Combining traditional 2D and modern physical organic-derived descriptors to predict enhanced enantioselectivity for the key aza-Michael conjugate addition in the synthesis of Prevymis[™] (letermovir)

Toni T. Metsänen,^{a,†} Katrina W. Lexa,^{b,†,*} Celine B. Santiago,^a Cheol K. Chung,^c Yingju Xu,^c Zhijian Liu,^c Guy R. Humphrey,^c Rebecca T. Ruck,^c Edward C. Sherer^b and Matthew S. Sigman^{a,*}

^aDepartment of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States

^bModeling and Informatics, MRL, Merck Sharpe & Dohme, Rahway, New Jersey 07065, United States

^cProcess Research and Development, MRL, Merck Sharpe & Dohme, Rahway, New Jersey 07065, United States

Table of Contents

1. General Considerations	S2
2. General Procedures	S3
3. Preparation of the bistriflimide catalysts 2	S5
4. NMR Spectra	S28
5. Modeling	S70
6. Optimized geometries	S81
7. References and footnotes	S117

1. General Considerations

All reagents were purchased from commercial suppliers and used without further purification. Dichloromethane, tetrahydrofuran (THF), diethyl ether and acetonitrile were passed through a column of activated alumina immediately prior to use or anhydrous solvents were used from Sure/Seal[™] bottles without further drying or purification. NMR spectra were recorded in acetone-d₆, CDCl₃, DMSO-d₆, or CD₃OD on Varian VXR 500 or Bruker Avance 500 spectrometers.¹H NMR chemical shifts are reported in ppm and referenced to the acetone-d₅ signal at 2.05 ppm, CHCl₃ signal at 7.26 ppm, DMSO-d₅ signal at 2.50 ppm, or CHD₂OD signal at 3.31 ppm. ¹³C NMR spectra reported in ppm referenced to the acetone-d₆ signal at 29.84 ppm, CDCl₃ signal at 77.16 ppm, DMSO-d₆ signal at 39.52 ppm, or CD₃OD signal at 49.00 ppm. The abbreviations s, br s, d, t, g, and m stand for the resonance multiplicities singlet, broad singlet, doublet, triplet, quartet, and multiplet, respectively. Thin-layer chromatography was performed with EMD silica gel 60 F254 plates eluting with solvents indicated, visualized by a 254 nm UV lamp. Flash chromatography was performed using EM reagent silica 60 (230-400 mesh). IR spectra were recorded using a Thermo Nicolet FT-IR. HRMS data were obtained on a Waters LCP Premier XE instrument or Micromass QTOF Ultima API US mass spectrometer by ESI/TOF. Optical rotations were measured on a Perkin Elmer Model 343 Polarimeter or Autopol V Plus Automatic Polarimeter from Rudolph Research Analytical at 589 nm with a micro cell with a 1 dm path length: concentrations are reported in g/100 mL. Enantiomeric excess was measured using Hewlett Packard 1100 Series HPLC; Column: Chiralpak IC-3 column (150 × 4.6 mm, 3 µm fused-core particle size); Eluent: A) 0.1% ag. Na₂B₄O₇ containing 0.04% TFA, B) MeCN; Isocratic at 72% B over 6 or 12 min; Flow rate: 1.0 mL/min; Sample injection volume: 5 µL; Column temperature: 35 °C; UV detection: 230 nm.

Catalysts 2c, 2e, 2f, 2i, 2l, 2q, and 2aa were prepared according to literature procedures.¹

¹ C. K. Chung, Z. Liu, K. W. Lexa, T. Andreani, Y. Xu, D. A. DiRocco, G. R. Humphrey and R. T. Ruck, *J. Am. Chem. Soc.* 2017, **139**, 10637.

2. General Procedures

2.1 General Procedure 1: Stereospecific Synthesis of C₂ Symmetric Diamines SI5

According to a literature procedure² motherdiamine (**SI1**, 1.0 equiv) was dissolved in DMSO (0.2 M) and aldehyde (**SI2**, 2.4 equiv) was added. The resulting mixture was stirred at room temperature overnight. The solution was diluted with water and extracted with Et₂O.³ The combined organic phase was back extracted with water, brine, and dried using Na₂SO₄. Concentration under reduced pressure afforded the crude diimine **SI3**. The diimine **SI3** was dissolved in THF (0.1 M) and 38% aqueous HCI (6 equiv) was added. The solution was stirred for 2–16 h at room temperature until the desired salt precipitated.⁴ The salt was filtered and washed with THF to give crude diamine salt **SI4**. The salt **SI4** was suspended in THF (0.1 M) and 2 M aqueous NaOH (20 equiv) was added. The mixture was stirred for 2 h to obtain a clear solution. The diamine was extracted with EtOAc, washed with brine, and dried using Na₂SO₄. The crude product was concentrated under reduced pressure and purified by flash chromatography on silica gel (DCM:MeOH:Et₃N 96:2:2 to 90:5:5) to give diamine **SI5**.

² H. Kim, Y. Nguyen, C. P.-H. Yen, L. Chagal, A. J. Lough, B. M. Kim and J. Chin, *J. Am. Chem. Soc.* 2008, **130**, 12184.

³ Typically, a small amount of EtOAc was added to dissolve the product. In this case, the EtOAc:Et₂O ratio should not exceed ca. 20:80 to avoid DMSO extraction.

⁴ If no precipitation occurs overnight, the solvent can be exchanged to Et₂O or MeCN.

2.2 General Procedure 2: Triflation Diamines

According to a literature procedure⁵ diamine **SI5** (1.0 equiv), DMAP (0.02 equiv), and triethylamine⁶ (3.0 equiv) were dissolved in DCM (0.2 M). The resulting clear solution was cooled to -78 °C (dry ice/acetone). After 30 min, triflic anhydride (2.5 equiv) was added dropwise over 5 min. The cooling bath was removed and the mixture was allowed to warm to room temperature over 30 min. The reaction was poured into 5% NaHCO₃ aqueous solution, the phases were separated, and the aqueous phase was extracted with DCM. Combined organic phases were washed with 1 M HCl and brine, dried using Na₂SO₄, and concentrated under reduced pressure to give crude product. Purification by flash chromatography on silica gel (hexanes:EtOAc:acetone 95:4:1 to 80:16:4 or hexanes:EtOAc 100:0 to 50:50) gave desired bistriflimides **2**.

2.3 General Procedure 3: Asymmetric guanidine aza-conjugate addition reaction

According to a literature procedure¹ the guanidine substrate **1** (10 mg, 17 μ mol, 1.0 equiv) was added at room temperature to a screw-capped vial containing the catalyst (5 mol %). Toluene (0.1 mL) was then added. The vial was sealed with a cap containing a PTFE septum and heated up to 40 °C for 24 hours.

HPLC retention times: Enantiomer A: 4.4 min; Enantiomer B: 5.4 min.

⁵ S. Pikul and E. J. Corey, *Org. Synth.* 1993, **71**, 30.

⁶ 2,6-lutidine can be used to replace triethylamine as base.

3. Preparation of the bistriflimide catalysts 2

2,4-F₂-C₆H₃ bistriflimide 2a

Prepared according to General Procedure 2.

Yield: 69%

¹**H NMR** (500 MHz, CD₃OD) δ = 7.45 (dd, *J* = 14.8, 8.4 Hz, 2H), 6.92 (td, *J* = 8.5, 1.5 Hz, 2H), 6.75 (m, 2H), 5.13 (s, 2H) ppm, NH protons not detected; ¹³**C NMR** (126 MHz, CD₃OD) δ = 164.4 (dd, *J* = 250.7, 12.6 Hz), 160.9 (dd, *J* = 250.1, 12.0 Hz), 131.0 (dd, *J* = 9.5, 4.4 Hz), 122.0 (dd, *J* = 13.9, 3.8 Hz), 120.9 (q, *J* = 320.9 Hz), 112.9 (dd, *J* = 21.4, 3.8 Hz), 104.5 (t, *J* = 26.5 Hz), 57.0 ppm.

Analytical data were found to match the literature data.⁷

2-F-C₆H₄ bistriflimide 2b

Prepared according to General Procedure 2.

Yield: 46%

¹**H NMR** (500 MHz, CD₃OD) δ = 7.41 (t, *J* = 7.3 Hz, 2H), 7.20 (dd, *J* = 13.1, 6.6 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 2H), 6.83 (t, *J* = 9.3 Hz, 2H), 5.21 (s, 2H) ppm, NH protons not detected;

⁷ C. K. Chung, G. R. Humphrey, Z. Liu, M. Mclaughlin, Y. Xu and Y. Yu, WO2017091453 A1, June 1, 2017.

¹³**C NMR** (126 MHz, CD₃OD) δ = 160.6 (d, *J* = 247.0 Hz), 131.6 (d, *J* = 8.8 Hz), 129.6, 125.7, 125.5 (d, *J* = 3.8 Hz), 120.9 (q, *J* = 320.9 Hz), 116.1 (d, *J* = 22.7 Hz), 57.5 ppm.

4-CN-C₆H₄ bistriflimide 2d

Prepared according to General Procedure 2.

Yield: 79%

¹**H NMR** (500 MHz, CD₃OD) δ = 7.59 (d, *J* =8.4 Hz, 4H), 7.34 (d, *J* = 8.3 Hz, 4H), 4.86 (s, 2H) ppm, NH protons not detected; ¹³**C NMR** (126 MHz, CD₃OD) δ = 143.4, 133.6, 129.7, 120.8 (q, *J* = 320.5 Hz), 119.0, 113.5, 64.4 ppm.

3-CF₃-C₆H₄ bistriflimide 2g

Prepared according to General Procedure 2.

Yield: 34%

¹**H NMR** (500 MHz, CD₃OD) δ = 7.50–7.47 (m, 2H), 7.43–7.40 (m, 4H), 7.37–7.35 (m, 2H), 4.85 (s, 2H) ppm, NH protons not detected; ¹³**C NMR** (126 MHz, CD₃OD) δ = 139.8, 132.2, 132.0 (q, J = 32.5 Hz), 130.6 (s), 126.1 (q, J = 3.6 Hz), 125.6 (q, J = 3.7 Hz), 125.1 (q, J = 272.2 Hz), 120.9 (q, J = 320.5 Hz), 64.8 ppm.

4-CI-C₆H₄ bistriflimide 2h

Prepared according to General Procedure 2.

Yield: 32%

¹**H NMR** (500 MHz, DMSO-d₆) δ = 10.35 (s, 2H), 7.29 (d, J = 8.6 Hz, 4H), 7.22 (d, J = 8.3 Hz, 4H), 4.7 (s, 2H) ppm; ¹³**C NMR** (126 MHz, DMSO-d₆) δ = 136.1, 132.7, 129.3, 128.3, 119.0 (q, J = 321.6 Hz), 62.65 ppm.

2-Br-C₆H₄ bistriflimide 2j

Prepared according to General Procedure 2.

Yield: 70%

¹H NMR (500 MHz, CD₃OD) δ = 7.78 (d, J = 6.1 Hz, 2H), 7.33–7.29 (m, 4H), 7.06 (t, J = 7.6 Hz, 2H), 5.49 (s, 2H) ppm, NH protons not detected; ¹³C NMR (126 MHz, CD₃OD) δ = 137.9, 133.6, 131.0, 130.9, 128.7, 124.4, 120.9 (q, J = 321.2 Hz), 62.8 ppm.

2-I-C₆H₄ bistriflimide 2k

Prepared according to General Procedure 2.

