Electronic Supplementary Information

A mononuclear nonheme {FeNO}⁶ complex: Synthesis and structural and spectroscopic characterization

Seungwoo Hong,^{ab} James J. Yan,^c Deepika G. Karmalkar,^a Kyle D. Sutherlin,^c Jin Kim,^a Yong-Min Lee,^a Yire Goo,^a Pradip K. Mascharak,^{*d} Britt Hedman,^{*e} Keith O. Hodgson,^{*ce} Kenneth D. Karlin,^{*f} Edward I. Solomon,^{*ce} and Wonwoo Nam^{*a}

^a Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea

^b Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea

^c Department of Chemistry, Stanford University, Stanford, California 94305, USA

^d Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States

^e Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, California 94025, USA

^fDepartment of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States

* To whom correspondence should be addressed. E-mail: edward.solomon@stanford.edu, bhedman@stanford.edu, hodgsonk@stanford.edu, karlin@jhu.edu, wwnam@ewha.ac.kr

Electronic Supplementary Information S1

Table S1	S3
Table S2	S4
Table S3	S5
Table S4	S6
Table S5	S7
Table S6	S8
Table S7	S9
Fig. S1	S10
Fig. S2	S11
Fig. S3	S12
Fig. S4	S13
Fig. S5	S14
Fig. S6	S15
Fig. S7	S16
Fig. S8	S17
Fig. S9	S18
Fig. S10	S19
Fig. S11	S20
Fig. S12	S21

Table of Contents

	1	2
Empirical formula	C ₄₇ H ₅₂ FeN ₅ O ₆ P	C ₅₁ H ₉₄ FeN ₇ O ₆
Formula weight	869.75	957.18
Temperature (K)	120(2)	100(2)
Wavelength (Å)	0.71073	0.71073
Crystal system/space group	triclinic, P_1	monoclinic, $P_{21/c}$
Unit cell dimensions		
<i>a</i> (Å)	12.7848(8)	18.404(4)
<i>b</i> (Å)	13.0223(8)	18.521(4)
<i>c</i> (Å)	13.1304(9)	17.725(3)
α (°)	93.792(3)	90
β(°)	92.468(3)	102.745(3)
γ (°)	90.347(3)	90
Volume (Å ³)	2179.2(2)	5892.9(19)
Z	2	4
Calculated density (g/cm ⁻³)	1.326	1.079
Absorption coefficient (mm ⁻	0.467	0.303
Reflections collected	72796	10345
Independent reflections	10889	7108
Goodness-of-fit on F^2	1.027	1.063
$R [F^2 > 2 \operatorname{sigma}(F^2)]$	0.0348	0.0819
wR^2	0.0874	0.2515

Table S1 Crystallographic data and refinements for $1 \mbox{ and } 2$

1	2
1.8981(12)	1.899(3)
1.9013(12)	1.903(3)
1.8717(12)	1.889(4)
1.8664(12)	1.885(3)
1.6131(13)	-
-	2.068(4)
	1.169(6)
-	1.269(7)
103.87(6)	-
105.17(6)	-
104.31(6)	-
103.94(6)	-
-	104.10(14)
-	104.42(15)
-	103.13(15)
-	103.28(15)
172.05(14)	-
-	122.4(4)
-	116.1(5)
	$ \begin{array}{c} 1 \\ 1.8981(12) \\ 1.9013(12) \\ 1.8717(12) \\ 1.8664(12) \\ 1.6131(13) \\ - \\ - \\ 1.6131(13) \\ - \\ - \\ 103.87(6) \\ 105.17(6) \\ 104.31(6) \\ 103.94(6) \\ - \\ - \\ 103.94(6) \\ - \\ 172.05(14) \\ - \\ - \\ - \\ - \\ - \\ - \\ $

Table S2 Selected bond distances (Å) and angles (°) for 1 and 2 $\,$

	1	BP86 1	$[(PaPy_3)Fe(NO)]^{2+}$	BP86 [(PaPy ₃)Fe(NO)] ²⁺
δ (mm s ⁻¹)	-0.19	-0.23	-0.05	-0.01
$\Delta E_Q (\mathrm{mm \ s^{-1}})$	3.29	3.28	0.85	0.402

Table S3 Experimental and calculated Mössbauer parameters (mm s⁻¹) of 1 and [(PaPy₃)Fe(NO)]²⁺

