Electronic Supplementary Information (ESI)

Reversible coordination of N_2 and H_2 to a homoleptic S = $\frac{1}{2}$ Fe(I) diphosphine complex in solution and the solid state

Laurence R. Doyle,^[a] Daniel J. Scott,^[a] Peter J. Hill,^[a] Duncan A. X. Fraser,^[a] William K. Myers,^{*[b]} Andrew J. P. White,^[a] Jennifer C. Green,^[b] and Andrew E. Ashley^{*[a]}

[a] Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK. E-mail: <u>a.ashley@imperial.ac.uk</u> Tel: +44 0(20) 759 45810.

[b] Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, UK.

Contents:

1.	Experimental details	1
2.	NMR spectroscopy	6
3.	ESR spectroscopy	7
4.	IR spectroscopy	12
5.	UV-vis spectroscopy	13
6.	Computational data	17
7.	X-ray diffraction data for [1] ⁺ [BAr ^F ₄] ⁻	26
8.	References	28

1. Experimental details

General considerations

All chemical manipulations were performed under a N₂ or Ar atmosphere either using standard Schlenk-line techniques or a MBraun Labmaster DP glovebox, unless stated otherwise. H₂ (BOC, 5.5 Research Grade) was dried by passage through a NANOCHEM[®] WA-500 OMXTM purifying column. Solvents were purchased from VWR: pentane and hexane were dried using an Innovative Technology Pure SolvTM SPS-400; THF, Et₂O and 1,4-dioxane (Sigma-Aldrich) were distilled from dark green Na/fluorenone indicator; 1,2-difluorobenzene (DFB; Fluorochem) was distilled from CaH₂; *tert*-butyl methyl ether (TBME; Sigma-Aldrich) was dried over 4 Å molecular sieves. Solvents were degassed by thorough sparging with N₂ or Ar gas and stored in gas-tight ampoules: pentane, hexane and Et₂O were stored over a K mirror; DFB and TBME were stored over 4 Å molecular sieves. Deuterated solvents were freeze-pump-thaw degassed, and stored in gas-tight ampoules over 4 Å molecular sieves. C₆D₆ (Sigma-Aldrich, 99.5 atom % D), THF-d₈ (Sigma-Aldrich, 99.5 atom % D). Mg powder, 1,2-dibromoethane, and Cp₂Fe were purchased from Sigma-Aldrich; the latter was purified by sublimation and recrystallisation from cold pentane. Fe(depe)₂N₂, (1·N₂),^[1] *trans*-Fe(depe)₂(Cl)₂,^[2] *trans*-Fe(depe)₂(H)(Cl),^[3] [Cp₂Fe][BAr^F₄] (Ar^F = 3,5-(CF₃)₂C₆H₃),^[4] and Na[BAr^F₄]^[5] were prepared according to literature procedures.

NMR spectra were recoded using Bruker AV-400 (400.4 MHz) spectrometers. Chemical shifts, δ , are reported in parts per million (ppm). ¹H chemical shifts are given relative to Me₄Si and referenced internally to the residual proton shift of the deuterated solvent employed. ³¹P chemical shifts were referenced ($\delta = 0$) externally to 85% H₃PO₄ (aq). ¹H and ³¹P NMR spectra of solutions prepared in non-deuterated solvents incorporate an internal reference capillary containing a solution of ca. 0.1 M PPh₃ in C₆D₆ and are referenced to residual C₆D₅H and PPh₃ ($\delta = -5.3$) resonances, respectively. Air or moisture sensitive samples were prepared inside a glove-box using NMR tubes fitted with J. Young valves. The paramagnetic susceptibility of solution-phase samples was determined using the Evans NMR method.^[6,7]

Infrared (IR) spectra were recorded using a Perkin Elmer FT-IR Spectrum GX spectrometer. Samples were measured as either KBr pellets or solutions. To form a KBr pellet, the sample was ground with KBr (Sigma, FT-IR grade), and subsequently pressed in an air-tight Specac[®] die using a Specac[®] manual hydraulic press. Solutions were recorded using an air tight Specac[®] Omni Cell[™], which was loaded with a ca. 0.1 M solution *via* syringe inside the glove-box.

Electronic spectra were recorded using a Perkin Elmer Lambda 20 UV-visible spectrophotometer. Samples were prepared inside the glove-box using a quartz cuvette with an optical path length of 1 cm and fitted with a J. Young valve. Variable-temperature UV-vis spectra were recorded using a Unisoku CoolSpeK UV USP-203-B accessory. The solubility of N₂ in THF ($x_{N2} = 5.21 \times 10^{-4}$; 6.4 mM at 298 K and 1 atm.) for the variable-temperature equilibrium measurements was obtained from the literature.^[8]

ESR data were collected at the Centre for Advanced Electron Spin Resonance (CAESR), of the Department of Chemistry, University of Oxford. The CW-EPR spectrometer for cryogenic conditions (40-85 K) for frozen solutions in J. Young tubes and flame-sealed pulsed EPR tubes was a Bruker BioSpin EMXmicro with an EMX Premium bridge, an Oxford Instruments ESR-900 cryostat, an Oxford Instruments ITC-503s temperature controller, and a Bruker BioSpin Super High-Q resonator (ER 4123-SHQE-W), which operates in the cylindrical TE₀₁₁ mode. The CW-EPR spectrometer for elevated temperatures of solid films in the bottom J. Young tubes (3-4 cm height on wall) was a Bruker BioSpin ER4001100 EMX with a Bruker W1702025 MR G 0141 Gunn bridge, a Bruker liquid N2 heater cryostat, a Bruker VT-1000 temperature controller calibrated by an external K-type thermocouple of the sample tube dimensions for reproducing flow conditions, and a Bruker BioSpin ER4119HS/W, which operates in the cylindrical TE_{011} mode. To prepare samples for pulsed EPR, bottom portion of J. Young tubes of 3.8 mm O.D., containing ca. 150 µL of 2.5 mM frozen analyte solution, were flame sealed under vacuum of ~ 3.5×10^{-2} mBar, excising the bottom section of about 19 cm length, which was stored at 77 K and not melted prior to X-band pulsed EPR measurements. HYSCORE and ENDOR were acquired with TE₀₁₀-mode cylindrical sapphire EN4118X-MD4EN-W1 dielectric resonators, with Bruker BioSpin E680 EleXSys and E580 EleXSys II spectrometers with Oxford Instruments CF935 cryostats at a temperature of 10 K. EPR Simulations employed the EasySpin 5.1.0 simulation toolkit functions for MatLab (version 8.6.0, R2015b, Mathworks, Inc.)^[9] Uncertainty in hyperfine simulations estimated as +/- 0.5 MHz. For powder ESR experiments, a stock solution of $[1]^+[BAr^{F_4}]^-$ in DFB (25 mM) was prepared in an Ar-filled glovebox. For each experiment, 0.2 mL of stock solution (corresponding to 0.005 mmol $[1]^+[BAr^{F_4}]^-$) was transferred to a J. Youngs-adapted quartz ESR tube. The solvent was carefully removed *in vacuo* to leave a thin powder coating of the sample on the walls of the tube, and the tube subsequently back-filled to a pressure of 1 atm. with Ar, N₂ or H₂. Samples intended to contain precisely 1 eq. of N₂ or H₂ were initially prepared under Ar in same manner. The Ar was subsequently removed under vacuum, and 0.005 mmol of the appropriate gas was added through use of a Toepler pump.

