹H NMR (300 MHz, CDCl₃) δ (*E*-isomer) = 5.31 - 5.63 (m, 2 H), 3.14 (d, *J* = 5.3 Hz, 2 H), 2.26 - 2.39 (m, 2 H), 2.08 - 2.23 (m, 2 H), 1.64 - 1.68 (m, 3 H), 1.53 - 1.64 (m, 4 H) ppm; δ (*Z*-isomer) = 5.31 - 5.63 (m, 2 H), 3.26 (d, *J* = 7.0 Hz, 2 H), 2.26 - 2.39 (m, 2 H), 2.08 - 2.23 (m, 2 H), 1.68 - 1.71 (m, 3 H), 1.53 - 1.64 (m, 4 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*-isomer) = 174.2 (s), 152.0 (s), 128.4 (s), 126.6 (s), 123.6 (s), 38.9 (s), 31.4 (s), 26.3 (s), 22.3 (s), 22.15 (s), 17.9 (s) ppm; δ (*Z*-isomer) = 174.3 (s), 152.2 (s), 127.8 (s), 125.1 (s), 123.8 (s), 33.3 (s), 31.6 (s), 26.4 (s), 22.24 (s), 22.18 (s), 13.0 (s) ppm.

IR (ATR) 2939, 2627, 1663, 1615, 1289, 980, 966, 746, 647 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. for C₁₁H₁₆NaO₂ [M+Na]⁺ 203.1043, Found 203.1047.

Methyl 2,6-bis(but-2-enyl)benzoate (3qa):

Compound **3qa** was prepared following the general procedure for the *ortho*-allylation from benzoic acid (61.7 mg, 0.50 mmol) and 3-buten-2-ol (112 µL, 1.25 mmol) and isolated as a colorless oil (100 mg, 82%, *ElZ* 2.1:1).

¹H NMR (300 MHz, CDCl₃) $\delta(E+Z) = 7.27$ (t, J = 8.4 Hz, 1 H), 7.09 (d, J = 7.7 Hz, 2 H), 5.40 - 5.65 (m, 4 H), 3.88 (m, 3 H), 3.40 (d, J = 6.6 Hz, 4 H-(Z)), 3.32 (d, J = 4.8 Hz, 4 H-(E)), 1.65 - 1.73 (m, 6 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ (*E*+*Z*) = 170.21 (s), 170.15 (s), 138.2 (s), 138.1 (s), 133.2 (s), 133.1 (s), 129.6 (s), 129.5 (s), 129.2 (s), 128.33 (s), 128.31 (s), 127.23 (s), 127.18 (s), 127.0 (s), 126.9 (s), 126.7 (s), 125.1 (s), 51.8 (s), 51.7 (s), 36.9 (s), 31.1 (s), 17.9 (s), 12.8 (s) ppm.

IR (ATR) 2964, 1727, 1430, 1266, 1114, 1101, 965, 826 cm⁻¹.

MS (EI) m/z (%) 244 (83) [M]⁺, 213 (53), 183 (100), 168 (38), 155 (33), 128 (72), 115 (49).

HRMS (ESI) *m*/*z* calcd. for C₁₆H₂₀NaO₂ [M+Na]⁺ 267.1356, Found 267.1361.

Synthesis of starting materials

1-(1-naphthyl)prop-2-en-1-ol (2f) [CAS 61619-02-1]:

Compound **2f** was synthesised following a literature procedure ^[4] from 1-naphthaldehyde (1.64 g, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (93% yield).

¹H NMR (300 MHz, CDCl₃) δ = 8.16 - 8.24 (m, 1 H), 7.76 - 7.94 (m, 2 H), 7.64 (dt, *J* = 6.9, 1.1 Hz, 1 H), 7.41 - 7.59 (m, 3 H), 6.27 (ddd, *J* = 17.2, 10.5, 5.3 Hz, 1 H), 5.85 - 6.01 (m, 1 H), 5.47 (dt, *J* = 17.2, 1.5 Hz, 1 H), 5.30 (dt, *J* = 10.3, 1.4 Hz, 1 H), 2.11 (d, *J* = 4.2 Hz, 1 H) ppm.