Yield: 62%

¹H NMR (500 MHz, CD₃OD) δ = 7.86 (d, *J* = 7.7. Hz, 2H), 7.59 (d, *J* = 7.9 Hz, 2H), 7.36 (t, 7.5 Hz, 2H), 6.89 (t, *J* = 7.6 Hz, 2H), 5.35 (s, 2H) ppm, NH protons not detected; ¹³C NMR (126 MHz, CD₃OD) δ = 141.0, 140.8, 131.2, 131.0, 129.7, 120.9 (q, *J* = 321.1 Hz), 101.0, 67.7 ppm.

2,4-(CF₃)₂-C₆H₃ bistriflimide 2m

Prepared according to General Procedure 2.

Yield: 32%

¹**H NMR** (500 MHz, CD₃OD) δ = 8.10–8.03 (m, 4H), 7.90 (s, 2H), 5.58 (s, 2H) ppm, NH protons not detected; ¹³**C NMR** (126 MHz, CD₃OD) δ = 140.4, 133.3, 132.7 (q, *J* = 33.6 Hz), 130.6 (q, *J* = 2.5 Hz), 129.9 (q, *J* = 31.5 Hz), 124.43 (q, *J* = 272.2 Hz), 124.37 (q, *J* = 274.3 Hz), 124.7, 120.7 (q, *J* = 320.9 Hz), 59.7 ppm.

3-NO₂-C₆H₄ bistriflimide 2n

Prepared according to General Procedure 2.

Yield: 27%

¹**H NMR** (500 MHz, CD₃OD) δ = 8.17 (s, 2H), 8.10 (dd, J = 8.2, 1.3 Hz, 2H), 7.59 (d, J = 7.7 Hz, 2H), 7.50 (t, J = 8.0 Hz, 2H), 4.99 (s, 2H) ppm, NH protons not detected; ¹³**C NMR** (126 MHz, CD₃OD) δ = 149.6, 140.9, 135.0, 131.1, 124.3, 123.5, 121.0 (q, J = 320.7 Hz), 64.4 ppm.

2-CF₃-C₆H₄ bistriflimide 20

Prepared according to General Procedure 2.

Yield: 34%

¹H NMR (500 MHz, CD₃OD) δ = 7.80 (d, *J* = 7.2 Hz, 2H), 7.67 (t, *J* = 7.5 Hz, 2H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 5.54 (s, 2H) ppm, NH protons not detected; ¹³C NMR (126 MHz, CD₃OD) δ = 136.3, 133.5, 131.6, 130.1, 128.8 (q, *J* = 30.1 Hz), 127.6 (q, *J* = 4.9 Hz), 125.2 (q, *J* = 273.7 Hz), 120.7 (q, *J* = 320.6 Hz), 60.1 ppm.

2-Me-C₆H₄ bistriflimide 2p

Prepared according to General Procedure 2.

Yield: 55%

¹H NMR (500 MHz, DMSO-d₆) δ = 10.49 (br s, 2H), 7.69 (d, J = 6.4 Hz, 2H), 7.15 (t, J = 7.3 Hz, 2H), 7.02 (t, J = 7.4 Hz, 2H), 6.83 (d, J = 7.5 Hz, 2H), 5.09 (s, 2H), 1.91 (s, 6H) ppm; ¹³C NMR (126 MHz, DMSO-d₆) δ = 136.1, 134.7, 129.7, 127.9, 127.1, 125.8, 119.1 (q, J = 322.4 Hz), 58.2, 18.6 ppm.

2-furyl bistriflimide 2r

Prepared according to General Procedure 2.

Yield: 44%

¹**H NMR** (500 MHz, CD₃OD) δ = 7.41 (s, 2H), 6.25 (s, 2H), 6.15 (s, 2H), 4.95 (s, 2H) ppm, NH protons not detected; ¹³**C NMR** (126 MHz, CD₃OD) δ = 150.5, 144.1, 121.1 (q, *J* = 320.6 Hz), 111.3, 109.7, 56.9 ppm.

3,5-(CF₃)₂-C₆H₃ bistriflimide 2s

Prepared according to General Procedure 2.

Yield: 78%

¹H NMR (500 MHz, CD₃OD) δ = 7.82 (s, 6H), 5.03 (s, 2H) ppm, NH protons not detected; ¹³C NMR (126 MHz, CD₃OD) δ = 142.0, 133.3 (q, J = 34.0 Hz), 129.2 (q, J = 3.8 Hz), 124.3 (q, J = 272.2 Hz), 120.9 (q, J = 320.9 Hz), 123.2, 64.2 ppm.

3,5-(OMe)₂-C₆H₃ bistriflimide 2t

Prepared according to General Procedure 2.

Yield: 42%

¹**H NMR** (500 MHz, CDCl₃) δ = 6.28 (s, 6H), 4.58 (s, 2H), 3.66 (s, 12H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 162.2, 140.6, 121.0 (q, J = 320.8 Hz), 106.8, 101.2, 65.5, 55.8 ppm.

2-OAc-C₆H₄ bistriflimide 2u

Prepared according to General Procedure 2.

Yield: 72%

¹**H NMR** (500 MHz, CD₃OD) δ = 7.52–7.49 (m, 2H), 7.21–7.16 (m, 4H), 6.95 (d, *J* = 7.3 Hz, 2H), 5.27 (s, 2H), 2.28 (s, 6H) ppm, NH protons not detected; ¹³**C NMR** (126 MHz, CD₃OD) δ = 169.4, 148.5, 130.2, 129.0, 126.7, 123.5, 120.9 (q, *J* = 320.7 Hz), 116.3, 57.2, 21.1 ppm.

2-Ph-C₆H₄ bistriflimide 2v

Prepared according to General Procedure 2.

Yield: 29%

¹H NMR (500 MHz, DMSO-d₆) δ = 10.48 (s, 2H), 7.32–7.14 (m, 10H), 7.03 (d, *J* = 7.6 Hz, 2H), 6.91 (t, *J* = 7.5 Hz, 2H), 6.82 (d, *J* = 7.5 Hz, 2H), 6.68–6.58 (m, 2H), 5.13 (s, 2H) ppm; ¹³C NMR (126 MHz, DMSO-d₆) δ = 140.6, 139.3, 134.1, 129.7, 128.9, 127.9, 127.8, 127.5, 126.6, 119.1 (q, *J* = 322.7 Hz), 58.4 ppm.

2-OH-C₆H₄ bistriflimide 2w

Prepared according to General Procedure 2.

Yield: 2% (isolated as a byproduct during preparation of catalyst 2c)

¹H NMR (500 MHz, CD₃OD) δ = 6.98 (t, *J* = 7.5 Hz, 2H), 6.95–6.91 (m, 2H), 6.68 (d, *J* = 8.0 Hz, 2H), 6.60–6.56 (m, 2H), 5.25 (s, 2H) ppm, NH protons not detected; ¹³C NMR (126 MHz, CD₃OD) δ = 155.7, 130.3, 124.74, 124.68, 120.9 (q, *J* = 320.9 Hz), 120.2, 116.2, 61.6 ppm.

2,4-(OMe)₂-C₆H₃ bistriflimide 2x

Prepared according to General Procedure 2.

Yield: 46%

¹H NMR (500 MHz, CDCl₃) δ = 6.48–6.42 (m, 2H), 6.42 (s, 2H), 6.39–6.33 (m, 2H), 6.16 (d, J = 7.6 Hz, 2H), 4.87 (s, 2H), 3.92 (s, 6H), 3.73 (s, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 161.3, 157.5, 130.9, 119.6 (q, J = 321.1 Hz), 116.8, 104.7, 99.2, 61.2, 55.8, 55.5 ppm.

2-OMe-C₆H₄ bistriflimide 2y

Prepared according to General Procedure 2.

Yield: 29%

¹**H NMR** (500 MHz, CD₃OD) δ = 7.16–7.12 (m, 4H), 6.78–6.74 (m, 4H), 4.84 (s, 2H), 3.71 (s, 6H) ppm, NH protons not detected; ¹³**C NMR** (126 MHz, CD₃OD) δ = 157.7, 130.5, 129.5, 126.7, 121.1, 121.0 (q, *J* = 320.8 Hz), 55.8 ppm.

C₆F₅ bistriflimide 2z

Prepared according to General Procedure 2.

Yield: 27%

¹**H NMR** (500 MHz, CD₃OD) δ = 5.59 (s, 2H) ppm, NH protons not detected; ¹³**C NMR** (126 MHz, CD₃OD) δ = 146.0 (dm, *J* = 249.8 Hz), 143.3 (dtt, *J* = 256.5, 13.2, 5.1 Hz), 139.1 (dt, *J* = 252.6, 12.9 Hz), 120.9 (q, *J* = 320.4 Hz), 111.81 (t, *J* = 16.4 Hz), 52.6 ppm.

2-F-4-Br-C₆H₃ bistriflimide 2ab

Prepared according to General Procedure 2.

Yield: 20%

[α]²⁰_D = -42.3° (*c* = 1.0, DCM); ¹H NMR (500 MHz, DMSO-d₆) δ = 10.76 (br s, 2H), 7.60 (t, J = 8.1 Hz, 2H), 7.46 (dd. J = 8.4, 1.7 Hz, 2H), 7.35 (dd, J = 9.6, 1.8 Hz, 2H), 5.08 (s, 2H) ppm; ¹³C NMR (126 MHz, DMSO-d₆) δ = 158.2 (d, J = 250.8 Hz), 129.9, 128.2 (d, J = 3.0 Hz), 123.4 (d, J = 13.5 Hz), 122.4 (d, J = 9.8 Hz), 119.1 (q, J = 321.8 Hz), 118.3 (d, J = 25.9 Hz), 54.4 ppm; HRMS (ESI-TOF) *m*/*z* calculated for [C₁₆H₉Br₂F₈N₂O₄S₂] (M–H)⁺: 666.8243, found 666.8256.

2-F-4-CI-C₆H₃ bistriflimide 2ac

Prepared according to General Procedure 2 from diamine (R,R)-**SI5ac** (461 mg, 1.45 mmol, 1.00 equiv). Purification by flash chromatography on silica gel (hexanes:EtOAc:acetone 95:4:1 to 80:16:4) gave desired product as a white solid (215 mg, 0.369 mmol, 25%).

R_f = 0.29 (80:20 hexanes:EtOAc); **m.p.** (DCM): 141 °C; $[α]^{20}D = +27°$ (c = 0.1, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.08 (dd, J = 10.7, 1.8 Hz, 2H), 7.03 (dd, J = 8.3, 1.8 Hz, 2H), 6.94 (t, J = 8.0 Hz, 2H), 6.09 (br s, 2H), 5.00 (s, 2H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 160.0 (d, J = 249.8 Hz), 136.9 (d, J = 10.9 Hz), 130.0 (d, J = 3.1 Hz), 125.8 (d, J = 3.1 Hz), 121.3 (d, J = 13.2 Hz), 119.4 (q, J = 320.5 Hz), 117.3 (d, J = 25.1 Hz), 58.6 ppm; **IR** (neat): 3853, 2362, 2337, 1653, 1559, 1506, 1457, 1232, 1201, 1146, 668, 604 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₁₆H₁₀Cl₂F₈N₂O₄S₂Na] (M+Na)⁺: 602.9229, found 602.9237.

2-F-4-CF₃-C₆H₃ diamine SI5ad

Prepared according to General Procedure 1 from (R,R)-mother diamine (R,R)-**Sl1** (500 mg, 2.0 mmol, 1.0 equiv) and 2-fluoro-4-(trifluoromethyl)benzaldehyde (**Sl2ad**, 920 mg, 4.8 mmol, 2.4 equiv). Purification by flash chromatography on silica gel (DCM:MeOH:Et₃N 96:2:2 to 90:5:5) gave desired product as a white solid (405 mg, 1.05 mmol, 53%).