Single crystal X-ray diffraction data for $[1]^{+}[BAr^{F}_{4}]^{-}$ were collected by Dr Andrew J. P. White with an Oxford Diffraction Xcalibur unit; the crystal was mounted on a glass fibre using perfluoropolyether oil and measured in a stream of N₂ at 173 K. The structure was solved by direct methods using SHELX.^[10,11]

Elemental analyses were performed by Mr S. Boyer of the London Metropolitan University.

Synthesis and characterization.

[Fe(depe)₂**]**⁺**[BAr**^F₄**]**⁻, **[1]**⁺**[BAr**^F₄**]**⁻: Under an Ar atmosphere, $[Cp_2Fe][BAr^{F}_4]$ (803 mg, 0.765 mmol) was dissolved in 5 mL of Et₂O and slowly added to a stirring solution of **1**·N₂ (400 mg, 0.806 mmol) in 5 mL of Et₂O. The resulting deep blue solution was stirred for 2 h at RT before volatiles were removed *in vacuo*. The remaining solid was rinsed with hexane (4 x 5 mL) and subsequently extracted into DFB, concentrated, and then layered with hexane. Slow diffusion of hexane into the DFB solution resulted in blue crystals which were collected by filtration, then rinsed with cold TBME (2 x 2 mL) followed by pentane (2 x 2 mL), before being dried *in vacuo* (935 mg, 87%).

Anal. Calcd. for C₅₂H₆₀BF₂₄FeP₄: C, 46.90; H, 4.54. Found: C, 46.82; H, 4.64.

¹H NMR (400.4 MHz, THF) δ: –0.54 and –1.77 (br s, overlapping), –21.30 (vbr s).

¹H NMR (400.4 MHz, DFB) δ: –0.33 and –1.67 (br s, overlapping), –21.12 (vbr s).

UV-vis: See Table S1.

 $[Fe(depe)_2(\eta^1-N_2)]^+[BAr^F_4]^-$, $[1\cdot N_2]^+[BAr^F_4]^-$: In a N₂-filled glove-box at 1 atm. pressure, $[1]^+[BAr^F_4]^-$ (13.3 mg) was dissolved in THF solvent (20 ml), from which 1 ml (overall concentration 0.5 mM) was used to fill a J. Youngs-adapted quartz cuvette, which was subsequently sealed and subjected to UVvis measurements. For NMR experiments solutions of $[1]^+[BAr^F_4]^-$ in DFB (0.4 ml, 1 mM concentration) were prepared under Ar in a J. Youngs NMR tube, which were subsequently freezethaw-degassed three times with N₂ on a Schlenk-line manifold. The last backfill of N₂ (1 atm.) was subsequently sealed at liquid N₂ temperature, before being warmed to RT (internal pressure ~ 4 atm.). Solution ESR experiments were treated analogously to NMR experiments, except that the last backfill was at RT and hence the internal pressure was at 1 atm..

¹H NMR (400.4 MHz, DFB, 4 atm. N₂, 293 K) δ: –0.89 (br s).

IR (Et₂O, under N₂, cm⁻¹): v_{NN} 2067.

UV-vis: See Table S1.

[Fe(depe)₂(σ -H₂)]⁺**[BAr^F**₄]⁻, **[1**·H₂]⁺**[BAr^F**₄]⁻: In a Ar-filled glove-box at 1 atm. pressure, **[1]**⁺**[BAr^F**₄]⁻ (13.3 mg) was dissolved in THF solvent (20 ml), from which 1 ml (overall concentration 0.5 mM) was used to fill a J. Youngs-adapted quartz cuvette, which was subsequently sealed and removed from the glove-box. The cuvette was subsequently freeze-thaw-degassed three times with H₂ on a Schlenk-line manifold (1 atm. pressure), with the last backfill at RT, before being subjected to UV-vis measurements. For NMR experiments solutions of **[1]**⁺**[BAr^F**₄]⁻ in DFB (0.4 ml, 1 mM concentration) were prepared under Ar in a J. Youngs NMR tube, which were subsequently freeze-thaw-degassed three times with H₂ on a Schlenk-line manifold. The last backfill of H₂ (1 atm.) was subsequently sealed at liquid N₂ temperature, before being warmed to RT (internal pressure ~ 4 atm.). Solution ESR experiments were treated analogously to NMR experiments, except that the last backfill was at RT and hence the internal pressure was 1 atm..

¹H NMR (400.4 MHz, DFB, 4 atm.H₂, 293 K) δ: –1.93 (br s).

UV-vis (DFB, 1 atm.H₂, -15°), nm {m² mol⁻¹}: 345 {60}, 850 {20}.

Preparation of samples for powder ESR: For powder ESR experiments, a stock solution of $[1]^{+}[BAr^{F}_{4}]^{-}$ in DFB (25 mM) was prepared in an Ar-filled glovebox. For each experiment, 0.2 mL of stock solution (corresponding to 0.005 mmol $[1]^{+}[BAr^{F}_{4}]^{-}$) was transferred to a J. Youngs-adapted quartz ESR tube. The solvent was carefully removed *in vacuo* to leave a thin powder coating of the sample on the walls of the tube, and the tube subsequently back-filled to a pressure of 1 atm. with Ar, N₂ or H₂.