	1	[Fe(TPP)(NO)](BF ₄) ^a	[Fe(OEP)NO](ClO ₄) ^b	$[(PaPy_3)Fe^{III}(NO)]^{2+c}$	[(^{NHC} L)FeNO(NO ₂)](OTf) ₂ ^d
Fe-NO bond length (Å)	1.62	1.64/1.665	1.644	1.68	1.625
N-O bond length (Å)	1.17	1.153/1.124	1.112	1.14	1.162
Fe-N-O bond angle (°)	172.6	178.3/177.4	176.9	173.1	176.6
Average Fe- N _{eq} bond length (Å)	1.89	1.986/1.990	1.994	1.98	2.008

Table S4 Comparison of crystal structure of **1** with crystal structures of known 5C ([Fe(TPP)NO](BF₄) and [Fe(OEP)(NO)](ClO₄) and 6C ([(PaPy₃)Fe^{III}(NO)]²⁺ and [(^{NHC}L)Fe(NO)(ONO)](OTf)₂) {FeNO}⁶ compounds.

^{*a*}reference 13f in the main text. ^{*b*}W. R. Scheidt, Y. J. Lee, K. Hatano, J. Am.Chem. Soc., 1984, **106**, 3191. ^{*c*}reference 14 in the main text. ^{*d*} reference 19 in the main text.

component	coordination/path	$R(Å)^a$	$\sigma^2(\text{\AA}^2)^b$	$\Delta E_0 (\mathrm{eV})$	F^{c}
1	1 Fe-NO	1.62	291		
2	4 Fe-N	1.89	276		
3	2 N-O MS	3.03	120		
4	8 Fe-C	2.93	695	-2.0	0.26
5	16 C-N MS	3.13	695		
6	8 C-O MS	4.11	851		
7	8 C-C MS	4.67	686		

Table S5 EXAFS Least Square Fitting Results of 1

^{*a*}The estimated standard deviations for the distances are in the order of ± 0.02 Å. ^{*b*}The σ^2 values are multiplied by 10⁵. ^{*c*}Error is given by $\Sigma[(\chi_{obsd} - \chi_{calcd})^2 k^6]/\Sigma[(\chi_{obsd})^2 k^6]$. The S₀² factor was set at 1.

Pre-Edge (in energy)	1	$[(PaPy_3)Fe(NO)]^{2+}$
7112.1 eV	16	-
7113.0 eV	-	9
7113.3 eV	11	-
Total	27(0.3)	9(0.6)

Table S6 Comparison of pre-edge intensity between 1 and $[(PaPy_3)Fe(NO)]^{2+}$

	Crystal 1	EXAFS 1	BP86 1	Crystal [(PaPy ₃)Fe ^{III} (NO)] ²⁺	$\frac{BP86}{[(PaPy_3)Fe^{III}(NO)]^{2+}}$
Fe-NO bond length (Å)	1.62	1.62	1.60	1.68	1.67
N-O bond length (Å)	1.17	-	1.18	1.14	1.16
Fe-N-O bond angle (°)	172.6	-	175.4	173.1	171.4
Average Fe- N _{eq} bond length (Å)	1.89	1.89	1.90	1.98	2.01

Table S7 Comparison of experimental and computational geometric parameters for 1 and $[(PaPy_3)Fe^{III}(NO)]^{2+}$ using the BP86 functional

Fig. S1 Schematic diagram showing the purification setup for NO.

Fig. S2 (a) UV-vis spectra of $[Fe^{III}(TAML)]^-$ (0.10 mM, black line) and $[(TAML)Fe^{IV}(NO)]^-$ (0.10 mM, blue line) under an Ar atmosphere in CH₃CN at -40 °C. (b) Solution IR spectra of **1**-¹⁴NO (black line) and **1**-¹⁵NO (red line) produced in the reaction of $[Fe^{III}(TAML)]^-$ (5.0 mM) and excess ¹⁴NO_(g) and ¹⁵NO_(g), respectively, under inert atmosphere in CH₃CN at -40 °C. Blue line shows the spectral difference between solution IR spectra of **1**-¹⁴NO and **1**-¹⁵NO. (c) X-band EPR spectra of **1** (1.0 mM) recorded at 5 K in CH₃CN.

Fig. S3 ¹H NMR spectrum of 1 (1.0 mM) in CD₃CN at -40 °C.

