Supporting Information

Dynamic Tungsten Diselenide Nanomaterials: Supramolecular Assembly-Induced Structural Transition over Exfoliated Two-Dimensional Nanosheets

Adem Ali Muhabie,^b Ching-Hwa Ho,^a Belete Tewabe Gebeyehu,^a Shan-You Huang,^a Chih-Wei Chiu,^b Juin-Yih Lai,^{a,c,e} Duu-Jong Lee^{c,d,e} and Chih-Chia Cheng^a*

- a. Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan. E-mail: cccheng@mail.ntust.edu.tw
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- d. Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan.

Experimental Section

Materials

Adenine, chloroform, dimethylformamide, potassium tert-butoxide, hexane, poly(propylene glycol) diacrylate (average molecular weight, 800 g/mol; degree of polymerization, 14) and other chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) and used without further purification.

Characterization methods

Rigaku Ultima IV wide-angle X-ray diffraction (WXRD; Rigaku, Tokyo, Japan) patterns were analyzed using a Bruker phase diffractometer (Cu K α , $\lambda = 1.54056$ Å with a nickel monochromatic at 40 kV). Differential scanning calorimetric (DSC) curves were acquired with a PerkinElmer-DSC 4000 instrument for thermal properties analysis. Raman spectra were obtained 200 to 1600 cm⁻¹ at 25 °C using a laser Raman spectrometer (Model CRM 2000; WITec Inc., Ulm, Germany). Ultraviolet-visible (UV-Vis) spectroscopy data were obtained using a UV-Vis spectrophotometer (Jasco V-550 type, Tokyo, Japan). Fluorescence spectra were recorded using a 1 cm-path quartz cell on a Jasco FP-8300 spectrophotometer equipped with xenon lamp at a slit width of 10 nm. An excitation wavelength of 420 nm was used and fluorescence emission was monitored in the range of 420-900 nm. Field emission scanning electron sicroscopy (FE-SEM; JSM-6500F, JEOL, Japan) and high-resolution transmission electron microscopy (HRTEM, H-7000; Hitachi, Tokyo, Japan) were carried out to analyze sample morphology and microstructure. Variable-temperature Fourier transform infrared (VT-FTIR) measurements were performed with a PerkinElmer Spectrum Two system (PerkinElmer, Buckinghamshire, UK) at a wave number range of 600–4000 cm⁻¹. The chemical shifts and elemental

components of the samples were verified via X-ray photoelectron spectroscopy (XPS, British VG Scientific ESCALAB 250 with an Al K α source; Sussex, UK). The thicknesses and morphology of exfoliated WSe₂ nanosheets were analyzed using an atomic force microscope (NX10, AFM Park Systems, Suwon, South Korea). Small angle X-ray scattering (SAXS) data were generated using the BL17A1 wiggler beamline of the National Synchrotron Radiation Research Center (NSRRC), Taiwan. Each samples was sealed in polyimide film (Kapton, 12 µm-thickness) and analyzed at 25 °C using an X-ray photon of wavelength 0.113 nm and beam diameter of 1.0 mm (*q*-range: 5-100 Å⁻¹).

Fig. S1: Magnified XRD peaks extracted from **Fig. 2a** for A-PPG, WSe₂ and WSe₂/A-PPG composites.

Fig. S2: High-resolution XPS spectra of **(a)** N 1s and **(b)** O 1s for A-PPG and WSe₂/A-PPG composites and **(c)** Se 3d for WSe₂ and 50/50 WSe₂/A-PPG composites.

Fig. S3: DLS analyses of (a) A-PPG and (b) 50/50 WSe_{2/}A-PPG composite in THF.

Fig. S4: AFM images of the 50/50 WSe₂/A-PPG composite. (a) Step height was determined from the AFM images of the WSe₂ nanosheets shown in panel (b).

Fig. S5: DSC curves of A-PPG, WSe₂ and WSe₂/A-PPG composites for the first cooling/second heating process.

	Second heating scan				First cooling scan			
Sample	$\frac{T_{\rm mo}^{1}}{(^{\rm o}{\rm C})}$	$T_{\rm mf}^{l}$ (°C)	$T_{\rm m}^{-1}$ (°C)	$\Delta H_{\rm m}^{-1}$ (J/g)	$T_{\rm co}^2$ (°C)	$T_{\rm cf}^2$ (°C)	$T_{\rm c}^2$ (°C)	$\Delta H_{\rm c}^2$ (J/g)
A-PPG	90.37	101.53	96.47	248.38	41.25	37.02	39.64	215.60
10/90 WSe ₂ /A- PPG	86.21	101.75	96.70	203.67	44.33	35.55	40.68	175.52
30/70 WSe ₂ /A- PPG	84.96	97.543	90.67	173.15	43.45	31.70	37.74	133.76
50/50 WSe ₂ /A- PPG	102.88	109.01	109.48	80.84	43.93	36.20	40.18	79.45

Table S1. Thermal properties for the second heating and first cooling cycles based on DSC curves.

^{1.} Melting point ($T_{\rm m}$), onset melting point ($T_{\rm mo}$), final melting point ($T_{\rm mf}$), and melting enthalpy ($\Delta H_{\rm m}$).