Samples intended to contain precisely 1 eq. of N_2 or H_2 were initially prepared under Ar in same manner. The Ar was subsequently removed under vacuum, and 0.005 mmol of the appropriate gas was added through use of a Toepler pump.

trans-[Fe(depe)₂(H)(N₂)]⁺[BAr^F₄]⁻: *trans*-Fe(depe)₂(H)(Cl) (250 mg, 0.495 mmol) and NaBAr^F₄ (461 mg, 0.520 mmol) were dissolved in 10 mL of Et₂O under a N₂ atmosphere and stirred for 12 h at RT. After filtration, the solution was concentrated *in vacuo* and then layered with pentane. Slow diffusion of pentane into the Et₂O solution yielded off-white crystals which were collected by filtration, washed with further pentane, and dried *in vacuo* (598 mg, 89%).

³¹P {¹H} NMR (162 MHz, Et₂O) δ: 81.4 (s).

¹H NMR (400.4 Hz, Et₂O, hydride region) δ : – 18.3 (quintet, ²J_{PH} = 48.9 Hz, Fe-H).

IR (Et₂O, cm⁻¹): v_{NN} 2102

trans-[Fe(depe)₂(H)(H₂)]⁺[BAr^F₄]⁻: *trans*-Fe(depe)₂(H)(Cl) (250 mg, 0.495 mmol) and NaBAr^F₄ (461 mg, 0.520 mmol) were weighed into a Schlenk flask in an Ar glove-box, before being sealed and transferred to a Schlenk-line manifold. H₂-saturated Et₂O (10 ml) was subsequently added under a H₂ atmosphere, the flask sealed, and then followed by stirring for 12 h at RT. The remaining operations were performed under Ar. After filtration, the solution was concentrated *in vacuo* and then layered with pentane. Slow diffusion of pentane into the Et₂O solution yielded off-white crystals which were collected by filtration, washed with further pentane, and dried *in vacuo* (534 mg, 81%).

³¹P {¹H} NMR (162 MHz, Et₂O) δ: 93.4 (s).

¹H NMR (400.4 Hz, Et₂O, 298 K, hydride region) δ : – 11.0 (br multiplet, Fe-H).

2. NMR spectroscopy

Figure S1. High field region of the ¹H NMR spectra of $[1]^+[BAr_4^F]^-$ in DFB under Ar (1 atm., blue), N₂ (4 atm., red), and H₂ (4 atm., green); referenced to SiMe₄ ($\delta = 0$) in a capillary insert. P = PEt₂.

3. ESR spectroscopy

3.1 X-band CW data

Figure S2. Reversible binding of N₂ by $[1]^{+}[BAr^{F}_{4}]^{-}$ in the solid-state: CW X-band ESR spectra of powdered $[1]^{+}[BAr^{F}_{4}]^{-}$ under Ar (black), followed by evacuation and subsequent admission of H₂ (1 atm., $[1 \cdot N_2]^{+}[BAr^{F}_{4}]^{-}$, pink), and sequential evacuation to 10^{-3} mbar and backfill with Ar (blue). All spectra recorded at 40 K.

Figure S3. Reversible binding of H_2 by $[1]^+[BAr^F_4]^-$ in the solid-state: CW X-band ESR spectra of powdered $[1]^+[BAr^F_4]^-$ under Ar (black), followed by evacuation and subsequent admission of H_2 (1 atm., $[1 \cdot H_2]^+[BAr^F_4]^-$, pink), and sequential evacuation to 10^{-3} mbar and backfill with Ar (blue). All spectra recorded at 40 K.

Figure S4. CW X-band ESR spectra of $[1]^{+}[BAr^{F_4}]^{-}$ at 2.5 mM in 7:1 PhMe:DFB under Ar, recorded as a frozen glass at 40 K and 50 μ W, with a microwave frequency of 9.3905 GHz; black trace: experiment; grey trace: simulation. (*) corresponds to trace $[1 \cdot (N_2)]^{+}[BAr^{F_4}]^{-}$ impurity, due to N₂ contaminant in the Ar feed. Simulation parameters: $g_1 = 2.483$, $g_2 = 2.234$, $g_3 = 1.985$ with four ³¹P hyperfine interactions of type 1, $A(^{31}P) = [66.6\ 63.2\ 62.6]$ /MHz and type 2, $A(^{31}P) = [69.9\ 59.5\ 61.8]$ /MHz, as collinear with g-tensor; isotropic linewidth of 0.3 /mT and anisotropic linewidth of I₁ = 9.22, I₂ = 2.2 and I₃ = 1.6 /mT.

Figure S5. CW X-band ESR spectra of $[1 \cdot N_2]^+ [BAr^F_4]^-$ at 2.5 mM in 7:1 PhMe:DFB under N₂, recorded as a frozen glass at 40 K and 50 μ W, microwave power with a microwave frequency 9.3795 GHz; black trace: experiment; grey trace: simulation. Simulation parameters: $g_1 = 2.125$, $g_2 = 2.093$, $g_3 = 2.0016$ with four ³¹P hyperfine interactions, two of type 1, $A(^{31}P) = [65.6 \ 61.4 \ 60.9]$ /MHz and two of type 2, $A(^{31}P) = [72 \ 61.7 \ 64.3]$ /MHz, as collinear with g-tensor; isotropic linewidth of 0.3 /mT and anisotropic linewidth of $I_1 = 2.4$, $I_2 = 2$ and $I_3 = 1.7$ /mT.

Figure S6. CW X-band ESR spectra of $[1 \cdot H_2]^+[BAr^{F_4}]^-$ at 2.5 mM in 7:1 PhMe:DFB under H₂, recorded as a frozen glass at 40 K and 50 μ W, microwave power with a microwave frequency 9.3795 GHz; black trace: experiment; grey trace: simulation. Simulation parameters: $g_1 = 2.158$, $g_2 = 2.084$, $g_3 = 2.00025$ with four ³¹P hyperfine interactions, $A(^{31}P) = [66.8 \ 66.5 \ 65.5; 66.8 \ 66.5 \ 65.5; 70.2 \ 69.4 \ 68.4; 70.2 \ 69.4 \ 68.4]$ /MHz, with corresponding Euler angles (α,β,γ): [149 1 -149; -96 11 -84; 98 85 -175; 98 80 4] /deg. Hyperfine values for ¹H are $A(^{1}H) = [-17.99 \ -19.93 \ 26.58]$ /MHz; isotropic linewidth of 0.3 /mT and anisotropic linewidth of $I_1 = 2.4$, $I_2 = 2$ and $I_3 = 1.7$ /mT.