The analytical data matched those reported in the literature.^[5]

1-(2-furyl)prop-2-en-1-ol (2g) [CAS: 116914-87-5]:

OH

Compound **2g** was synthesised following a literature procedure^[4] from 2-furaldehyde (0.82 mL, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (52% yield).

¹H NMR (300 MHz, CDCl₃) δ = 7.41 (dd, *J* = 2.0, 0.9 Hz, 1 H), 6.35 (dd, *J* = 3.3, 1.8 Hz, 1 H), 6.22 - 6.29 (m, 1 H), 6.13 (ddd, *J* = 17.2, 10.3, 5.7 Hz, 1 H), 5.43 (dt, *J* = 17.2, 1.4 Hz, 1 H), 5.29 (dt, *J* = 10.4, 1.3 Hz, 1 H), 5.24 (t, *J* = 5.1 Hz, 1 H), 2.18 (d, *J* = 5.1 Hz, 1 H) ppm.

The analytical data matched those reported in the literature.^[6]

1,1-diphenylprop-2-en-1-ol (2i) [CAS: 3923-51-1]:

Compound **2i** was synthesised following a literature procedure^[4] from benzophenone (1.28 mL, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (93% yield).

¹H NMR (300 MHz, CDCl₃) δ = 7.09 - 7.54 (m, 10 H), 6.53 (dd, J = 17.2, 10.3 Hz, 1 H), 5.11 - 5.51 (m, 2 H), 2.28 (d, J = 1.7 Hz, 1 H) ppm.

The analytical data matched those reported in the literature.^[7]

1,1-bis(p-tolyl)prop-2-en-1-ol (2j) [CAS: 278188-16-2]:

Compound **2j** was synthesised following a literature procedure^[4] from 4,4'-dimethylbenzophenone (2.12 g, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (63% yield).

¹H NMR (300 MHz, CDCl₃) δ = 7.20 - 7.29 (m, 4 H), 7.06 - 7.15 (m, 4 H), 6.47 (dd, *J* = 17.1, 10.6 Hz, 1 H), 5.33 (dd, *J* = 17.1, 1.3 Hz, 0 H), 5.27 (dd, *J* = 10.6, 1.3 Hz, 1 H), 2.33 (s, 6 H), 2.22 (s, 1 H) ppm. The analytical data matched those reported in the literature.^[7]

1,1-bis(3-fluorophenyl)prop-2-en-1-ol (2k) [CAS: 1639040-60-0]:

Compound **2k** was synthesised following a literature procedure from 3,3'-difluorobenzophenone (0.98 mL, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (92% yield).

¹H NMR (300 MHz, CDCl₃) δ = 7.19 - 7.32 (m, 2 H), 7.03 - 7.15 (m, 4 H), 6.87 - 7.00 (m, 2 H), 6.42 (dd, *J* = 17.1, 10.6 Hz, 1 H), 5.23 - 5.40 (m, 2 H), 2.31 (s, 1 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ = 162.7 (d, *J* = 246.0 Hz), 147.8 (d, *J* = 6.6 Hz), 142.4 (s), 129.7 (d, *J* = 7.7 Hz), 122.5 (d, *J* = 2.8 Hz), 115.2 (s), 114.4 (d, *J* = 21.0 Hz), 114.0 (d, *J* = 23.2 Hz), 78.7 (d, *J* = 1.7 Hz) ppm.

¹⁹F NMR (235 MHz, CDCl₃) δ = -112.46 ppm.

IR (ATR) 3444, 1587, 1483, 1409, 1230, 1141, 862, 780, 697 cm⁻¹.

MS (EI) *m/z* (%) 246 (43) [M]⁺, 228 (13), 151 (17), 123 (100), 109 (12).

HRMS (EI-TOF) m/z calcd. for C₁₅H₁₂ F₂O [M]⁺ 246.0856, found, 246.0855.

2-phenylbut-3-en-2-ol (2l) [CAS: 6051-52-1]:

Compound **2I** was synthesised following a literature procedure^[4] from acetophenone (1.28 mL, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (89% yield).