^{2.} Crystallization point (T_c), onset crystallization point (T_{co}), final crystallization point (T_{cf}), and crystallization enthalpy (ΔH_c).

Fig. S6: Five-cycle DSC heating/cooling scans for A-PPG and 10/90 WSe₂/A-PPG composite under nitrogen flow.

DSC measurements were performed using a PerkinElmer-DSC 4000 analyzer to study the phase transition behavior for each phase change material and WSe₂. **Fig. S5** and **Table S1** demonstrate the DSC thermal curves for A-PPG, WSe₂ and the WSe₂/A-PPG composites. A-PPG had a heat of fusion (ΔH) of 248.4 J/g and melting point (T_m) of 96.5 °C, whereas WSe₂ did not show any phase transition behavior over a wide temperature range. Surprisingly, the melting points of WSe₂/A-PPG composites with various *wt%* ratios were similar to pristine A-PPG (96.5 °C) and the observed ΔH values gradually increased with the amount of A-PPG, suggesting introduction of WSe₂ into the A-PPG matrix did not affect the phase behavior of A-PPG. In addition, validation tests by multicycle DSC (Fig. S6) further confirmed the excellent phase transition behavior and thermoreversible stability of the WSe₂/A-PPG composites, indicating attachment of the adenine molecules to the chain end of PPG offers the potential to achieve temperatureresponsive phase-change composites with higher thermal stability and that the presence of exfoliated WSe₂ may assist disordered-ordered transition in the matrix phase.³⁶

Fig. S7: VT-FTIR spectra of 50/50 WSe₂/A-PPG composite at various temperatures.

VT-FTIR was carried out to validate the DSC results and investigate the relationship between hydrogen bonding interactions and thermodynamic phase transitions. Fig. S7 illustrates the VT-FTIR spectra of 50/50 WSe₂/A-PPG composite from 25 °C to 120 °C. The two stretching vibration peaks of hydrogen bonded N–H at 3111 cm⁻¹ and 3285 cm⁻¹ were observed in the higher wavenumber region (2800–3600 cm⁻¹) at 25 °C, and shifted to a higher wavenumber (cm⁻¹) as temperature increased to 120 °C. In addition, a free amine N-H stretching vibration appeared at around 3491 cm⁻¹ at 120 °C.^{S1} In the lower wavenumber region of 1500-1800 cm⁻¹ at 25 °C, three characteristic peaks were present at 1595 cm⁻¹, 1664 cm⁻¹ and 1723 cm⁻¹ ascribed to C=N stretching vibrations ($V_{C=N}$), hydrogen-bonded C-N stretching (V_{C-N}) and semi-crystalline ester-carbonyl C=O stretching vibrations (V_{C=0}), respectively.^{S2} The first two amine peaks shifted to lower wave number peaks at 1592 and 1635 cm⁻¹, but the ester-carbonyl peak at 1723 cm⁻¹ shifted to a higher wavenumber (1733 cm⁻¹) at 120 °C, suggesting destruction of the hydrogen-bonded conformation as temperature increased up to 120 °C.^{S3} Generally, during heating and melting, the hydrogen-bonded dimers between adenine groups were disturbed and weakened successively, and an order-disorder transition from a semicrystalline solid to the liquid state occurred. However, when the temperature was reduced to 30 °C, the spectrum spontaneously reverted to the original semi-crystalline pattern, indicating WSe₂/A-PPG contains stable thermoreversible hydrogen bond interactions in the bulk state (Fig. S7). In addition, these results further demonstrate the exfoliated WSe₂ nanosheets do not affect hydrogen bond reversibility as temperature varies and also promote the formation of contractile and extended lamellar structures on the surface of the 1T- and 2H-WSe₂ phases, respectively.

Fig. S8: TGA curves for A-PPG containing different mass fractions of WSe₂.

Fig. S9: ¹H-NMR spectra of A-PPG in deuterated chloroform (CDCl₃) at various concentrations at 25 $^{\circ}$ C.

Fig. S10: A typical Benesi–Hildebrand plot of A-PPG self-complex in CDCl₃ at 25 °C.

The association constant (K_a) of A-PPG as determined by ¹H-NMR titration method (**Fig. S9**) and calculated from the slope of the plot (**Fig. S10**) was 1.2 M⁻¹, which is consistent with K_a values reported in previous works (ca. <5 M⁻¹ in CDCl₃).^{S4-S6}

References

- S1 M. Hayashi, S. Matsushima, A. Noro and Y. Matsushita, *Macromolecules*, 2015, 48, 421–431.
- S2 Y. Chen, W. Wu, T. Himmel and M. H. Wagner, *Macromol Mater Eng.*, 2013, 298, 876–887.
- S3 M. Hayashi and F. Tournilhac, Polym. Chem., 2017, 8, 461–471.
- S4 J. Sartorius and H.-J. Schneider, *Chem. Eur. J.*, 1996, **2**, 1446–1452.
- S5 G. Gottarelli, S. Masiero, E. Mezzina, G. P. Spada, P. Mariani and M. Recanatini, *Helv. Chim. Acta*, 1998, 81, 2078–2092.
- S6 S. Sivakova and S. J. Rowan, Chem. Soc. Rev., 2005, 34, 9–21.