Figure S7. Intensity map plots of standard 4-pulse HYSCORE (a-d, i-l) and DONUT-HYSCORE(e-h, m-p) in data (a-h) and simultaneous simulation of two ¹⁴N nuclei (i-p). Acquisition parameters and simulations parameters are in the main text and fig. 3.

Figure S8. Field-dependent ESR simulation (red) for the 4-pulse HYSCORE signal (black) of a $[1 \cdot ({}^{15}N_2)]^+[BAr^F_4]^-$, at [field (G), g-value] a. 3261, 2.134; b. 3304, 2.106; c. 3348, 2.070; d. 3392, 2.052; e. 3436, 2.025; f. 3480, 1.999, with simulation values of $A({}^{15}N) = [3.5 \ 6.7 \ 8.3]$ MHz, $A_{iso}({}^{15}N) = 6.2$ MHz. The microwave frequency was 9.7615 GHz, with $t_1 = t_2 = 100$ ns, $\tau = 200$ ns, and a time step of 20 ns. Microwave pulse lengths were $\pi/2 = 8$ ns and $\pi = 12$ ns.

4. IR spectroscopy

Figure S9. IR spectra of the v_{NN} region: $\mathbf{1} \cdot N_2$ (red), $[\mathbf{1} \cdot N_2]^+[BAr^F_4]^-$ (from $[\mathbf{1}]^+[BAr^F_4]^-$ in a glove-box under a N_2 atmosphere; blue), and *trans*-[Fe(depe)₂(H)(N₂)]⁺[BAr^F_4]^- (green). All prepared as 0.1 M Et₂O solutions.

5. UV-vis spectroscopy

General considerations

Notably, variable temperature UV-Vis spectra of $[1]^+[BAr^F_4]^-$ in DFB of THF solutions are virtually identical, and both are essentially invariant over the range 298-343 K, which was used for the N₂ binding studies. This strongly implies that $[1]^+$ does not coordinate these solvents, despite their significantly different donor properties.

Complex	λ _{max} /nm (ε _{max} /M cm ⁻¹)	Ref.
[1]⁺ [BAr^F₄] ⁻ (DFB, 298 K, Ar)	378 (~103) ^a	
	414 (~94) ^a	this
	496 (121)	work
	618 (285)	
[1·N₂]⁺ [BAr^F₄] ⁻ (DFB, –15°C, N ₂)	359 (316)	this
	1018 (55)	WOIK
{[Fe(DMeOPrPE) ₂] ₂ (µ-N ₂)}[BPh ₄] ₂	~350°	
(THF) ^b	480	12
	580	
[Fe(N₂)(DMeOPrPE)₂][BPh₄]	~360 [°]	12
(THF) ^b	1010	

Table S1 Electronic absorption (UV-vis) features of $[1]^{+}$ and $[1 \cdot N_2]^{+}$, and Fe(I) complexes reported by Tyler *et al.*^[12]

^a overlapping bands; ^b ϵ_{max} values not reported; ^cextracted visually from ref. [12].

 $\mathsf{DMeOPrPE} = [\mathsf{MeOCH}_2\mathsf{CH}_2\mathsf{CH}_2)_2\mathsf{PCH}_2]_2.$

Figure S10. UV-vis spectra of $[1]^+[BAr_4^F]^-$ under Ar (blue), N₂ (red), and H₂ (green) atmosphere in DFB (293 K, 1 atm.).

Figure S11. Variable-temperature UV-vis spectra of $[1]^+[BAr^F_4]^-$ and $[1 \cdot N_2]^+[BAr^F_4]^-$ in THF under 1 atm. N₂; van't Hoff plot (inset) derived from changes in the absorbance at 618 nm between 35 and 75 °C; the concentration of N₂ in THF was taken to be 6.4 mM using solubility data from ref. [8]. The presence of clearly defined isosbestic points corroborates a completely reversible equilibrium solely involving two Fe-containing complexes and N₂.

Figure S12. UV-vis spectra of $[1]^+[BAr^F_4]^-$ in DFB and THF (293 K, 1 atm Ar).

Figure S13. (a) Variable temperature UV-Vis spectra of $[1]^+[BAr_4^F]^-$ taken under an atmosphere of H₂ (1 atm.) are consistent with reversible release of H₂ from $[1 \cdot H_2]^+[BAr_4^F]^-$ to form $[1]^+[BAr_4^F]^-$ (evidenced by the increasing absorption centred at 618 nm), as temperature is increased. **(b)** Partial decomposition at elevated temperature is evidenced by reduced absorption upon returning to low temperature.

6. Computational data

Density functional calculations were carried out using the ADF program suite version 2014.1.^[13] The Slater-type orbital (STO) basis sets were of triple-**ζ** quality augmented with a one polarization function (ADF basis TZP). Core electrons were frozen (C, N 1s; Fe 2p) in our model of the electronic configuration for each atom. The local density approximation (LDA) by Vosko, Wilk and Nusair (VWN)^[14] was used together with the exchange correlation corrections of Becke and Perdew (BP86).^[15] Optimized geometries were ascertained as local mimima *via* frequency calculations. Time-dependent DFT (TDDFT) calculations for calculating electronic absorption spectra used a SAOP functional and a QZ4P all-electron basis set.

Table S2. Selected metric parameters for geometry optimised structures of $[Fe(depe)_2]^+([1]^+)$, σ -N₂ and σ -H₂ complexes thereof $([1\cdot N_2]^+$ and $[1\cdot (H_2)]^+$), and oxidative addition product with H₂ $([1\cdot (H)_2]^+)$.