R_f = 0.20 (90:10 DCM:MeOH); **m.p.** (DCM): 69–70 °C; $[α]^{20}D = -49^{\circ}$ (c = 0.06, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.55 (t, J = 7.25 Hz, 2H), 7.37 (dd, J = 8.1, 1.7, 2H), 7.23 (dd, J = 10.3, 2.1 Hz, 2H), 4.51 (s, 2H), 1.82 (br s, 4H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 159.9 (d, J = 246.3 Hz), 134.3 (d, J = 12.5 Hz), 131.5 (dq, J = 33.1, 8.1 Hz), 129.3 (dq, J =5.0, 1.7 Hz), 123.4 (q, J = 270.6 Hz), 121.2 (m), 113.1 (dq, J = 25.6, 3.8 Hz), 54.3 ppm; **IR** (neat): 1586, 1509, 1429, 1331, 1124, 909 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₁₆H₁₃F₈N₂] (M+H)⁺: 385.0951, found 385.0954.

2-F-4-CF₃-C₆H₃ bistriflimide 2ad

Prepared according to General Procedure 2 from diamine (S,S)-**SI5ad** (190 mg, 0.50 mmol, 1.0 equiv). Purification by flash chromatography on silica gel (hexanes:EtOAc:acetone 95:4:1 to 80:16:4) gave desired product as a white solid (260 mg, 0.40 mmol, 80%).

R_f = 0.05 (80:20 hexanes:EtOAc); **m.p.** (DCM): 138–143 °C; $[α]^{20}D = -9°$ (c = 0.19, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.35–7.32 (m, 4H), 7.16 (t, J = 7.6 Hz, 2H), 6.25 (br s, 2H), 5.10 (s, 2H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 159.5 (d, J = 147.4 Hz), 134.4 (qd, J = 33.8, 8.8 Hz), 130.2 (d, J = 1.2 Hz), 126.5 (d, J = 12.5 Hz), 122.6 (qd, J = 271.3, 2.5 Hz), 119.4 (q, J = 318.8 Hz), 122.4 (q, J = 3.8 Hz), 114.2 (dq, J = 25.0, 3.8 Hz), 58.9 ppm; **IR** (neat): 3291, 1457, 1436, 1372, 1331, 1215, 1172, 1139, 1068, 944 cm⁻¹; **HRMS** (ESI-TOF) *m*/*z* calculated for [C₁₈H₁₀F₁₄N₂O₄S₂Na] (M+Na)⁺: 670.9756, found 670.9763.

2,4-Cl₂-C₆H₃ diamine SI5ae

Prepared according to General Procedure 1 from (R,R)-mother diamine (R,R)-**Sl1** (500 mg, 2.0 mmol, 1.0 equiv) and 2,4-dichlorobenzaldehyde (**Sl2ae**, 840 mg, 4.8 mmol, 2.4 equiv). Purification by flash chromatography on silica gel (DCM:MeOH:Et₃N 96:2:2 to 90:5:5) gave desired product as a white solid (488 mg, 1.40 mmol, 70%).

R_f = 0.26 (90:10 DCM:MeOH); **m.p.** (DCM): 88–89 °C; **[α]**²⁰_D = -4° (c = 0.18, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.51 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 2.2 Hz, 2H), 7.23 (dd, J = 8.4, 2.2 Hz, 2H), 4.64 (s, 2H), 1.62 (br s, 4H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 139.2, 138.8, 133.7, 129.8, 129.6, 127.4, 55.1 ppm; **IR** (neat): 3383, 3090, 2899 1586, 1559, 1469, 1383, 1102, 1045, 866 cm⁻¹; **HRMS** (ESI-TOF) m/z calculated for [C₁₄H₁₃Cl₄N₂] (M+H)⁺: 348.9833, found 348.9838.

2,4-Cl₂-C₆H₃ bistriflimide 2ae

Prepared according to General Procedure 2 from diamine (S,S)-**SI5ae** (180 mg, 0.50 mmol, 1.0 equiv). Purification by flash chromatography on silica gel (hexanes:EtOAc:acetone 95:4:1 to 80:16:4) gave desired product as a white solid (213 mg, 0.35 mmol, 69%).

R_f = 0.33 (80:20 hexanes:EtOAc); **m.p.** (DCM): 90–95 °C; $[α]^{20}D = -54°$ (*c* = 0.18, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.38 (d, *J* = 2.2 Hz, 2H), 7.04 (dd, *J* = 8.2, 2.2 Hz, 2H), 6.85

(d, J = 8.3 Hz, 2H), 6.33 (s, 2H), 5.43 (s, 2H) ppm; ¹³**C** NMR (126 MHz, CDCI₃) $\delta = 136.7$, 132.5, 131.8, 131.3, 130.9, 128.4, 119.3 (q, J = 320.6 Hz), 61.1 ppm; **IR** (neat): 3295, 1591, 1564, 1451, 1371, 1196, 1140, 939, 739 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₁₆H₁₀Cl₄F₆N₂O₄S₂Na] (M+Na)⁺: 634.8638, found 634.8644.

4-CF₃-C₆H₄ bistriflimide 2af

Prepared according to General Procedure 2 from diamine (S,S)-**SI5af** (367 mg, 1.05 mmol, 1.00 equiv). Purification by flash chromatography on silica gel (hexanes:EtOAc:acetone 95:4:1 to 80:16:4) gave desired product as a white solid (87.9 mg, 0.144 mmol, 14%).

R_f = 0.33 (80:20 hexanes:EtOAc); **m.p.** (DCM): 136 °C; $[α]^{20}D = -16°$ (c = 0.1, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.57 (d, J = 7.8 Hz, 4H), 6.95 (d, J = 7.9 Hz, 4H), 4.82 (s, 2H), 1.26 (s, 2H) ppm; ¹³**C NMR** (126 MHz, CD₃OD) δ = 142.7, 131.6 (q, J = 32.5 Hz), 129.5, 126.6 (q, J = 5.6 Hz), 125.3 (q, J = 270.0 Hz), 120.9 (q, J = 318.1 Hz), 64.6 ppm; **IR** (neat): 3296, 2361, 2337, 1653, 1559, 1457, 1370, 1327, 1207, 1169, 1140, 1115, 1070 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₁₈H₁₂F₁₂N₂O₄S₂Na] (M+Na)⁺: 634.9958, found 634.9964.

4-F-C₆H₄ diamine SI5ag

Prepared according to General Procedure 1 from (R,R)-mother diamine (R,R)-**Sl1** (730 mg, 3.0 mmol, 1.0 equiv) and 4-fluorobenzaldehyde (**Sl2ag**, 890 mg, 7.2 mmol, 2.4 equiv). Purification by flash chromatography on silica gel (DCM:MeOH:Et₃N 96:2:2 to 90:5:5) gave desired product as viscous oil (543 mg, 1.41 mmol, 58%).

R_f = 0.14 (90:10 DCM:MeOH); [α]²⁰_D = -48° (*c* = 0.26, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.16 (dd, *J* = 8.6, 5.5 Hz, 4H), 6.93 (t, *J* = 8.7 Hz, 4H), 4.00 (s, 4H), 1.61 (s, 2H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 162.1 (d, *J* = 245.0 Hz), 139.2 (d, *J* = 3.8 Hz), 128.7 (d, *J* = 8.8 Hz), 115.2 (d, *J* = 21.3 Hz), 61.9 (d, *J* = 1.3 Hz) ppm; **IR** (neat): 3373, 2916, 2850, 1602, 1499, 1218, 1156, 830 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₁₄H₁₅F₂N₂] (M+H)⁺: 249.1203, found 249.1200.

4-F-C₆H₄ bistriflimide 2ag

Prepared according to General Procedure 2 from diamine (S,S)-**SI5ag** (110 mg, 0.45 mmol, 1.0 equiv). Purification by flash chromatography on silica gel (hexanes:EtOAc:acetone 95:4:1 to 80:16:4) gave desired product as a white solid (160 mg, 0.31 mmol, 70%).

R_f = 0.15 (80:20 hexanes:EtOAc); **m.p.** (DCM): 209 °C; $[α]^{20}D = -15°$ (c = 0.19, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.01–6.95 (m, 8H), 6.06 (br s, 2H), 4.73 (s, 2H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 164.0 (d, J = 248.8 Hz), 131.3 (d, J = 2.5 Hz), 129.0 (d, J = 8.8 Hz), 119.4 (q, J = 318.8 Hz), 116.6 (d, J = 22.5 Hz), 63.4 ppm; **IR** (neat): 3301, 2361, 2339, 1609, 1513, 1369, 1229, 1146, 734 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₁₆H₁₂F₈N₂O₄S₂Na] (M+Na)⁺: 535.0008, found 535.0005.

Analytical data were found to match the literature data.¹

3-F-C₆H₄ diamine SI5ah

Prepared according to General Procedure 1 from (R,R)-mother diamine (R,R)-**Sl1** (500 mg, 2.0 mmol, 1.0 equiv) and 3-fluorobenzaldehyde (**Sl2ah**, 600 mg, 4.8 mmol, 2.4 equiv). Purification by flash chromatography on silica gel (DCM:MeOH:Et₃N 96:2:2 to 90:5:5) gave desired product as a viscous oil (371 mg, 1.50 mmol, 75%).

R_f = 0.17 (90:10 DCM:MeOH); **[α]**²⁰_D = -38° (*c* = 0.14, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.25–7.21 (m, 2H), 7.06–6.97 (m, 4H), 6.95–6.86 (m, 2H), 4.07 (s, 2H), 1.89 (s, 4H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 163.1 (d, *J* = 245.0 Hz), 146.1 (d, *J* = 6.3 Hz), 130.0 (d, *J* = 7.5 Hz), 122.8 (d, *J* = 2.5 Hz), 114.3 (d, *J* = 21.3 Hz), 114.1 (d, *J* = 21.3 Hz), 61.7 (d, *J* = 2.5 Hz) ppm; **IR** (neat): 3054, 1613, 1588, 1486, 1451, 1264, 1141, 896, 761 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₁₄H₁₅F₂N₂] (M+H)⁺: 249.1203, found 249.1205.

3-F-C₆H₄ bistriflimide 2ah

Prepared according to General Procedure 2 from diamine (S,S)-**SI5ah** (370 mg, 1.5 mmol, 1.0 equiv). Purification by flash chromatography on silica gel (hexanes:EtOAc:acetone 95:4:1 to 80:16:4) gave desired product as a white solid (136 mg, 0.27 mmol, 18%).

R_f = 0.25 (80:20 hexanes:EtOAc); **m.p.** (DCM): 160–170 °C; $[α]^{20}D = +10^{\circ}$ (c = 0.22, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.25 (td, J = 7.7, 5.7 Hz, 2H), 6.97 (td, J = 8.4, 2.4 Hz, 2H), 6.91 (d, J = 8.3 Hz, 2H), 6.77 (d, J = 9.1 Hz, 2H), 6.46 (br s, 2H), 4.79 (s, 2H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 162.9 (d, J = 248.8 Hz), 137.6 (d, J = 7.5 Hz), 131.3 (d, J = 7.5 Hz), 122.8 (d, J = 2.5 Hz), 119.4 (q, J = 318.8 Hz), 116.6 (d, J = 21.3 Hz), 114.5 (d, J = 22.5 Hz), 63.7 (d, J = 2.5 Hz) ppm; **IR** (neat): 3305, 1598, 1459, 1366, 1210, 1143, 1060, 925, 787 cm⁻¹; **HRMS** (ESI-TOF) *m*/*z* calculated for [C₁₆H₁₂F₈N₂O₄S₂Na] (M+Na)⁺: 535.0008, found 535.0019.

3,4-Cl₂-C₆H₃ bistriflimide 2ak

Prepared according to General Procedure 2.