¹H NMR (300 MHz, CDCl₃) δ = 7.45 - 7.53 (m, 2 H), 7.32 - 7.40 (m, 2 H), 7.23 - 7.31 (m, 1 H), 6.19 (dd, *J* = 17.2, 10.6 Hz, 1 H), 5.31 (dd, *J* = 17.3, 1.2 Hz, 1 H), 5.16 (dd, *J* = 10.6, 1.1 Hz, 1 H), 1.88 (br. s, 1 H), 1.68 (s, 3 H) ppm. The analytical data matched those reported in the literature.^[8]

4-methyl-3-phenyl-pent-1-en-3-ol (2m) [CAS: 201789-85-7]:

Compound **2m** was synthesised following a literature procedure^[4] from isobutyrophenone (1.55 mL, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (76% yield).

¹H NMR (300 MHz, CDCl₃) δ = 7.41 - 7.53 (m, 2 H), 7.30 - 7.40 (m, 2 H), 7.18 - 7.29 (m, 1 H), 6.32 (dd, *J* = 17.1, 10.7 Hz, 1 H), 5.34 (dd, *J* = 17.2, 1.3 Hz, 1 H), 5.21 (dd, *J* = 10.8, 1.3 Hz, 1 H), 2.21 (quin, *J* = 6.8 Hz, 1 H), 1.79 (s, 1 H), 0.93 (d, *J* = 7.0 Hz, 3 H), 0.80 (d, *J* = 6.8 Hz, 3 H) ppm.

The analytical data matched those reported in the literature.^[9]

1-cyclohexyl-1-phenyl-prop-2-en-1-ol (2n) [CAS: 136779-82-3]:

Compound **2n** was synthesised following a literature procedure^[4] from cyclohexyl phenyl ketone (1.92 g, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (71% yield).

¹H NMR (300 MHz, CDCl₃) δ = 7.16 - 7.55 (m, 5 H), 6.32 (dd, *J* = 17.1, 10.7 Hz, 1 H), 5.33 (dd, *J* = 17.2, 1.3 Hz, 1 H), 5.20 (dd, *J* = 10.6, 1.3 Hz, 1 H), 1.54 - 1.93 (m, 6 H), 1.42 - 1.54 (m, 1 H), 0.90 - 1.27 (m, 5 H) ppm.

The analytical data matched those reported in the literature.^[10]

1-cyclobutyl-1-phenyl-prop-2-en-1-ol (2o):

Compound **20** was synthesised following a literature procedure^[4] from cyclobutyl phenyl ketone (1.56 mL, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (80% yield).

¹H NMR (300 MHz, CDCl₃) δ = 7.40 - 7.49 (m, 2 H), 7.30 - 7.38 (m, 2 H), 7.19 - 7.29 (m, 1 H), 6.14 (dd, *J* = 17.2, 10.6 Hz, 1 H), 5.30 (dd, *J* = 17.2, 1.3 Hz, 1 H), 5.18 (dd, *J* = 10.8, 1.3 Hz, 1 H), 2.86 - 3.03 (m, 1 H), 1.91 - 2.14 (m, 3 H), 1.89 (s, 1 H), 1.63 - 1.88 (m, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ = 144.6 (s), 142.3 (s), 128.0 (s), 126.7 (s), 125.5 (s), 131.1 (s), 77.2 (s), 44.0 (s), 22.7 (s), 22.2 (s), 16.9 (s) ppm.

IR (ATR) 3471, 1492, 1446, 1159, 992, 918, 754, 698 cm⁻¹. MS (EI) m/z (%) 188 (2) [M]⁺, 155 (11), 141 (22), 133 (100), 105 (30). HRMS (ESI) m/z calcd. for C₁₃H₁₆NaO [M+Na]⁺ 211.1093, Found 211.1091.