		[1] ⁺	$[1 \cdot N_2]^+$	$[1 \cdot N_2]^+$	$[1\cdot(H_2)]^+$	$[1\cdot(H)_2]^+$
			[OTf] ^{-a}			
						2.217
	Fe-P	2 250	2.2471(9)	2.274	2 256	2.225
		2.230	2.2512(9)	2.293	2.250	2.280
Distances						2.293
(گ)	Eo_H	_			1.613	1.507
(A)	re-n	_	_	-	1.615	1.511
	Fe-N	-	1.857(6)	1.831	-	-
	N-N	-	1.121(9)	1.135	-	-
	н…н	-	-	-	0.899	1.567
					85.53	85.33
		85.28	83.83(3)	83.87	85.52	86.50
	P-Fe-P	94.91	95.03(3)	94.71	94.06	101.54
					94.08	103.07
Angles (°)	H-Fe-H	-	-	-	32.35	62.55
	Dihedral					
	between	6.00	15 20	10.00	16.02	64.05
	depe ligand	0.90	12.22	10.00	10.92	04.05
	PP planes					

^a From X-ray crystallographic data in reference [1]. See also CCDC 1451414.

Figure S14. DFT-optimised structures of (a) $[1]^+$, (b) $[1 \cdot N_2]^+$, (c) $[1 \cdot H_2]^+$, (d) $[1(H)_2]^+$.

Table S3. Calculated low-energy of absorptions of $[1]^+$, $[1 \cdot N_2]^+$ and $[1 \cdot H_2]^+$.

Transition	Wavelength	Oscillator	Transition	Wavelength	Oscillator strength
	[1] ⁺	strength [1]⁺		$[1 \cdot N_2]^+ [1 \cdot H_2]^+$	$[1 \cdot N_2]^+ [1 \cdot H_2]^+$
$xz > z^2$	825	0.000	$xz/yz > z^2$	660 677	0.004 0.006
$yz > z^2$	758	0.000	$yz/xz > z^2$	629 565	0.006 0.010
xz > z	587	0.011	$x^{2}-y^{2} > z^{2}$	574 606	0.003 0.000
yz > z	548	0.015			
$x^2-y^2 > z$	503	0.001			

Figure S15. Calculated absorption spectra for $[1]^+$, $[1 \cdot N_2]^+$ and $[1 \cdot H_2]^+$.

Cartesian coordinates for optimised geometries

[Fe(depe)₂]⁺; [1]⁺

73

Fo	0 0000000	_0_0000000	0 0000000
D D	1 52472519	1 65627104	0.00000000
r C	-1.32472310	-1.05027104	0.07927117
	-0.72042791	-3.32483472	-0.23934464
H	-0.73827907	-3.46700295	-1.35226120
H	-1.31695348	-4.13654377	0.18404587
C	0.72042791	-3.32483472	0.25934464
Н	1.31695348	-4.13654377	-0.18404587
Н	0.73827907	-3.46700295	1.35226120
P	1.52472518	-1.65627104	-0.07927117
С	-2.37049256	-1.91280624	1.73442709
Н	-2.82159134	-2.91752161	1.73415266
Н	-3.20136109	-1.19099454	1.77140557
С	-1.45952947	-1.72375859	2.95458485
Н	-2.03661439	-1.81090966	3.88647160
Н	-0.66184554	-2.47935500	2.99362449
Н	-0.98401634	-0.73075601	2.94668085
С	-2.97927866	-1.69155628	-1.10071159
Н	-2.55554339	-1.51330543	-2.10267705
Н	-3.58749276	-0.80414601	-0.86421549
С	-3.86333948	-2.94561278	-1.10978220
Н	-4.66932449	-2.83150937	-1.84859996
Н	-3.29713465	-3.84683216	-1.38144451
н	-4.33692528	-3 12244171	-0.13443564
C	2 97927866	-1 69155628	1 10071159
н	2 55554339	-1 51330543	2 10267705
и П	3 587/9276	-0 80414601	0 86421549
п С	2 96222049	2 04561279	1 10070220
	1 6603340	-2.94301270	1.10970220
H	4.00932449	-2.83130937	1 20144451
H II	3.29713465	-3.84083210	1.38144431
H	4.33692528	-3.12244171	0.13443564
C	2.3/049256	-1.91280624	-1./3442/09
H	2.82159134	-2.91/52161	-1./3415266
Н	3.20136109	-1.19099454	-1.//14055/
С	1.45952947	-1.72375859	-2.95458485
Н	2.03661439	-1.81090966	-3.88647160
Н	0.66184554	-2.47935500	-2.99362449
Н	0.98401634	-0.73075601	-2.94668085
Р	1.52472518	1.65627104	0.07927117
С	0.72042791	3.32483472	-0.25934464
Н	0.73827907	3.46700295	-1.35226120
Н	1.31695348	4.13654377	0.18404587
С	-0.72042791	3.32483472	0.25934464
Н	-1.31695348	4.13654377	-0.18404587
Н	-0.73827907	3.46700295	1.35226120
Р	-1.52472518	1.65627104	-0.07927117
С	2.37049256	1.91280624	1.73442709
Н	2.82159134	2.91752161	1.73415266
Н	3.20136109	1.19099454	1.77140557
С	1.45952947	1.72375859	2.95458485
H	2.03661439	1.81090966	3.88647160
H	0.66184554	2.47935500	2,99362449
**	0.00101001	2.1,200000	2.55502115

2	1	
~		

Fe	3.88294410	6.00660040	8.49846094
Ρ	5.24070277	6.34593709	6.70645994
С	6.96988254	5.81784151	7.17809495
Н	6.96436148	4.71722990	7.22638468
Н	7.69824512	6.10962708	6.40567594
С	7.29989159	6.42061333	8.54623532
Н	7.49060522	7.50123546	8.45482778
Н	8.19853008	5.97009723	8.99364602
Р	5.82794933	6.19715634	9.69743544
Ν	3.88294163	4.17597878	8.49846255
Ν	3.88294010	3.04118176	8.49846355
С	5.43375801	8.15646771	6.26001026
Н	4.47817017	8.44269180	5.79311595
Н	5.47388957	8.70268046	7.21581237
С	6.60901464	8.56238924	5.36097779
Н	6.58271735	8.05829181	4.38511895
Н	7.58046469	8.34687772	5.82776115
Н	6.57388113	9.64427686	5.16772938
С	5.01485614	5.56110882	5.02324307
Н	4.00432755	5.83577503	4.67970036
Н	5.72039078	6.05736282	4.33815577
С	5.20911772	4.03977013	4.96308804
Н	4.97641770	3.67012190	3.95463801
Н	4.56185092	3.50747151	5.67340344
Н	6.24771873	3.75564955	5.18029199
С	6.14286119	7.52156954	10.98104848
Н	5.41922366	7.35336695	11.79524611
Н	7.13959103	7.33137331	11.40811862
С	6.05563573	8.96528317	10.47108139
Н	6.86463167	9.19622782	9.76406773
Н	6.14886042	9.67259768	11.30722331