Fig. S4 CSI MS spectra of the reaction solution of **1** in negative mode recorded under inert atmosphere in CH₃CN at –40 °C. The peaks at m/z of 426.1 and 456.1 are assigned as [Fe(TAML)][–] (calculated m/zof 426.1) and [(TAML)Fe(¹⁴NO)][–] (calculated m/z of 456.1), respectively. Insets show the isotopic distribution patterns of [(TAML)Fe(¹⁴NO)][–] (left panel) and ¹⁵N-labeled [(TAML)Fe(¹⁵NO)][–] (right panel) when the reaction was performed with ¹⁴NO_(g) and ¹⁵NO_(g), respectively (see Experimental section for detailed synthetic procedure).

Fig. S5 (a) EXAFS and (b) Fourier Transform of **1** showing fit components 1 (black line), 2 (red line), 3 (blue line), 4 (green line), 5 (cyan line), 6 (gray line), 7 (pink line) (See Table S4).

Fig. S6 BP86 calculated molecular orbital energy diagram for **1** and $[(PaPy_3)Fe^{III}(NO)]^{2+}$. The lowest four unoccupied α molecular orbitals for both **1** and $[(PaPy_3)Fe^{III}(NO)]^{2+}$ are shown, along with their Mulliken population analysis. Since the compounds have unpolarized electronic structures, the β orbitals are the same as the α orbitals, and have been omitted for clarity. The primarily dx²-y² orbitals (LUMO+3 for **1**, LUMO+2 for $[(PaPy_3)Fe^{III}(NO)]^{2+}$) are set to 0 eV to show relative orbital energies. As seen from the calculations, in going from the 5-coordinate **1** to the 6-coordinate $[(PaPy_3)Fe^{III}(NO)]^{2+}$, the dz² orbital moves up in energy from the LUMO to the LUMO+3.

Fig. S7 CSI MS spectrum of isolated **2** in negative mode prepared in the reaction of $[Fe^{III}(TAML)]^-$ (0.10 mM) with NaNO₂ (5.0 equiv) under an Ar atmosphere in CH₃CN at -40 °C. The peaks at m/z = 426.1 and 495.0 are assigned to $[Fe^{III}(TAML)]^-$ (calculated m/z = 426.1) and $\{Na[(TAML)Fe(NO_2)]\}^-$ (calculated m/z of 495.1), respectively. Insets show the isotopic distribution patterns of the peaks at m/z of 495.0 for **2-**¹⁴NO₂ (left panel) and m/z of 496.0 for **2-**¹⁵NO₂ (right panel), which were generated by Na¹⁴NO₂ and Na¹⁵NO₂, respectively.

Fig. S8 UV-vis spectral changes of **2** (red line) by increasing temperature from -40 (red line) to 20 °C (black line) in CH₃CN. Inset shows the absorbance changes observed at 365 nm (red dot) and 400 nm (black dot).

Fig. S9 UV-vis spectra of **2** (red line) and **1** (blue line) produced by the nitrite activation reaction of **2** upon addition of 2.4 equiv of triflic acid (CF₃SO₃H) to an CH₃CN solution containing **2** and 1.2 equiv of ferrocene under an Ar atmosphere at -40 °C.

Fig. S10 UV-vis spectra obtained upon addition of $[Fe^{III}(TAML)]^-$ (red line) into a CH₃CN solution (blue line) containng [1.2 equiv of NaNO₂, 5.0 equiv of 15-crown ether (15C5), and 1.2 equiv of ferrocene] under an Ar atmosphere at -40 °C.

Fig. S11 UV-vis spectra obtained upon addition of $[Fe^{III}(TAML)]^-$ (red line) into a 2.5 h photoirradiated acetone solution (black line) containing [1.2 equiv of NaNO₂, and 5.0 equiv of 15C5] under an Ar atmosphere at -40 °C. Inset shows the time course recorded during photolysis of an Ar-saturated acetone solution containing [1.2 equiv of NaNO₂, and 5.0 equiv of 15C5] and after addition $[Fe^{III}(TAML)]^-$ complex.

Fig. S12 (a) X-band EPR spectrum of the complete reaction solution obtained in the nitrite activation reaction of **2** (1.0 mM) under photoirradiation in acetone at -40 °C. Spectrum was recorded at 5 K. (b) CSI MS spectrum of **1** in negative mode obtained in the nitrite activation reaction of **2** (1.0 mM) under photoirradiation in acetone at -40 °C. The peaks at m/z of 426.1 and 456.1 are assigned to [Fe(TAML)]⁻ (calculated m/z of 426.1) and [(TAML)Fe(NO)]⁻ (calculated m/z of 456.1), respectively. Inset shows the isotopic distribution patterns of the peak at m/z of 456.1.