2-vinyladamantan-2-ol (2q) [CAS: 1597185-77-7]:

OH

Compound **2q** was synthesised following a literature procedure^[4] from 2-adamantanone (1.53 g, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as white solid (84% yield).

m.p.: 60 – 61 °C

¹H NMR (300 MHz, CDCl₃) δ = 6.28 (dd, *J* = 17.5, 10.9 Hz, 1 H), 5.36 (dd, *J* = 17.6, 1.5 Hz, 1 H), 5.08 - 5.22 (m, 1 H), 2.21 - 2.35 (m, 2 H), 1.67 - 1.97 (m, 9 H), 1.51 - 1.63 (m, 2 H), 1.38 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 144.8 (s), 113.5 (s), 74.7 (s), 38.0 (s), 37.9 (s), 34.7 (s), 32.8 (s), 27.4 (s), 27.1 (s) ppm. IR (ATR) 3335, 2896, 1451, 1334, 991, 922, 663 cm⁻¹. MS (EI) m/z (%) 178 (100) [M⁺], 149 (30), 135 (47), 109 (26), 91 (31). HRMS (ESI) *m*/*z* calcd. for C₁₂H₁₈NaO [M+Na]⁺ 201.1250, Found 201.1252.

9-vinylfluoren-9-ol (2r) [CAS: 92496-21-4]:

Compound **2r** was synthesised following a literature procedure^[4] from 9-fluorenone (1.82 g, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (56% yield).

¹H NMR (300 MHz, CDCl₃) δ = 7.44 - 7.51 (m, 2 H), 7.36 - 7.43 (m, 2 H), 7.28 - 7.36 (m, 2 H), 6.01 (ddd, *J* = 17.1, 10.5, 0.6 Hz, 1 H), 5.57 (dd, *J* = 17.1, 1.5 Hz, 1 H), 5.23 (dd, *J* = 10.5, 1.5 Hz, 1 H), 2.20 (d, *J* = 0.7 Hz, 1 H) ppm. The analytical data (NMR) matched the ones reported in the literature.^[11]

2-(5-chloro-2-thienyl)but-3-en-2-ol (2s):

OH CI

Compound **2s** was synthesised following a literature procedure^[4] from 2-acetyl-5-chlorothiophene (1.62 g, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (87% yield).

¹H NMR (300 MHz, CDCl₃) δ = 6.75 (d, J = 3.9 Hz, 1 H), 6.70 (d, J = 3.9 Hz, 1 H), 6.15 (dd, J = 17.1, 10.5 Hz, 1 H), 5.36 (dd, J = 17.2, 0.9 Hz, 1 H), 5.18 (dd, J = 10.5, 1.0 Hz, 1 H), 2.26 (s, 1 H), 1.69 (s, 3 H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ = 150.2 (s), 143.3 (s), 129.1 (s), 125.7 (s), 122.4 (s), 113.1 (s), 73.3 (s), 29.8 (s) ppm.

IR (ATR) 3363, 2980, 1445, 1369, 1217, 983, 922, 792 $\rm cm^{-1}.$

MS (EI) m/z (%) 190 (18) [M⁺(³⁷Cl)], 188 (49) [M⁺(³⁵Cl)], 173 (100), 145 (70), 131 (92), 118 (25).

HRMS (EI-TOF) *m*/*z* calcd. for C₈H₇Cl(35)S [M⁺-H₂O]169.9957, found 169.9972; C₈H₇Cl(37)S [M⁺-H₂O] 171.9927, found 171.9947.

3-methyl-5-(2,6,6-trimethylcyclohexen-1-yl)pent-1-en-3-ol (4e) [CAS 99733-97-8]:

Compound **4e** was synthesised following a literature procedure^[4] from 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-butanone (1.96 mL, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as colorless oil (80% yield).

¹H NMR (300 MHz, CDCl₃) δ = 5.96 (dd, *J* = 17.3, 10.7 Hz, 1 H), 5.24 (dd, *J* = 17.4, 1.3 Hz, 1 H), 5.08 (dd, *J* = 10.8, 1.3 Hz, 1 H), 1.96 - 2.09 (m, 2 H), 1.90 (t, *J* = 6.1 Hz, 2 H), 1.50 - 1.66 (m, 7 H), 1.36 - 1.48 (m, 3 H), 1.31 (s, 3 H), 0.99 (s, 6 H) ppm. The analytical data (NMR) matched the ones reported in the literature.^[12]

(8R,10S,13R,17R)-17-(1,5-dimethylhexyl)-10,13-dimethyl-3-vinyl-1,2,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-ol (4f) [CAS 27335-30-4]:

Compound **4f** was synthesised following a literature procedure^[4] from 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-butanone (1.96 mL, 10.0 mmol) and vinyl magnesium bromide (1M in THF, 15.0 mL, 15.0 mmol) and isolated as white solid (40% yield).