75

$[Fe(depe)_2(\sigma-N_2)]^+; [1\cdot N_2]^+$

Н	0.98401634	0.73075601	2.94668085
С	2.97927866	1.69155628	-1.10071159
Н	2.55554339	1.51330543	-2.10267705
Н	3.58749276	0.80414601	-0.86421549
С	3.86333948	2.94561278	-1.10978220
Н	4.66932449	2.83150937	-1.84859996
Н	3.29713465	3.84683216	-1.38144451
Н	4.33692528	3.12244171	-0.13443564
С	-2.97927866	1.69155628	1.10071159
Н	-2.55554339	1.51330543	2.10267705
Н	-3.58749276	0.80414601	0.86421549
С	-3.86333948	2.94561278	1.10978220
Н	-4.66932449	2.83150937	1.84859996
Н	-3.29713465	3.84683216	1.38144451
Н	-4.33692528	3.12244171	0.13443564
С	-2.37049256	1.91280624	-1.73442709
Н	-2.82159134	2.91752161	-1.73415266
Н	-3.20136109	1.19099454	-1.77140557
С	-1.45952947	1.72375859	-2.95458485
Н	-2.03661439	1.81090966	-3.88647160
Н	-0.66184554	2.47935500	-2.99362449
Н	-0.98401634	0.73075601	-2.94668085

Fe	0.00093938	-0.00075569	-0.21827765
P	1.69813783	1.44840069	0.11146990
С	1.11993578	3.18053885	-0.30202042
н	1.19926761	3.27524907	-1.39562383
H	1.79098411	3.92883234	0.14360150
С	-0.32457845	3.37580253	0.15390476
H	-0.79445675	4.24100535	-0.33607020

H 0.06984712 3.59978241 5.12317392 H 0.32844594 5.28330221 4.64425619 [Fe(depe)₂(σ -H₂)]⁺; [1·H₂]⁺

Н	5.09937735	9.16650306	9.96648983
С	6.25998497	4.62570365	10.61758247
Н	5.37644256	4.37160047	11.22282072
Н	6.31823862	3.84664229	9.84139277
С	7.52353505	4.61403747	11.48603979
Н	8.42343094	4.90102999	10.92319596
Н	7.69603458	3.59977808	11.87375220
Н	7.43744030	5.28329943	12.35266696
Ρ	2.52518634	6.34594391	10.29046133
С	0.79600515	5.81785216	9.81882725
Н	0.80152324	4.71724046	9.77053947
Н	0.06764335	6.10964106	10.59124575
С	0.46599773	6.42062246	8.45068582
Н	0.27528701	7.50124527	8.54209145
Н	-0.43264198	5.97010800	8.00327591
Ρ	1.93793938	6.19715947	7.29948609
С	2.33213598	8.15647585	10.73690782
Н	3.28772459	8.44269818	11.20380163
Н	2.29200589	8.70268702	9.78110474
С	1.15688045	8.56240213	11.63593957
Н	1.18317638	8.05830635	12.61179930
Н	0.18542982	8.34689241	11.16915659
Н	1.19201687	9.64428999	11.82918607
С	2.75103085	5.56111801	11.97367959
Н	3.76156018	5.83578210	12.31722181
Н	2.04549755	6.05737512	12.65876601
С	2.55676516	4.03977995	12.03383731
Н	2.78946420	3.67013287	13.04228799
Н	3.20403053	3.50747833	11.32352285
Н	1.51816340	3.75566178	11.81663386
С	1.62303109	7.52157125	6.01587072
Н	2.34666817	7.35336527	5.20167339
Н	0.62630074	7.33137695	5.58880092
С	1.71026044	8.96528555	6.52583526
H	0.90126513	9.19623363	7.23284851
Н	1.61703766	9.67259883	5.68969209
Н	2.66651937	9.16650375	7.03042646
С	1.50589950	4.62570632	6.37934184
Н	2.38944122	4.37159969	5.77410404
Н	1.44764375	3.84664649	7.15553292
C	0.24234939	4.61404202	5.51088454
H	-0.65754573	4.90103795	6.07372787
н	0.06984712	3.59978241	5,12317392
 TT	0 22944504	5 20220221	A CAADEC10

н	-0.36313628	3.55918181	1.23732526
Ρ	-1.33010637	1.82051639	-0.16476464
С	2.41799879	1.63035026	1.83005407
н	3.08855715	2.50256594	1.82062212
н	3.05280665	0.74626095	1.98959825
С	1.39777012	1.75128080	2.96640992
н	1,90648276	1.73302422	3,93995498
н	0 83335723	2 69148552	2 91421604
и 11	0.67670651	0 02170261	2.91421004
п С	2 24260062	1 21226224	
	3.24209002	1.00200450	
H 	2.8831914/	1.20380452	-1.966/8315
н	3.71600502	0.35334936	-0.6/160/21
С	4.26951964	2.44812784	-0.83755284
H	5.11168724	2.24541060	-1.51367833
н	3.84108359	3.41472539	-1.13217228
н	4.68258307	2.55166739	0.17415146
С	-2.66837127	1.97671907	1.13522639
н	-2.18430214	1.69393724	2.08304564
н	-3.40521926	1.18774563	0.92189918
С	-3.37794149	3.32886196	1.28109765
н	-4.10565629	3.28062896	2.10319844
н	-2.67687574	4.14092593	1.51420449
н	-3.93140980	3.60832034	0.37544966
С	-2.26719454	2.25542063	-1.72598157
н	-2 91744033	3 10989621	-1 48445957
и 11	-2 02835007	1 40428890	-1 0//71256
п С	-1 40736019	2 59750996	-2 0/022512
с п		2.38750888	-2.94952515
п 17	-2.05027109	2.80104882	-3.01401100
п	-0.78631228	3.4/824366	-2.78138633
н	-0./454/0//	1.75635808	-3.22585301
P	-1.69586620	-1.44942364	0.11309865
С	-1.11828154	-3.18255029	-0.29743797
H	-1.20001882	-3.28013488	-1.39059713
н	-1.78871110	-3.92958360	0.15127424
С	0.32705714	-3.37714839	0.15617146
н	0.79666127	-4.24209389	-0.33452648
н	0.36719012	-3.56057132	1.23952327
Ρ	1.33218912	-1.82133826	-0.16286709
С	-2.41889473	-1.62898061	1.83046934
н	-3.09509922	-2.49680542	1.81892644
н	-3.04799974	-0.74100818	1.99068675
С	-1.40100905	-1.75891318	2.96805233
H	-1.91090038	-1.73974494	3.94091656
н	-0.84263347	-2.70267876	2.91438557
н	-0 67458083	-0 93402288	2 95137695
ĉ	-3 23891146	-1 31284487	-0 93203754
с u		-1 20226770	-0.95205754 -1.06601379
п 17	-2.8/8/1028	-1.20330770	-1.90091378
п	-3.71218796	-0.35412377	-0.0/12/033
C	-4.26630799	-2.44840462	-0.84008542
H	-5.10/39695		-1.51/42186
H	-3.83//1320	-3.41513941	-1.13413682
H	-4.68100168	-2.55201240	0.17094287
С	2.66939290	-1.97640572	1.13855740
н	2.18380195	-1.69539489	2.08612837
н	3.40548715	-1.18626474	0.92707361
С	3.38116905	-3.32757799	1.28378104
н	4.10540773	-3.27993253	2.10898611
н	2.68112691	-4.14197407	1.51179182