Yield: 60%

[α]²⁰_D = -39.1° (*c* = 1.0, CH₂Cl₂); ¹H NMR (500 MHz, DMSO-d₆) δ = 10.21 (br s, 2H), 7.68 (s, 2H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 4.81 (s, 2H) ppm; ¹³C NMR (126 MHz, DMSO-d₆) δ = 137.8, 131.2, 131.0, 130.1, 130.0, 127.8, 119.0 (q, *J* = 321.9 Hz), 61.9 ppm; HRMS (ESI-TOF) *m*/*z* calculated for [C₁₆H₉Cl₁₄F₆N₂O₄S₂] (M–H)⁺: 610.8662, found 610.8669.

2-F-4-CN-C₆H₃ bistriflimide 2aj

Prepared according to General Procedure 2.

Yield: 20%

[α]²⁰_D = -51.5° (*c* = 1.0, CH₂Cl₂); ¹H NMR (500 MHz, acetone-d₆) δ = 9.24 (br s, 2H), 8.02 (t, *J* = 7.7 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 9.7 Hz, 2H), 5.46 (s, 2H) ppm; ¹³C NMR (126 MHz, acetone-d₆) δ = 159.5 (d, *J* = 249.9 Hz), 130.9, 130.1 (d, *J* = 4.0 Hz), 129.9, 120.29 (d, *J* = 26.6 Hz), 120.26 (q, *J* = 320.4 Hz), 117.4 (d, *J* = 2.5 Hz), 115.6 (d, *J* = 10.2 Hz), 56.5 ppm; HRMS (ESI-TOF) *m/z* calculated for [C₁₈H₉F₈N₄O₄S₂] (M–H)⁺: 560.9938, found 560.9941.

3,4,5-F₃-C₆H₂ bistriflimide 2ak

Prepared according to General Procedure 2.

Yield: 45%

[α]²⁰_D = -20.1° (*c* = 1.0, CH₂Cl₂); ¹H NMR (500 MHz, DMSO-d₆) δ = 10.37 (br s, 2H), 7.40 (s, 4H), 4.76 (s, 2H) ppm; ¹³C NMR (126 MHz, DMSO-d₆) δ = 149.8 (ddd, *J* = 248.9, 9.5, 3.2 Hz), 138.3 (dt, *J* = 251.6 Hz), 134.0, 119.1 (q, *J* = 322.6 Hz), 112.8 (d, *J* = 21.4 Hz), 61.7 ppm; HRMS (ESI-TOF) *m*/*z* calculated for [C₂₈H₇F₁₂N₂O₄S₂] (M–H)⁺: 582.9656, found 582.9667.

2-(4-bromo-2-fluorophenyl)-1,3-dioxolane (SI6)

In a 1 L round bottom flask equipped with a Dean–Stark apparatus, 2-fluoro-4bromobenzaldehyde (**SI2ab**, 20 g, 100 mmol, 1.0 equiv), *p*-toluenesulfonic acid (860 mg, 5.0 mmol, 5.0 mol %) and ethylene glycol (6.8 g, 110 mmol, 1.1 equiv) were dissolved in toluene (500 mL) and the resulting mixture was stirred at reflux overnight. The solution was cooled to room temperature, neutralized with 1M NaOH solution, and the aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine, dried using Na₂SO₄, and concentrated under reduced pressure. Purification by distillation (ca. 0.1 mbar/105 °C) gave desired product as a colorless oil (2.2 g, 8.9 mmol, 89%).

R_f = 0.45 (80:20 hexanes:EtOAc); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.41 (t, *J* = 7.9 Hz, 1H), 7.31 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.26 (dd, *J* = 9.7, 1.9 Hz, 1H), 6.03 (s, 1H), 4.15–4.11 (m, 2H), 4.07–4.02 (m, 2H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 161.0 (d, *J* = 252.5 Hz), 129.1 (d, *J* = 3.8 Hz), 127.6 (d, *J* = 3.8 Hz), 124.7 (d, *J* = 11.3 Hz), 123.5 (d, *J* = 8.8 Hz), 119.5 (d, *J* = 25.0 Hz), 98.6, 65.6 ppm; **IR** (neat): 2955, 2888, 1607, 1579, 1484, 1405, 1220, 1110, 873, 808 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₉H₉BrFO₂] (M+H)⁺: 246.9770, found 246.9771.

(4-(1,3-dioxolan-2-yl)-3-fluorophenyl)trimethylsilane (SI7)

In a flame-dried flask, acetal **SI6** (12 g, 50 mmol, 1.0 equiv) was dissolved in THF (250 mL) under nitrogen atmosphere. The solution was cooled to -78 °C (dry ice/acetone) and after 30 min *n*-BuLi (2.48 M in hexanes, 22 mL, 55 mmol, 1.1 equiv) was added dropwise. The solution was stirred at -78 °C for 1 h. TMS-CI (7.6 mL, 60 mmol, 1.2 equiv) was added dropwise and the cooling bath was removed. The solution was allowed to warm to room temperature overnight. The reaction was quenched with saturated NH₄CI (100 mL) and the aqueous phase was extracted with EtOAc (3 × 100 mL). The combined organic phase was washed with brine, dried using Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (hexanes:EtOAc:Et₃N 95:4:1 to 80:19:1) gave desired product as a colorless oil (10 g, 41 mmol, 83%).

R_f = 0.53 (80:20 hexanes:EtOAc); ¹**H NMR** (500 MHz, CDCI₃) δ = 7.51 (t, J = 7.2 Hz, 1H), 7.29 (dd, J = 7.5, 1.0 Hz, 1H), 7.19 (dd, J = 10.4, 1.0 Hz, 1H), 6.10 (s, 1H), 4.16–4.13 (m, 2H), 4.06–4.03 (m, 2H), 0.26 (s, 9H) ppm; ¹³**C NMR** (126 MHz, CDCI₃) δ = 160.9 (d, J = 250.0 Hz), 145.1 (d, J = 5.0 Hz), 128.9 (d, J = 3.8 Hz), 127.1 (d, J = 2.5 Hz), 125.6 (d, J = 12.5 Hz), 120.1 (d, J = 18.8 Hz), 99.1 (d, J = 3.8 Hz), 65.6, –1.2 ppm; **IR** (neat): 2955, 2892, 1565, 1387, 1070, 807 cm⁻¹; **HRMS** (ESI-TOF) *m*/*z* calculated for [C₁₂H₁₈FO₂Si] (M+H)⁺: 241.1060, found 241.1060.

2-F-4-SiMe₃-C₆H₃ aldehyde SI2al

Acetal **SI7** (8.3 g, 34 mmol, 1.0) was dissolved in acetone (300 mL). *p*-Toluenesulfonic acid (260 mg, 1.5 mmol, 5.0 mol %) was added and the mixture was stirred at reflux for 8 h. The solution was cooled down to room temperature and neutralized with saturated NaHCO₃ solution (100 mL). The aqueous phase was extracted with EtOAc (5 × 100 mL). The combined organic phase was washed with brine (100 mL), dried using Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (hexanes:EtOAc 99:1 to 95:5) gave desired product as a colorless oil (5.8 g, 29 mmol, 86%).

R_f = 0.70 (80:20 hexanes:EtOAc); ¹**H NMR** (500 MHz, CDCI₃) δ = 10.37 (s, 1H), 7.82 (t, J = 7.1 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 10.4 Hz, 1H), 0.3 (s, 9H) ppm; ¹³**C NMR** (126 MHz, CDCI₃) δ = 187.6 (d, J = 7.5 Hz), 164.2 (d, J = 260.0 Hz), 152.9 (d, J = 5.0 Hz), 129.3 (d, J = 3.8 Hz), 127.8 (d, J = 1.1 Hz), 124.2 (d, J = 8.8 Hz), 121.0 (d, J = 17.5 Hz), - 1.4 ppm; **IR** (neat): 2957, 2859, 2760, 1693, 1609, 1556, 1386, 1250, 822, 803, 754 cm⁻¹; **HRMS** (ESI-TOF) *m*/*z* calculated for [C₁₀H₁₄FOSi] (M+H)⁺: 197.0798, found 197.0797.

2-F-4-SiMe₃-C₆H₃ diamine SI5al

Prepared according to General Procedure 1 from (*S*,*S*)-mother diamine (*S*,*S*)-**Sl1** (980 mg, 4.0 mmol, 1.0 equiv) and 2-fluoro-4-(trimethylsilyl)benzaldehyde (**Sl2al**, 1.9 g, 9.6 mmol, 2.4 equiv). Purification by flash chromatography on silica gel (DCM:MeOH:Et₃N 96:2:2 to 90:5:5) gave desired product as a white solid (430 mg, 1.10 mmol, 27%).

R_f = 0.23 (90:10 DCM:MeOH); **m.p.** (DCM): 99–102 °C; **[α]**²⁰_D = +51° (*c* = 0.22, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.40 (t, *J* = 7.2 Hz, 2H), 7.21 (dd, *J* = 7.4, 1.1 Hz, 2H), 7.08 (d, *J* = 10.5 Hz, 2H), 4.52 (s, 2H), 0.24 (s, 18H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 160.2 (d, *J* = 247.5 Hz), 143.3, 129.5 (d, *J* = 67.5 Hz), 129.1, 128.0 (d, *J* = 3.8 Hz), 119.9 (d, *J* = 18.8 Hz), 54.2, -1.1 ppm; **IR** (neat): 2956, 2361, 1554, 1494, 1387, 1264, 1249, 827 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₂₀H₃₁F₂N₂Si₂] (M+H)⁺: 393.1994, found 393.1999.

2-F-4-SiMe₃-C₆H₃ bistriflimide 2al

Prepared according to General Procedure 2 from diamine (R,R)-**SI5al** (196 mg, 0.50 mmol, 1.0 equiv). Purification by flash chromatography on silica gel (hexanes:EtOAc:acetone 95:4:1 to 80:16:4) gave desired product as a white solid (200 mg, 0.30 mmol, 61%).

R_f = 0.65 (80:20 hexanes:EtOAc); **m.p.** (DCM): 114 °C; $[α]^{20}D = +17°$ (c = 0.15, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ = 7.10 (dd, J = 11.2, 1.1 Hz, 2H), 7.02 (dd, J = 7.4, 1.1 Hz, 2H), 6.83 (t, J = 7.2 Hz, 2H), 6.00 (s, 2H), 4.96 (s, 2H), 0.20 (s, 18H) ppm; ¹³**C NMR** (126 MHz, CDCl₃) δ = 160.1 (d, J = 247.5 Hz), 146.2 (d, J = 3.8 Hz), 129.6 (d, J = 3.8 Hz), 129.0 (d, J = 2.5 Hz), 122.9 (d, J = 12.5 Hz), 120.4 (d, J = 18.8 Hz), 119.5 (q, J = 318.8 Hz), 60.0, -1.3 ppm; **IR** (neat): 3305, 2958, 1561, 1379, 1193, 1144, 1058, 838, 755 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₂₂H₂₈F₈N₂O₄S₂Si₂Na] (M+Na)⁺: 679.0799, found 679.0799.

2-F-4-I-C₆H₃ diamine SI5am

Prepared according to General Procedure 1 from (R,R)-mother diamine (R,R)-**Sl1** (980 mg, 4.0 mmol, 1.0 equiv) and 2-fluoro-4-iodobenzaldehyde (**Sl2am**, 2,4 g, 9.6 mmol, 2.4 equiv). Purification by flash chromatography on silica gel (DCM:MeOH:Et₃N 96:2:2 to 90:5:5) gave desired product as a white solid (624 mg, 1.25 mmol, 31%).