¹H NMR (300 MHz, CDCl₃) δ = 6.11 (dd, J = 17.4, 10.8 Hz, 1 H), 5.31 (dd, J = 17.4, 1.3 Hz, 1 H), 5.15 (dd, J = 10.8, 1.3 Hz, 1 H), 1.97 (d, J = 12.1 Hz, 1 H), 1.76 - 1.90 (m, 1 H), 1.59 - 1.76 (m, 5 H), 1.42 - 1.58 (m, 5 H), 0.94 - 1.41 (m, 19 H), 0.81 - 0.93 (m, 13 H), 0.63 - 0.66 (m, 3 H) ppm.

The analytical data (NMR) matched the ones reported in the literature.^[13]

- W. L. F. Armarego, Purification of Laboratory Chemicals, Elsevier/Butterworth-Heinemann, Amsterdam; Boston, 2009. [1]
- [2] [3] [4] N. O. Mahmoodi and M. Salehpour, J. Heterocyclic Chem., 2003, 40, 875-878.
 T. Gensch, S. Vasquez-Cespedes, D.-G. Yu and F. Glorius, Org. Lett., 2015, 17, 3714–3717.
 J.-J. Zhang, C.-S. Y. Peng, Z.-B. Luo, X.-B Xu and Y.-W. Wang, Org. Biomol. Chem., 2013, 11, 2498-2513.
- M. LaFrance, M. Roggen and E. M. Carreira, Angew. Chem., Int. Ed., 2012, 51, 3470-3473. [5]
- [6] P. M. Killoran, S. B. Rossington, J. A. Wilkinson and J. A. Hadfield, Tetrahedron Lett., 2016, 57, 3954-3957.
- H.-L. Huang, H. Yan, C. Yang and W. Xia, *Chem. Commun.*, 2015, **51**, 4910-4913. [7]
- [8] C. Morrill and R. H. Grubbs, J. Am. Chem. Soc., 2005, 127, 2842-2843.
- S. Hayashi, H. Yorimitsu and K. Oshima, J. Am. Chem. Soc., 2009, 131, 2052-2053. [9]
- [10] J. P. Carter, L Noronha-Blob, V. H. Audia, A. C. Dupont, D. W. McPherson, K. J. Natalie Jr., W. J. Rzeszotarski, C. J. Spagnuolo, P. P. Waid and C. Kaiser, J. Med. Chem., 1991, 34, 3065-3074.
- [11]
- U. Albrecht and P. Langer, *Tetrahedron*, 2007, 63, 4648-4654.
 M. Hellal, F. C. Falk, E. Wolf, M. Dryzhakovand and J. Moran, *Org. Biomol. Chem.*, 2014, 12, 5990-5994.
 N. Miralles, R. I Alam, K. J. Szabo and E. Fernandez, *Angew. Chem., Int. Ed.*, 2016, 55, 4303-4307. [12]
- [13]

NMR spectra

Methyl 2-[but-2-enyl]-6-methyl-benzoate (3aa)

¹H/¹³C HSQC NMR (300 MHz, CDCl₃)

Methyl 2-methyl-6-(-pent-2-enyl)benzoate (3ab)

Methyl 2-(hex-2-enyl)-6-methyl-benzoate (3ac)

Methyl 2-(dec-2-enyl)-6-methyl-benzoate (3ad)

¹³C NMR (101 MHz, CDCl₃)

¹H/¹³C HSQC NMR (300 MHz, CDCl₃)

Methyl 2-(cinnamyl)-6-methyl-benzoate (3ae)

¹H NMR (400 MHz, CDCl₃)

Methyl 2-methyl-6-[3-(1-naphthyl)allyl]benzoate (3af)

Methyl 2-[3-(2-furyl)allyl]-6-methyl-benzoate (3ag)

¹³C NMR (101 MHz, CDCl₃)

Methyl 2-methyl-6-(3-methylbut-2-enyl)benzoate (3ah)

Methyl 2-(3,3-diphenylallyl)-6-methyl-benzoate (3ai)

Methyl 2-[3,3-bis(p-tolyl)allyl]-6-methyl-benzoate (3aj)