н	3.93898208	-3.60315097	0.37962596
С	2.27094238	-2.25715019	-1.72275479
H	2.91448249	-3.11677619	-1.48167115
H	2.93841663	-1.40977089	-1.93682287
С	1.41164534	-2.57938142	-2.94904870
H	2.05479909	-2.80279986	-3.81108981
H	0.77795624	-3.46139639	-2.78243350
H	0.76208151	-1.73978156	-3.22887832
H	-0.35659601	-0.27498033	-1.76712898
H	0.35692294	0.27245771	-1.77003801

 $[Fe(depe)_2(H)_2)]^+; [1(H)_2]^+$

Fe	15.95646613	9.64706536	2.86285803
P	15.16535851	11.62019253	3.68590408
P	14.24031053	9.75124905	1.46383989
P	17.40333240	8.99544781	4.42221374
Р	17.73167849	9.63741242	1.41154558
н	18.43452309	8.64230971	7.41698719
н	19.77276693	9.36932320	6.50459993
С	14.61933547	11.89044730	5.44586175
н	15.53100026	11.97457891	6.05489112
н	14.12834678	12.87505032	5.47796652
С	14.30033611	9.22689566	-0.32434690
н	13.42644222	9.66534680	-0.83101927
н	15.18625858	9.71162958	-0.76292097
С	17.94400724	8.24467018	0.19061456
н	17.11706938	8.34581552	-0.52735312
н	18.87389792	8.43849076	-0.36470586
С	13.66967711	11.52631674	1.32583690
н	14.40549138	12.05036333	0.69642918
н	12.69648648	11.59971928	0.81917226
С	17.97175157	11.14472252	0.33118919
н	17.09680384	11.18507233	-0.33597888
н	17.87961797	12.00699137	1.00858742
С	13.62821059	12.12336454	2.73345968
н	12.76161477	11.73628756	3.28940677
н	13.53439724	13.21845346	2.71904368
н	14.97699667	8.99280848	3.80285963
С	16.33114921	13.05983514	3.39162069
н	17.29454292	12.76456559	3.83377754
н	16.48963284	13.08854375	2.30272967
с	17.96617201	6.83284966	0.78364832
н	17.96758980	6.08615508	-0.02200846
н	17.08933188	6.64806240	1.41959658
н	18.86794212	6.65971791	1.38585059
с	12.72427799	8.86386619	2.09449291
н	13.01611065	7.80482328	2.15907252
н	12.60011949	9.19204424	3.13685728
с	17.78299468	10.08285828	5.89749728
н	18.11770744	11.04729571	5.48316591
н	16.81103422	10.27711706	6.37426698
н	18.92083083	10.31386020	7.73122580
С	15.86026831	7.24616031	6.10383859
н	14.94814033	7.50577311	5.54984241

н	15.93593265	7.91422638	6.97313872
С	19.27265390	11.24400251	-0.47566095
н	19.29548018	12.19297438	-1.02912083
н	19.36579426	10.43633515	-1.21245714
н	20.15952071	11.22104929	0.17102254
С	13.68943070	10.81147427	6.00537603
н	12.74432033	10.75695113	5.44787085
н	13.43588863	11.03486369	7.05052749
н	14.15661383	9.81888682	5.97067370
С	14.34016024	7.71056352	-0.54412440
н	14.49900023	7.48009575	-1.60625616
н	13.39674587	7.23617877	-0.24488740
н	15.14541329	7.23415554	0.03059158
н	15.73899958	6.22395755	6.48667105
С	19.09649832	8.69874422	3.65899394
н	19.88847063	8.85422505	4.40466430
н	19.12572514	7.63605325	3.37966147
С	17.09455463	7.33386166	5.20469516
н	17.00281210	6.63216214	4.36227810
н	18.00293709	7.05236114	5.75917116
С	11.42137825	9.03174827	1.30769309
н	11.51704608	8.69778557	0.26604963
н	11.07680021	10.07471653	1.29596180
н	10.62408226	8.43288253	1.76922779
С	19.30285458	9.58547562	2.42886563
н	20.15424588	9.24603231	1.82097298
н	19.51133973	10.62395014	2.73078896
С	15.90703104	14.44101037	3.90564537
н	16.65449724	15.19155653	3.61200572
н	15.83004168	14.46661409	4.99969939
н	14.94369369	14.76326769	3.48823899
С	18.78299945	9.56608919	6.93772257
н	15.72294129	8.16297896	2.70305225

7. X-ray diffraction data for $[Fe(depe)_2]^+[BAr_4^F]^-([1]^+[BAr_4^F])^-$.

The $[Fe(depe)_2]$ cation and the $[BAr_4^{F}]$ anion in the structure of $[1]^{+}[BAr_4^{F}]^{-}$ were found to sit on independent –4 positions. With the exception of the Fe centre, the cation was found to be disordered due to a mismatch between the lower symmetry of the cation (D_2) and the site symmetry of its location in the crystal (S_4), hence only the Fe atom (which sits directly on the latter) is strictly ordered. This disorder was modelled by using one complete unique 50% occupancy orientation for the depe ligand. The geometry of the unique orientation was optimised, the thermal parameters of the phosphorus atoms were restrained to be similar, and all of the non-hydrogen atoms were refined anisotropically. Two of the CH₃ groups of each depe ligand orientate themselves above and below the FeP₄ moiety, which might suggest weak C–H····Fe agostic or anagostic interactions. While the inherent crystallographic disorder precludes a definitive assignment, it should be noted that computational calculations suggest the absence of such features.