R_f = 0.26 (90:10 DCM:MeOH); **m.p.** (DCM): 98 °C; **[α]**²⁰_D = -85° (*c* = 0.26, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.41 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.09 (t, *J* = 7.7 Hz, 2H), 4.35 (s, 2H), 1.80 (s, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 159.9 (d, *J* = 250.0 Hz), 133.5, 130.1 (d, *J* = 12.5 Hz), 130.0 (d, *J* = 3.8 Hz), 124.8 (d, *J* = 25.0 Hz), 91.9 (d, *J* = 8.8 Hz), 54.4 ppm; **IR** (neat): 3370, 3062, 1599, 1566, 1451, 1339, 1214, 859, 820 cm⁻¹; **HRMS** (ESI-TOF) *m/z* calculated for [C₁₄H₁₃F₂I₂N₂] (M+H)⁺: 500.9136, found 500.9148.

2-F-4-I-C₆H₃ bistriflimide 2am

Prepared according to General Procedure 2 from diamine (S,S)-**SI5am** (250 mg, 0.50 mmol, 1.0 equiv). Purification by flash chromatography on silica gel (hexanes:EtOAc:acetone 95:4:1 to 80:16:4) gave desired product as a white solid (144 mg, 0.19 mmol, 38%).

R_f = 0.35 (80:20 hexanes:EtOAc); **m.p.** (DCM): 101 °C; **[α]**²⁰_D = -38° (*c* = 0.14, CHCI₃); ¹**H NMR** (500 MHz, CDCI₃) δ = 7.43 (dd, *J* = 10.2, 1.4 Hz, 2H), 7.38 (dd, *J* = 8.1, 1.6 Hz, 2H), 6.69 (t, *J* = 7.8 Hz, 2H), 5.98 (br s, 2H), 4.94 (s, 2H) ppm; ¹³**C NMR** (126 MHz, CDCI₃) δ = 159.6 (d, *J* = 250.0 Hz), 134.7 (d, *J* = 3.8 Hz), 130.5 (d, *J* = 2.5 Hz), 125.9 (d, *J* = 23.8 Hz), 122.5 (d, J = 12.5 Hz), 119.4 (q, J = 319.2 Hz), 95.5 (d, J = 7.5 Hz), 59.1 ppm; **IR** (neat): 3298, 1604, 1485, 1451, 1376, 1232, 1201, 1144, 1059 934, 868 cm⁻¹; **HRMS** (ESI-TOF) m/z calculated for [C₁₆H₁₀F₈I₂N₂O₄S₂Na] (M+Na)⁺: 786.7942, found 786.7957.

2-F-4-Bpin-C₆H₃ bistriflimide 2an

Prepared according to General Procedure 2.

Yield: 33%

[α]²⁰_D = -34.1° (c = 1.0, CH₂Cl₂); ¹H NMR (500 MHz, DMSO-d₆) δ = 10.7 (br s, 2H), 7.65 (t, J = 6.2 Hz, 2H), 7.42 (d, J = 7.6 Hz, 2H), 7.06 (d, J = 9.9 Hz, 2H), 5.18 (s, 2H), 1.25 (s, 24 H) ppm; ¹³C NMR (126 MHz, DMSO-d₆) δ = 158.0 (d, J = 158.0 Hz), 131.6, 130.4, 128.3, 126.9 (d, J = 11.3 Hz), 119.8 (d, J = 20.0 Hz), 119.1 (q, J = 320.0 Hz), 84.1, 54.7, 24.64, 24.58 ppm; HRMS (ESI-TOF) *m*/*z* calculated for [C₂₈H₃₃B₂F₈N₂O₈S₂] (M–H)⁺: 763.1747, found 763.1759.

4. NMR Spectra

2,4-F₂-C₆H₃ bistriflimide 2a

¹H NMR (500 MHz, CD₃OD)

$2-F_2-C_6H_4$ bistriflimide **2b**

¹³C NMR (126 MHz, CD₃OD)

4-CN-C₆H₄ bistriflimide 2d

¹³C NMR (126 MHz, CD₃OD)

$3-CF_3-C_6H_4$ bistriflimide **2g**

¹H NMR (500 MHz, CD₃OD)

$4-CI-C_6H_4$ bistriflimide **2h**

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (126 MHz, DMSO-d₆)

2-Br-C₆H₄ bistriflimide 2j

¹³C NMR (126 MHz, CD₃OD)

$2\text{-I-}C_6H_4 \text{ bistriflimide } 2k$

¹³C NMR (126 MHz, CD₃OD)

2,4-(CF₃)₂-C₆H₃ bistriflimide 2m

¹³C NMR (126 MHz, CD₃OD)

$3-NO_2-C_6H_4$ bistriflimide 2n

¹³C NMR (126 MHz, CD₃OD)

$2-CF_3-C_6H_4$ bistriflimide **20**

¹³C NMR (126 MHz, CD₃OD)

2-Me-C₆H₄ bistriflimide 2p

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (126 MHz, DMSO-d₆)

2-furyl bistriflimide 2r

¹³C NMR (126 MHz, CD₃OD)

$3,5-(CF_3)_2-C_6H_3$ bistriflimide **2s**

¹³C NMR (126 MHz, CD₃OD)

2,4-(OMe)₂-C₆H₃ bistriflimide 2t

¹³C NMR (126 MHz, CD₃OD)

2-OAc-C₆H₄ bistriflimide 2u

¹³C NMR (126 MHz, CD₃OD)

$\text{2-Ph-}C_6H_4 \text{ bistriflimide } \textbf{2v}$

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (126 MHz, DMSO-d₆)

2-OH-C₆H₄ bistriflimide 2w

¹³C NMR (126 MHz, CD₃OD)

2,4-(OMe)₂-C₆H₃ bistriflimide 2x

¹³C NMR (126 MHz, CDCl₃)

2-OMe-C₆H₄ bistriflimide 2y

¹³C NMR (126 MHz, CD₃OD)

$C_6F_5 \text{ bistriflimide } \textbf{2z}$

¹H NMR (500 MHz, CD₃OD)

2-F-4-Br-C₆H₃ bistriflimide 2ab

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (126 MHz, DMSO-d₆)

2-F-4-CI-C₆H₃ bistriflimide **2ac**

¹³C NMR (126 MHz, CDCl₃)

$2\text{-}F\text{-}4\text{-}CF_3\text{-}C_6H_3 \text{ diamine } \textbf{SI5ad}$

¹³C NMR (126 MHz, CDCI₃)

$\hbox{2-F-4-CF}_3\hbox{-}C_6H_3 \text{ bistriflimide } \textbf{2ad}$

¹³C NMR (126 MHz, CDCl₃)

2,4-Cl₂-C₆H₃ diamine **Sl5ae**

¹³C NMR (126 MHz, CDCl₃)

$2,4-CI_2-C_6H_3$ bistriflimide **2ae**

¹³C NMR (126 MHz, CDCl₃)

4-CF₃-C₆H₄ bistriflimide 2af

¹H NMR (500 MHz, CDCl₃)

4-F-C₆H₄ diamine SI5ag

¹³C NMR (126 MHz, CDCl₃)

4-F-C₆H₄ bistriflimide 2ag

¹³C NMR (126 MHz, CDCl₃)

3-F-C₆H₄ diamine SI5ah

¹³C NMR (126 MHz, CDCI₃)

$3-F-C_6H_4$ bistriflimide **2ah**

¹³C NMR (126 MHz, CDCl₃)

3,4-Cl₂-C₆H₃ bistriflimide 2ai

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (126 MHz, DMSO-d₆)

2-F-4-CN-C₆H₃ bistriflimide 2aj

¹H NMR (500 MHz, acetone-d₆)

¹³C NMR (126 MHz, acetone-d₆)

3,4,5- F_3 - C_6H_2 bistriflimide **2ak**

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (126 MHz, DMSO-d₆)

2-(4-bromo-2-fluorophenyl)-1,3-dioxolane (SI6)

¹³C NMR (126 MHz, CDCl₃)

(4-(1,3-dioxolan-2-yl)-3-fluorophenyl)trimethylsilane (SI7)

¹³C NMR (126 MHz, CDCI₃)

2-fluoro-4-(trimethylsilyl)benzaldehyde (Sl2al)

¹³C NMR (126 MHz, CDCl₃)

2-F-4-SiMe₃-C₆H₃ diamine SI5al

¹³C NMR (126 MHz, CDCl₃)

2-F-4-SiMe₃-C₆H₃ bistriflimide 2al

¹H NMR (500 MHz, CDCl₃)

$\text{2-F-4-I-C}_{6}\text{H}_{3} \text{ diamine } \textbf{SI5am}$

¹³C NMR (126 MHz, CDCl₃)

2-F-4-I-C₆H₃ bistriflimide **2am**

¹³C NMR (126 MHz, CDCl₃)

2-F-4-Bpin-C₆H₃ bistriflimide 2an

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (126 MHz, DMSO-d₆)

5. Modeling

Since enantioselectivity cannot be reliably quantified for low-activity catalysts, compounds with a measured conversion below 25% were not included in initial model testing, model building, or analysis. Experimentally measured enantioselectivity was converted to the natural log, allowing a direct comparison to free energy ($\Delta\Delta G^{\ddagger}$) since:

$$\ln \frac{[A_R]}{[A_S]} = -\frac{\Delta \Delta G^{\ddagger}}{RT}$$

where $[\mathbf{A}_R]$ is the concentration of (*R*)-enantiomer of compound **A**, $[\mathbf{A}_S]$ is the concentration of (*S*)-enantiomer of coumpound **A**, $\Delta\Delta G^{\ddagger}$ is the Gibbs free energy difference between the two transition states leading to compounds \mathbf{A}_S or \mathbf{A}_R , R is the ideal gas constant, and T is the temperature.

2.2 2D-QSAR

Initial efforts to build a QSAR model for these bistriflimide catalysts relied upon a set of 48 catalysts with a range of enantioselectivity and conversion, as measured during catalyst screening. As a result, these experimental values were determined under a variety of solvent conditions. By limiting the set of triflimides used to build the QSAR model to only those screened in our process chemistry solvent condition (toluene), we saw significant improvements in the prospective power of our QSAR models.

Our ultimate goal was to generate a reliable model with which we could assign an enantioselectivity score to each potential bistriflimide catalyst. To do this, we used a QSAR method to fit enantioselectivity against a relevant set of calculated descriptors. Based on our substantial experience developing reliable 2D QSAR models for medicinal chemistry programs, we tried the following descriptor sets:

AP(C): Carhart atom pairs,⁸ which encode distances between detailed atom types, with (APC) or without (AP) chiral center information.

TT(C): Topological torsions,⁹ which encode 4 contiguous atoms and their environment.

ECFP4: Extended-connectivity fingerprints with bond diameter 4,¹⁰ which are circular fingerprints specifically developed to represent substructures, include chiral center information, and facilitate model interpretation.

SP3CARBONS: Count of all sp³ hybridized carbons.

MOE_2D: A set of diverse physical and topological properties calculated by the CCG software package MOE.¹¹

⁸ R. E. Carhart, D. H. Smith and R. Ventkataraghavan, J. Chem. Inf. Comput. Sci. 1985, 25, 64.

 ⁹ R. Nilakantan, N. Bauman, J. S. Dixon and R. Venkataraghavan, *J. Chem. Inf. Comput. Sci.* 1987, 27, 82.
¹⁰ D. Rogers and M. Hahn, *J. Chem. Inf. Model.* 2010, 50, 742.

¹¹ Molecular Operating Environment (MOE), Version 2016, Chemical Computing Group, Montreal, Canada, 2016. http://www. chemcomp.com/

These descriptors were generated for every compound in the initial data set, and all subsequent training and test sets. To determine the most relevant QSAR method, we evaluated random forest (RF)¹² and support vector machine (SVM)¹³ methods. All 2D QSAR modeling was performed using our in-house software; MIX.