Methyl 2-[3,3-bis(3-fluorophenyl)allyl]-6-methyl-benzoate (3ak)

Methyl 2-methyl-6-(3-phenylbut-2-enyl)benzoate (3al)

¹H/¹³C HSQC NMR (300 MHz, CDCl₃)

Methyl 2-methyl-6-[4-methyl-3-phenyl-pent-2-enyl]benzoate (3am)

Methyl 2-(3-cyclohexyl-3-phenyl-allyl)-6-methyl-benzoate (3an)

Methyl 2-(3-cyclobutyl-3-phenyl-allyl)-6-methyl-benzoate (3ao)

¹³C NMR (101 MHz, CDCl₃)

2-(2-cyclohexylideneethyl)-6-methyl-benzoate (3ap)

Methyl 2-[2-(2-adamantylidene)ethyl]-6-methyl-benzoate (3aq)

¹³C NMR (101 MHz, CDCl₃)

Methyl 2-(2-fluoren-9-ylideneethyl)-6-methyl-benzoate (3ar)

Methyl 2-[3-(5-chloro-2-thienyl)but-2-enyl]-6-methyl-benzoate (3as)

Methyl 2-allyl-6-methyl-benzoate (3at)

Methyl 2-methyl-6-[(6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]benzoate (4aa)

Methyl 2-methyl-6-[(6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl]benzoate (4ab)

Methyl 2-methyl-6-(3,7,11,15-tetramethylhexadec-2-enyl)benzoate (4ac)

¹³C NMR (75 MHz, CDCl₃)

Methyl 2-(3,7-dimethylocta-2,6-dienyl)-6-methyl-benzoate (4ad)

Methyl 2-methyl-6-[3-methyl-5-(2,6,6-trimethylcyclohexen-1-yl)pent-2-enyl]benzoate (4ae)

Methyl 2-[2-[(8R,10S,13R,17R)-17-(1,5-dimethylhexyl)-10,13-dimethyl-1,2,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-ylidene]ethyl]-6-methyl-benzoate (4af)

Methyl 2-(but-2-enyl)-6-phenyl-benzoate (3ba)

Methyl 2-(but-2-enyl)-6-methoxy-benzoate (3ca)

S62

Methyl 2-(but-2-enyl)-6-iodo-benzoate (3da)

¹³C NMR (75 MHz, CDCl₃)

Methyl 2-(but-2-enyl)-5-methyl-benzoate (3ea)

Methyl 2-(but-2-enyl)-5-(trifluoromethyl)benzoate (3fa)

¹H/¹³C HSQC NMR (300 MHz, CDCl₃)

Dimethyl 4-(but-2-enyl)benzene-1,3-dicarboxylate (3ga)

¹³C NMR (75 MHz, CDCl₃)

Methyl 5-acetamido-2-(but-2-enyl)benzoate (3ha)

Methyl 2-(but-2-enyl)-4,6-dimethyl-benzoate (3ia)

¹H NMR (300 MHz, CDCl₃)

Methyl 2-(but-2-enyl)-4,6-dimethoxy-benzoate (3ja)

¹³C NMR (75 MHz, CDCl₃)

Methyl 3-bromo-6-(but-2-enyl)-2-methyl-benzoate (3ka)

Methyl 6-(but-2-enyl)-2-methyl-3-nitro-benzoate (3la)

Methyl 2-(but-2-enyl)naphthalene-1-carboxylate (3ma)

Methyl 3-(but-2-enyl)-1-methyl-indole-2-carboxylate (3na)

¹³C NMR (75 MHz, CDCl₃)

2-(But-2-enyl)-4-methoxy-thiophene-3-carboxylic acid (3oa)

¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

2-(but-2-enyl)cyclohexene-1-carboxylic acid (3pa)

¹³C NMR (75 MHz, CDCl₃)

Methyl 2,6-bis(but-2-enyl)benzoate (3qa)

1,1-bis(3-fluorophenyl)prop-2-en-1-ol (2k)

1-cyclobutyl-1-phenyl-prop-2-en-1-ol (2o)

2-vinyladamantan-2-ol (2q)

¹H NMR (300 MHz, CDCl₃)

2-(5-chloro-2-thienyl)but-3-en-2-ol (2s)