Both of the unique CF_3 groups of the $[BAr_4^F]$ anion were found to be disordered. In each case two orientations were identified for the fluorine atoms, of *ca.* 91:9 and 87:13% occupancy for the C27- and C28-based groups respectively. The geometries of each pair of orientations were optimised, the thermal parameters of adjacent atoms were restrained to be similar, and only the atoms of the major occupancy orientations were refined anisotropically (those of the minor occupancy orientations were refined as used to generate equivalent atoms:

1: y+1/2, -x+3/2, -z+3/2

2: -y+3/2, x-1/2, -z+3/2

3: -x+2, -y+1, z

Crystal data for [Fe(depe)₂]⁺[BAr^F₄]⁻ ([**1**]⁺[BAr^F₄]⁻): [C₂₀H₄₈FeP₄](C₃₂H₁₂BF₂₄), *M* = 1331.54, tetragonal, *I*-4 (no. 82), *a* = *b* = 13.2989(3), *c* = 17.4417(6) Å, *V* = 3084.75(18) Å³, *Z* = 2 (-4 symmetry), *D*_c = 1.434 g cm⁻³, μ (Mo-K α) = 0.454 mm⁻¹, *T* = 173 K, blue tabular plates, Agilent Xcalibur 3 E diffractometer; 3536 independent measured reflections (*R*_{int} = 0.0245), *F*² refinement,^[11,12] *R*₁(obs) = 0.0466, *wR*₂(all) = 0.1067, 2993 independent observed absorption-corrected reflections [|*F*_o| > 4σ (|*F*_o|), $2\theta_{max} = 58^{\circ}$], 266 parameters. The structure was refined as a two component inversion twin [Flack parameter *x* = +0.03(3)]. CCDC 1451414.

Formula	C52 H60 B F24 Fe P4		
Formula weight, M	1331.54		
Temperature	173 K		
Diffractometer, wavelength	OD Xcalibur 3, 0.71073 Å		
Crystal system, space group	Tetragonal, <i>I</i> -4 (no. 82)		
Unit cell dimensions	<i>a</i> = 13.2989(3) Å	$\alpha = 90^{\circ}$	
	b = 13.2989(3) Å	β = 90°	
	c = 17.4417(6) Å	γ = 90°	
Volume, Z	3084.75(18) Å ³		
Z	2 (–4 symmetry)		
Density (calculated), D _c	1.434 g cm^{-3}		
Absorption coefficient	1.110 mm ⁻¹		
F(000)	1358		
Crystal colour / morphology	Blue tabular plates		
Crystal size	0.44 x 0.22 x 0.07 mm ³		
θ range for data collection	3.064 to 29.134°		
Index ranges	-15<=h<=16, -17<=k<=17, -23<=l<=20		
Reflections collected / unique	11440 / 3536 [R(int) = 0.0245]		
Reflections observed [F>4 σ (F)]	2993		
Absorption correction	Analytical		
Max. and min. transmission	0.970 and 0.896		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3536 / 127 / 265		
Goodness-of-fit on F ²	1.039		
Final R indices [F>4σ(F)]	R1 = 0.0465, wR2 = 0.0990		
	R1+ = 0.0465, wR2+ = 0.0990		
	R1- = 0.0566, wR2- = 0	.1232	
R indices (all data)	R1 = 0.0595, wR2 = 0.1	060	
Absolute structure parameter	x+ = 0.029(8), x- = 0.971(8)		
Largest diff. peak, hole	0.294, -0.176 eÅ ⁻³		
Mean and maximum shift/error	0.000 and 0.002		

Figure S18. The crystal structure of $[1]^+[BAr_4^-]^-$ (50% probability ellipsoids). C atoms in grey. H atoms omitted for clarity.

8. References

- P. J. Hill, L. R. Doyle, A. D. Crawford, W. K. Myers and A. E. Ashley, *J. Am. Chem. Soc.*, 2016, **138**, 13521.
- [2] A. Hills, D. L. Hughes, M. Jimenez-Tenorio, G. J. Leigh, A. T. Rowley, J. F. Sawyer, L. A. Oro,
 G. J. Kulas, P. J. Vergamini and K. G. Coulton, *J. Chem. Soc. Dalt. Trans.*, 1993, 24, 3041.
- [3] J. Chatt and R. G. Hayter, J. Chem. Soc., 1961, 5507.
- [4] I. Chávez, A. Alvarez-Carena, E. Molins, A. Roig, W. Maniukiewicz, A. Arancibia, V. Arancibia, H. Brand and J. M. Manríquez, *J. Organomet. Chem.*, 2000, **601**, 126.
- [5] M. Brookhart, B. Grant and A. F. Volpe, *Organometallics*, 1992, **11**, 3920.
- [6] D. F. Evans, J. Chem. Soc., 1959, 2003.
- [7] E. M. Schubert, J. Chem. Educ., 1992, 69, 62.
- [8] R. Battino, T. R. Rettich and T. Tominaga, J. Phys. Chem. Ref. Data, 1984, 13, 563.
- [9] S. Stoll and A. Schweiger, J. Magn. Reson., 2006, **178**, 42.
- [10] G. M. Sheldrick, IUCr, H.-I. R., G. M., R. J., S. G. M., Acta Crystallogr. Sect. A Found. Adv.,

2015, **71**, 3.

- [11] SHELXTL v5.1, Bruker AXS, Madison, WI, 1998.
- [12] C. G. Balesdent, J. L. Crossland, D. T. Regan, C. T. López and D. R. Tyler, *Inorg. Chem.*, 2013, **52**, 14178.
- [13] ADF2014, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
- [14] S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200.
- [15] A. D. Becke, *Phys. Rev. A, Gen. Phys.*, 1988, **38**, 3098.