The standard approach for determining the best descriptor set is to perform cross-validation. Thus, we used a leave-many-out 10-fold cross-validation (CV) procedure. The initial data set was randomly divided in half 10 times to form the training and test sets. The average cv- R^2 from this process was used to determine the predictivity of each 2D QSAR model. We found the minimum descriptor type necessary for maximum cv- R^2 was also one of the simplest; APC descriptors were sufficient to predict enantioselectivity with a CV- $R^2 = 0.34$ using the RF method. Furthermore, APC descriptors alone significantly outperformed other single type descriptors, ECFP4 had a cv- $R^2 = 0.17$ using the RF method. Interestingly, including TT(C), ECFP4, SP3CARBONS, or MOE_2D descriptors provided no meaningful improvement in the CV- R^2 . This implied that specific chemical groups and their organization relative to one another had the most meaningful impact on prediction of whether a bistriflimide catalyst would be enantioselective. The difference between cv- R^2 for RF and SVM methods was slight for the initial model building, however by following the two as we progressed our evaluation of 2D QSAR for prospective catalyst design, we found the RF method performed significantly better for some of the more divergent catalysts in VS2.

Following screening results for VS1, these eleven new bistriflimide catalysts were added to the original dataset and a new cross-validated QSAR model was generated. This model were used to predict activity of the bistriflamides in VS2.

¹² V. Svetnik, A. Liaw, A. C. Tong, J. C. Culberson, R. P. Sheridan and B. P. Feuston, *J. Chem. Inf. Comput. Sci.* 2003, **43**, 1947.

¹³ C. Cortes and V. N. Vapnik, *Machine Learning* 1995, **20**, 273.
Table S1: The ten most important beneficial and most deleterious single APC-type descriptors from the original cross-validated RF model.

Descriptor	Weight
	(model coefficient)
OX1sp2CX3sp207	0.739
SX4sp3CX2sp205	0.483
CX3sp3RCX2sp203	0.462
FX1sp3CX2sp206	0.432
OX1sp2CX2sp206	0.363
CX3sp3RCX2sp202	0.244
SX4sp3CX2sp204	0.157
CX4sp3CX2sp206	0.141
FX1sp3CX2sp207	0.107
FX1sp3CX4sp306	0.103
OX1sp2CX3sp210	-0.204
CX3sp2CX3sp205	-0.248
CX2sp2CX2sp203	-0.254
CX3sp2CX2sp204	-0.27
CX3sp2CX2sp206	-0.294
CX3sp2CX2sp203	-0.362
CX3sp2CX3sp202	-0.388
CX3sp2CX1sp304	-0.75
CX3sp2CX3sp204	-0.854
CX3sp2CX3sp207	-1.956

2.3 3D-QSAR Modeling

All catalyst surrogate structures were optimized using the functional M06-2X¹⁴ and a triple zeta basis set def2-TZVP,¹⁵ a combination known for its high accuracy in optimization of organic molecules. All geometry optimizations were performed under ideal gas phase approximation and ultrafine integration grid using the Gaussian 09 software.¹⁶ NBO charges were computed using NBO6 (accessed through Gaussian 09). Vibrational frequencies, intensities, and structural characteristics, were acquired from Gaussian 09 optimized structures using the same level of theory. Partition coefficient parameters were calculated based on the optimized structures using Molecular Modeling Pro.

In case two or more conformational isomers with small difference in minimum energy (<2 kcal mol⁻¹) were found, the parameters were averaged using Boltzmann distribution, e.g. 2-F-4-Ac-C₆H₃ bistriflimide **2bb** surrogates:

where [A] is the concentration of conformer A, [B] is the concentration of conformer B, E_B is the relative free energy of conformer A, k is the Boltzmann constant, and T is the temperature.

¹⁴ Y. Zhao and D. G. Truhlar, *Acc. Chem. Res.* 2008, **41**, 157.

¹⁵ F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297.

¹⁶ M. J. Frisch *et. al.* Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT: 2009.

	Catalyst				Paramete	r			
2	Ār	NBO1	NBOC2	NBOC2avg	IRvArylSymm	Р	polar i	polar a	FX
а	2,4-F ₂ -C ₆ H ₃	-0.304	-0.173	0.118	1694	1260	64.3	38.9	22
b	$2-F-C_6H_4$	-0.231	-0.197	-0.122	1690	442	63.9	38.2	22
С	$2-OTf-C_6H_4$	-0.235	-0.194	0.019	1684	314	104.1	54.0	24
d	4-CN-C ₆ H ₄	-0.190	-0.208	-0.208	1684	9.30	80.2	61.0	24
е	Ph	-0.214	-0.214	-0.214	1671	148	63.8	37.9	24
f	1-naphtyl	-0.182	-0.212	-0.138	1653	1540	111.6	88.0	18
g	$3-CF_3-C_6H_4$	-0.206	-0.196	-0.191	1679	5550	76.4	41.7	18
ĥ	4-CI-C ₆ H ₄	-0.220	-0.197	-0.197	1666	440	77.0	52.4	24
i	$2-CI-C_6H_4$	-0.284	-0.192	0.097	1690	440	77.0	52.4	18
j	2-Br-C ₆ H₄	-0.236	-0.197	-0.145	1668	440	84.9	59.3	18
k	2-I-C6H₄	-0.244	-0.198	-0.173	1663	189	95.9	71.6	18
I	4-OMe-C ₆ H ₄	-0.230	-0.200	-0.200	1684	59.3	81.8	49.8	24
m	2,4-(CF ₃) ₂ -C ₆ H ₃	-0.169	-0.201	-0.172	1709	132000	89.2	45.1	24
n	3-NO2-C6H4	-0.190	-0.207	-0.094	1672	45.3	80.0	56.0	18
0	$2-CF_3-C_6H_4$	-0.185	-0.206	-0.179	1679	5550	76.4	41.7	24
р	2-Me-C ₆ H₄	-0.214	-0.204	-0.115	1669	333	76.8	44.4	18
q	2-pyridyl	0.033	-0.259	-0.339	1665	1.73	58.7	34.9	18
r	2-furyl	0.084	-0.324	-0.360	1545	1.31	44.2	21.7	18
S	3,5-(CF ₃) ₂ -C ₆ H ₃	-0.201	-0.168	-0.169	1687	132000	89.2	45.1	12
t	3,5-(OMe) ₂ -C ₆ H ₃	-0.170	-0.317	-0.317	1670	3.68	100.0	59.1	12
aa	C ₆ F ₅	-0.340	0.341	0.341	1671	47100	65.8	41.5	0

Table S2. Training set parameter data

Table S3.	Virtual	screen 1	parameter	data
-----------	---------	----------	-----------	------

	Catalyst				Parameter	r			
2	Ār	NBO1	NBOC2	NBOC2avg	IRvArylSymm	Р	polar i	polar a	FX
ab	2-F-4-Br-C ₆ H ₃	-0.289	-0.177	0.113	1669	1770	85.4	59.5	22
ac	2-F-4-CI-C ₆ H ₃	-0.291	-0.178	0.113	1676	1770	77.5	52.8	22
ad	2-F-4-CF ₃ -C ₆ H ₃	-0.267	-0.186	0.104	1699	14400	76.9	42.4	22
ae	2,4-Cl ₂ -C ₆ H ₃	-0.237	-0.183	-0.109	1660	208	90.9	63.9	18
af	$4-CF_3-C_6H_4$	-0.196	-0.206	-0.206	1694	5550	76.4	41.7	24
ag	4-F-C ₆ H₄	-0.234	-0.192	-0.192	1681	442	63.9	38.2	24
aĥ	3-F-C ₆ H₄	-0.192	-0.234	-0.259	1690	442	63.9	38.2	22
ai	3,4-Cl ₂ -C ₆ H ₃	-0.205	-0.205	-0.209	1663	2470	89.6	60.1	18
aj	2-F-4-CN-C ₆ H ₃	-0.260	-0.188	0.102	1690	65.6	80.7	61.1	22
ak	3.4.5-F3-C6H2	-0.192	-0.287	-0.287	1704	4860	64.7	39.6	20

Table S4. Virtual screen 2 parameter data

	Catalyst				Parame	eter			
2	Ar	NBO1	NBOC2	NBOC2avg	IRvArylSymm	Р	polar i	polar a	FX
al	2-F-4-SiMe ₃ -C ₆ H ₃	-0.280	-0.194	0.097	1679	7370	126	51.6	22
am	2-F-4-I-C ₆ H ₃	-0.287	-0.179	0.112	1667	291	96.1	71.5	22
an	2-F-4-Bpin-C ₆ H₃	-0.269	-0.201	0.089	1694	264	152	69.4	22
ao	2-F-4-SnMe ₃ -C ₆ H ₃	-0.285	-0.193	0.098	1673	7370	141	53.0	22
ар	ferrocenyl	-0.305	-0.305	-0.305	1479	0.0000306	116	16.3	24
aq	$2-OCF_3-C_6H_4$	-0.237	-0.198	0.023	1681	117	80.5	44.6	24
ar	2-F-4-SF₅-C ₆ H ₃	-0.263	-0.183	0.106	1682	19700	87.8	47.7	22
as	2-CI-4-SF₅-C ₆ H₃	-0.209	-0.190	-0.117	1663	27500	101	60.0	18
at	2-F-5-SF₅-C ₆ H ₃	-0.274	-0.171	0.117	1690	14100	87.6	48.8	14
au	2-CI-5-SF₅-C ₆ H₃	-0.222	-0.177	-0.106	1668	19700	102	69.5	12
av	2-CI-4-SiMe ₃ -C ₆ H ₃	-0.226	-0.200	-0.122	1659	10300	139	63.7	18
aw	2-Cl-4-SnMe ₃ -C ₆ H ₃	-0.231	-0.199	-0.121	1647	10300	155	65.5	18
ax	2-Cl-4-Bpin-C ₆ H₃	-0.215	-0.207	-0.130	1674	43.6	166	79.9	18
ay	2-F-4-OCF ₃ -C ₆ H ₃	-0.284	-0.178	0.112	1690	993	81.1	45.3	28
az	2-CI-4-OCF ₃ -C ₆ H ₃	-0.230	-0.184	-0.110	1675	164	94.5	57.6	24
ba	2-F-4-OAc-C ₆ H ₃	-0.261	-0.195	0.096	1689	136	91.2	58.6	22
bb	2-Cl-4-OAc-C ₆ H ₃	-0.207	-0.200	-0.125	1676	161	105	70.1	18
bc	2-F-4-(ethynyl)-C ₆ H ₃	-0.276	-0.190	0.100	1688	1420	89.2	74.9	22
bd	2-CI-4-(ethynyl)-C ₆ H ₃	-0.222	-0.196	-0.121	1677	433	103	83.3	18
be	2,3-F ₂ -C ₆ H ₃	-0.269	-0.211	0.056	1695	1770	64.3	38.9	16
bf	2,5-F2-C6H3	-0.262	-0.262	0.053	1701	1770	64.1	38.9	16
bg	2-F-3-CI-C ₆ H ₃	-0.270	-0.200	0.086	1670	2470	77.2	52.6	14
bĥ	2-F-3-Me-C ₆ H ₃	-0.278	-0.203	0.093	1671	1330	76.9	44.6	14
bi	2-F-4-Me-C ₆ H ₃	-0.295	-0.185	0.107	1700	953	77.1	44.8	22
bj	2-F-5-CF ₃ -C ₆ H ₃	-0.276	-0.163	0.120	1690	1700	76.7	43.0	14
bk	2-F-5-CI-C6H3	-0.268	-0.209	0.086	1682	1770	77.1	53.4	14
bl	3,4-F2-Me-C6H3	-0.211	-0.211	-0.240	1694	1770	64.3	38.9	22
bm	3-Br-C ₆ H ₄	-0.197	-0.218	-0.227	1668	442	84.9	59.3	18
bn	3-CI-C ₆ H ₄	-0.197	-0.220	-0.226	1690	442	77.0	52.4	18
bo	3-CN-C ₆ H ₄	-0.208	-0.189	-0.175	1662	9.30	80.2	61.0	18
bp	2-CN-C ₆ H ₄	-0.160	-0.208	-0.191	1662	9.30	80.2	61.0	18
bq	4-Br-C ₆ H ₄	-0.218	-0.197	-0.197	1661	442	84.9	59.3	24
br	4-I-C ₆ H ₄	-0.216	-0.198	-0.198	1656	189	95.9	71.6	24
bs	3-I-C ₆ H ₄	-0.198	-0.216	-0.230	1663	189	95.9	71.6	18
bt	$2-CHF_2-C_6H_4$	-0.189	-0.207	-0.166	1674	2760	77.5	43.1	22

Table S5. Model predictions

	Catalyst					р	redicted 9	%ee (ΔΔG	6 [‡])					meas	sured
2	Ar	Moc	lel A	Mod	el B'	Мос	lel C	Mod	lel D	Мос	del E	Мос	lel F	%ee (∆∆G‡)
а	2,4-F ₂ -C ₆ H ₃	87.9	1.71	86.5	1.64	86.6	1.64	87.6	1.69	89.7	1.81	88.1	1.72	89.7	1.81
b	2-F-C ₆ H ₄	90.3	1.85	83.2	1.49	84.2	1.53	82.1	1.44	86.0	1.61	84.8	1.55	89.0	1.77
С	2-OTf-C ₆ H ₄	91.1	1.91	83.6	1.50	86.7	1.65	89.1	1.78	87.5	1.68	84.3	1.53	88.3	1.73
d	$4-CN-C_6H_4$	90.6	1.87	81.5	1.42	85.3	1.58	82.6	1.46	80.2	1.37	82.2	1.45	87.1	1.66
е	Ph	88.1	1.72	80.5	1.38	86.1	1.61	83.3	1.49	84.5	1.54	84.2	1.53	84.7	1.55
f	1-naphtyl	77.4	1.28	80.8	1.39	75.7	1.23	81.2	1.41	84.4	1.54	85.2	1.57	84.5	1.54
g	$3-CF_3-C_6H_4$	86.4	1.62	83.2	1.49	76.7	1.26	74.4	1.19	78.3	1.31	79.2	1.34	83.7	1.51
ĥ	$4-CI-C_6H_4$	88.3	1.73	83.2	1.49	86.3	1.62	84.5	1.54	82.9	1.47	83.6	1.50	82.2	1.45
i	$2-CI-C_6H_4$	89.0	1.77	84.0	1.52	80.7	1.39	83.6	1.50	83.2	1.49	82.3	1.45	81.9	1.44
j	2-Br-C ₆ H ₄	88.0	1.71	83.2	1.49	78.5	1.32	78.5	1.32	79.9	1.36	80.0	1.37	81.3	1.41
k	2-I-C ₆ H ₄	85.0	1.56	83.1	1.48	78.8	1.33	77.5	1.29	82.2	1.45	82.6	1.46	80.8	1.39
	4-OMe-C ₆ H ₄	85.9	1.60	82.8	1.47	86.6	1.64	82.8	1.47	83.0	1.48	84.0	1.52	80.7	1.39
m	2,4-(CF ₃) ₂ -C ₆ H ₃	90.1	1.84	78.6	1.32	78.8	1.33	81.0	1.40	79.9	1.36	81.5	1.42	77.7	1.29
n	3-NO2-C6H4	84.6	1.54	81.7	1.43	76.2	1.25	80.4	1.38	76.1	1.24	76.7	1.26	77.27	1.28
ο	$2-CF_3-C_6H_4$	91.8	1.97	81.8	1.43	84.9	1.56	84.1	1.52	80.4	1.38	82.5	1.46	71.4	1.11
р	2-Me-C ₆ H ₄	82.5	1.46	82.1	1.44	77.4	1.28	80.0	1.37	78.3	1.31	78.7	1.32	69.57	1.07
q	2-pyridyl	86.1	1.61	70.7	1.10	62.1	0.90	65.1	0.97	59.3	0.85	60.0	0.86	64.7	0.96
r	2-furyl	54.1	0.75	50.1	0.68	58.1	0.83	59.2	0.85	63.7	0.94	59.1	0.84	58.9	0.84
S	3,5-(CF ₃) ₂ -C ₆ H ₃	80.6	1.39	54.3	0.76	51.9	0.72	60.9	0.88	60.4	0.87	62.1	0.90	56.3	0.79
t	3,5-(OMe)2-C6H3	61.4	0.89	52.7	0.73	61.1	0.89	50.6	0.69	44.0	0.59	44.7	0.60	47.9	0.65
aa	C ₆ F ₅	69.7	1.07	23.5	0.30	31.7	0.41	24.0	0.30	22.5	0.28	21.7	0.27	22.9	0.29
ab	2-F-4-Br-C ₆ H ₃	86.7	1.64	85.9	1.60	86.1	1.62	92.0	1.98	86.9	1.65	86.7	1.64	90.2	1.85
ac	2-F-4-CI-C ₆ H ₃	87.0	1.66	85.8	1.60	86.2	1.62	90.9	1.89	87.1	1.66	86.5	1.63	89.3	1.79
ad	$2-F-4-CF_3-C_6H_3$	87.7	1.70	83.6	1.50	84.9	1.56	86.1	1.61	85.7	1.59	85.9	1.61	88.3	1.73
ae	2,4-Cl ₂ -C ₆ H ₃	73.3	1.16	85.3	1.58	78.5	1.32	81.8	1.43	81.5	1.42	81.3	1.41	86.2	1.62
af	4-CF ₃ -C ₆ H ₄	84.9	1.56	81.8	1.43	85.3	1.58	81.7	1.43	81.1	1.40	83.0	1.48	85.3	1.58
ag	4-F-C ₆ H₄	82.0	1.44	84.0	1.52	86.7	1.64	83.2	1.49	86.5	1.63	85.7	1.60	84.1	1.52
ah	3-F-C6H₄	82.8	1.47	76.6	1.26	82.7	1.47	77.1	1.27	82.1	1.44	81.6	1.42	79.9	1.36
ai	3,4-Cl ₂ -C ₆ H ₃	69.8	1.07	81.9	1.44	76.9	1.27	75.3	1.22	77.9	1.30	78.0	1.30	78.9	1.33
aj	$2-F-4-CN-C_6H_3$	87.1	1.66	84.6	1.54	85.2	1.57	88.1	1.72	85.0	1.56	85.3	1.58	78.5	1.32
ak	3,4,5-F ₃ -C ₆ H ₂	62.3	0.91	66.3	0.99	79.6	1.35	71.6	1.12	77.2	1.28	77.0	1.27	75.9	1.24
al	2-F-4-SiMe ₃ -C ₆ H ₃	81.8	1.43	83.3	1.49	85.6	1.59	90.0	1.83	95.2	2.30	85.5	1.59	90.4	1.86
am	2-F-4-I-C ₆ H ₃	86.7	1.64	85.9	1.60	86.1	1.61	92.3	2.00	88.1	1.72	88.1	1.72	88.8	1.76
an	2-F-4-Bpin-C ₆ H ₃	82.2	1.45	82.5	1.46	85.5	1.59	86.8	1.65	99.2	3.41	86.4	1.63	87.1	1.66

Table S5. continue

	Catalyst					р	redicted ^o	%ee (ΔΔC	G [‡])					measured
2	Ar	Мос	del A	Mod	el B'	Мос	lel C	Мос	lel D	Мос	lel E	Мос	del F	%ee (∆∆G [‡])
ao	2-F-4-SnMe₃-C ₆ H₃	81.8	1.43	83.3	1.49	84.6	1.55	89.8	1.82	85.7	1.59	85.4	1.58	
ар	ferrocenyl	75.4	1.22	82.3	1.45	75.7	1.23	80.8	1.40	82.4	1.46	79.0	1.33	
aq	$2-OCF_3-C_6H_4$	80.7	1.39	85.0	1.56	82.6	1.46	86.5	1.63	85.7	1.59	84.9	1.56	
ar	2-F-4-SF ₅ -C ₆ H ₃	87.0	1.66	83.8	1.51	63.5	0.93	69.9	1.08	67.7	1.02	66.0	0.99	
as	$2-CI-4-SF_5-C_6H_3$	76.8	1.26	82.5	1.46	77.5	1.29	81.1	1.41	96.8	2.57	80.0	1.37	
at	$2-F-5-SF_5-C_6H_3$	71.2	1.11	83.5	1.50	85.8	1.60	91.2	1.91	98.2	2.91	85.7	1.60	
au	2-CI-5-SF₅-C ₆ H ₃	66.3	0.99	82.6	1.46	77.7	1.29	83.0	1.48	99.1	3.34	80.6	1.39	
av	2-CI-4-SiMe ₃ -C ₆ H ₃	60.5	0.87	81.6	1.43	77.5	1.29	78.4	1.31	99.7	3.95	83.6	1.50	
aw	2-Cl-4-SnMe ₃ -C ₆ H ₃	60.5	0.87	85.9	1.60	86.0	1.61	88.4	1.73	86.6	1.64	86.6	1.64	
ах	2-Cl-4-Bpin-C ₆ H ₃	63.2	0.93	85.2	1.57	78.2	1.31	79.1	1.34	81.8	1.43	80.1	1.37	
ay	2-F-4-OCF ₃ -C ₆ H ₃	86.7	1.64	83.6	1.50	85.3	1.58	88.2	1.72	85.4	1.58	84.9	1.56	
az	$2-CI-4-OCF_3-C_6H_3$	76.6	1.26	82.7	1.47	77.1	1.27	78.3	1.31	83.0	1.48	80.4	1.38	
ba	2-F-4-OAc-C ₆ H ₃	80.5	1.39	84.2	1.53	85.7	1.60	88.5	1.74	86.1	1.61	88.1	1.72	
bb	2-CI-4-OAc-C ₆ H ₃	57.4	0.81	83.4	1.50	77.8	1.30	78.3	1.31	83.4	1.49	85.5	1.59	
bc	2-F-4-(ethynyl)-C ₆ H ₃	86.7	1.64	56.9	0.80	88.7	1.75	83.2	1.49	90.4	1.86	90.3	1.85	
bd	2-CI-4-(ethynyl)-C ₆ H ₃	72.7	1.15	83.1	1.48	94.3	2.20	95.4	2.33	63.9	0.94	75.6	1.23	
be	2,3-F ₂ -C ₆ H ₃	71.5	1.12	80.9	1.40	76.5	1.25	78.0	1.30	80.9	1.40	78.7	1.32	
bf	2,5-F ₂ -C ₆ H ₃	66.8	1.00	70.7	1.10	76.1	1.24	75.7	1.23	77.3	1.28	75.7	1.23	
bg	2-F-3-CI-C ₆ H ₃	71.6	1.12	82.7	1.47	72.6	1.14	83.7	1.51	72.8	1.15	72.4	1.14	
bh	2-F-3-Me-C ₆ H ₃	43.2	0.58	82.2	1.45	73.1	1.16	83.6	1.50	73.2	1.16	73.5	1.17	
bi	2-F-4-Me-C ₆ H ₃	59.6	0.85	85.0	1.56	86.3	1.63	85.9	1.60	87.0	1.66	86.8	1.65	
bj	2-F-5-CF ₃ -C ₆ H ₃	73.2	1.16	87.6	1.69	73.0	1.15	78.8	1.33	76.1	1.24	76.0	1.24	
bk	2-F-5-CI-C ₆ H ₃	68.6	1.05	81.3	1.41	72.5	1.14	80.1	1.37	71.8	1.12	71.7	1.12	
bl	3,4-F ₂ -Me-C ₆ H ₃	78.8	1.33	80.9	1.40	83.4	1.50	77.5	1.29	84.2	1.53	83.3	1.49	
bm	3-Br-C ₆ H ₄	76.8	1.33	79.7	1.36	76.6	1.26	73.5	1.17	75.8	1.23	76.8	1.26	
bn	3-CI-C ₆ H ₄	78.3	1.31	79.3	1.34	76.6	1.26	73.3	1.16	75.9	1.24	76.3	1.25	
bo	3-CN-C ₆ H ₄	77.7	1.29	84.4	1.54	77.1	1.27	77.7	1.29	78.5	1.32	79.1	1.34	
bp	2-CN-C ₆ H ₄	74.6	1.20	81.5	1.42	74.6	1.20	76.6	1.26	73.7	1.17	75.3	1.22	
bq	4-Br-C ₆ H ₄	80.8	1.40	83.2	1.49	86.2	1.62	84.9	1.56	82.6	1.46	83.8	1.51	
br	4-I-C ₆ H ₄	80.8	1.40	83.1	1.48	86.1	1.62	85.3	1.58	84.1	1.52	85.6	1.59	
bs	3-I-C ₆ H ₄	76.7	1.26	80.1	1.37	76.6	1.26	73.8	1.18	78.3	1.31	79.6	1.35	
bt	$2-CHF_2-C_6H_4$	80.7	1.39	81.7	1.43	82.5	1.46	82.5	1.46	80.3	1.38	81.7	1.43	

Scheme S1. Correlation color map.

6. Optimized geometries

1,3-difluorobenzene (surrogate for 2a)

С	-0.65624800	1.39311900	-0.00000100
С	0.53242600	0.69295300	-0.00001700
С	-0.65624300	-1.39311900	0.00000400
С	-1.85583500	-0.69361400	-0.00000600
С	-1.85583600	0.69361000	0.00000500
н	-0.62236100	2.47421300	0.00000500
н	-0.62235600	-2.47421200	0.00001000
н	-2.79014200	-1.23795900	-0.00000800
н	-2.79014600	1.23795100	0.00001500
С	0.53243000	-0.69294900	0.00000200
F	1.69893500	-1.34029200	0.00000100
F	1.69893500	1.34029200	0.00000500

fluorobenzene (surrogate for 2b, 2ah, 2ai)

С	-1.12812800	1.20147200	0.00000100
С	0.25978500	1.21083500	0.00000100
С	0.25978900	-1.21082200	0.00000200
С	-1.12809800	-1.20149500	0.00000100
С	-1.82380700	-0.00000400	-0.00000200
н	-1.66640100	2.14029400	-0.00000400
н	0.82806400	2.13085200	0.00000600
н	0.82812500	-2.13080500	0.00000300
н	-1.66639100	-2.14030600	-0.00000400
н	-2.90529800	-0.00003300	0.00000000
С	0.92456200	0.00002100	-0.00000100

С 2.14729700 -1.20315500 -0.35085100 С 1.45740100 -0.00757100 -0.38692900 С 2.07149700 1.21921700 -0.22801300 С 3.44476200 1.24325900 -0.03267900 С 4.16714700 0.05784900 0.00192300 С 3.52061800 -1.16050200 -0.15547500 Н 1.61325000 -2.13545600 -0.47338800 Н 1.47905600 2.12343400 -0.25347000 Н 3.94853100 2.19215900 0.09389400 Н 5.23798700 0.08362200 0.15356200 Н 4.08411300 -2.08344000 -0.12645500 0 0.06784100 -0.04001400 -0.63701900 S -0.88805400 -0.08887600 0.61762600 С -2.43654000 0.06130400 -0.36802200 F -2.55584000 -0.96228600 -1.19207700 F -3.44895100 0.06480500 0.48098800 F -2.43603700 1.18643800 -1.05777300 0 -0.87014100 -1.37719900 1.21134700 0 -0.75016500 1.08954600 1.39615800

phenyl trifluoromethanesulfonate (surrogate for 2c)

benzonitrile (surrogate for 2d, 2bp, 2bq)

С	1.47499500	-1.20420500	0.00000000
С	0.08998500	-1.21017000	0.00000400
С	0.09003300	1.21020500	0.00000100

S82

F

С	1.47500400	1.20419000	0.00000400
С	2.16635100	-0.00003400	-0.00000200
Н	2.01581600	-2.14109400	-0.0000300
Н	-0.46191800	-2.14022800	0.00000600
Н	-0.46189000	2.14025100	0.00000200
Н	2.01590100	2.14103600	-0.00000100
Н	3.24848800	-0.00001600	-0.0000300
С	-0.60127800	0.00001100	-0.00000500
С	-2.03804000	0.00004700	-0.00000600
Ν	-3.18552700	-0.00003100	0.00000300

benzene (surrogate for 2e)

С	-0.37246700	1.33747700	0.00000100
С	-1.34481500	0.34622000	-0.00001100
С	-0.97222100	-0.99123800	0.00001100
С	0.37252800	-1.33746000	-0.00000200
С	1.34479900	-0.34628100	-0.00000800
С	0.97217700	0.99128300	0.00000700
Н	-0.66259800	2.38034900	-0.00000400
Н	-2.39313100	0.61602700	-0.00000400
Н	-1.72990600	-1.76432900	0.00000600
Н	0.66251800	-2.38037100	0.00000600
н	2.39315100	-0.61595200	-0.00001300
н	1.72996200	1.76427500	0.00001900

Naphthalene (surrogate for 2f)

C 2.41862300 -0.70647700 0.0000000

С	1.23888200	-1.39494800	-0.00000100
С	0.00000200	-0.70908300	0.00000000
С	0.00000900	0.70909000	0.00000000
С	1.23889100	1.39494600	0.00000000
С	2.41862800	0.70646900	0.00000000
н	-1.23331000	-2.47856900	0.00000100
н	3.35984200	-1.24086000	0.00000200
н	1.23331600	-2.47856700	-0.00000200
С	-1.23889900	-1.39494800	0.00000000
С	-1.23889500	1.39495300	0.00000000
н	1.23333100	2.47856700	-0.00000200
н	3.35985000	1.24084700	0.00000100
С	-2.41861800	0.70648300	-0.00000100
С	-2.41862400	-0.70648400	0.00000000
н	-1.23332200	2.47857200	0.00000100
н	-3.35984500	1.24085200	-0.00000200
н	-3.35985500	-1.24084500	0.00000000

trifluorotoluene (surrogate for 2g, 2o, 2ag)

С	-2.12720800	1.20282400	0.00172300
С	-0.74057100	1.20690400	-0.01802400
С	-0.05444600	0.00097700	-0.02892100
С	-0.73934300	-1.20586300	-0.01811300
С	-2.12579400	-1.20344900	0.00165400
С	-2.81866000	-0.00062600	0.01189700
Н	-2.66779200	2.13997900	0.00645700
н	-0.19215300	2.13940500	-0.03215200

Н	-0.18975000	-2.13774600	-0.03233900
н	-2.66537200	-2.14118400	0.00631700
н	-3.90081500	-0.00126100	0.02521800
С	1.44748300	0.00039200	-0.00277000
F	1.96083900	1.08561200	-0.59351300
F	1.95973000	-1.07000800	-0.62108900
F	1.92022100	-0.01628700	1.25258300

chlorobenzene (surrogate for 2h, 2i, 2bo)

С	-1.56127600	-1.20063300	-0.00000300
С	-0.17355800	-1.20784000	0.00002200
С	-0.17358100	1.20786100	0.00001600
С	-1.56119800	1.20067000	-0.00000100
С	-2.25751200	-0.00001100	-0.00001800
Н	-2.09766400	-2.14034700	-0.00002000
Н	0.38047200	-2.13622500	0.00001100
Н	0.38059800	2.13615600	0.00001200
Н	-2.09767100	2.14033800	-0.00000500
Н	-3.33915600	0.00007200	-0.00001100
С	0.50563200	-0.00004000	0.00001400
CI	2.24131600	-0.00000200	-0.00001000

bromobenzene (surrogate for 2j, 2bn, 2br)

С	-2.16557500	-1.20057900	0.00000200
С	-0.77758600	-1.20834700	-0.00000700
С	-0.77758400	1.20834500	-0.00000200
С	-2.16552900	1.20060500	-0.00000300

С	-2.86149800	0.00000200	0.00000400
н	-2.70178400	-2.14069500	0.00000800
н	-0.22750000	-2.13912700	-0.00000500
н	-0.22742100	2.13908100	0.00000000
н	-2.70177200	2.14070300	0.00000200
н	-3.94330300	0.00004600	0.00000700
С	-0.09903600	-0.00002600	-0.00000200
Br	1.79664700	0.00000000	0.00000100

iodobenzene (surrogate for 2k, 2bs, 2bt)

С	-2.62370900	-1.20034500	0.00000100
С	-1.23520300	-1.20780300	-0.00000600
С	-1.23520700	1.20780500	-0.00000300
С	-2.62367100	1.20036700	-0.00000200
С	-3.31965900	-0.00000100	0.00000400
н	-3.15977400	-2.14067600	0.00000800
н	-0.69215100	-2.14296100	-0.00000500
н	-0.69208500	2.14292300	-0.00000100
н	-3.15977200	2.14067700	0.00000500
н	-4.40155800	0.00003800	0.00000700
С	-0.55296400	-0.00002100	-0.00000300
I	1.54052500	0.00000000	0.00000100

anisole (surrogate for 2I)

С	1.31913200	1.34510200	-0.00014800
С	-0.04149600	1.05217100	-0.00032100
С	-0.45259700	-0.27653700	-0.00005400

S86

С	0.49704800	-1.29803500	0.00001900
С	1.84370500	-0.98985600	0.00015800
С	2.26595500	0.33639500	0.00026000
н	1.63306900	2.38138100	-0.00020700
н	-0.75985800	1.85894300	-0.00080000
н	0.14940700	-2.32259400	0.00000500
н	2.57148000	-1.79139400	0.00043400
н	3.32079200	0.57519500	0.00050800
0	-1.75026000	-0.67336500	-0.00080200
С	-2.74305400	0.32561800	0.00064100
н	-2.67459100	0.95555800	-0.89086700
н	-3.69769600	-0.19398200	0.00140800
н	-2.67268500	0.95466800	0.89260800

1,3-bis(trifluoromethyl)benzene (surrogate for 2m, 2s)

С	1.20441100	0.33274200	-0.00354600
С	0.01593000	-0.38678900	-0.01852500
С	-1.18415700	0.29915600	-0.02433600
С	-1.20745000	1.68957800	-0.01324000
С	-0.01743000	2.39482600	0.00148500
С	1.19555600	1.71680900	0.00643800
Н	0.03151700	-1.46898800	-0.03041900
Н	-2.15585400	2.21111300	-0.02203500
Н	-0.02985300	3.47608400	0.00691000
Н	2.12906000	2.26216600	0.01620800
С	-2.48811600	-0.45015300	-0.00217300
С	2.49741400	-0.43566200	0.00050800

F	-2.34402400	-1.72322000	-0.37564400
F	-3.02589000	-0.45598800	1.22484200
F	-3.39035600	0.10905300	-0.81647400
F	3.56331100	0.36763300	0.01007900
F	2.60075700	-1.22470000	-1.07589000
F	2.58822200	-1.23315900	1.07194100

nitrobenzene (surrogate for **2n**)

С	1.81024100	-1.20547200	-0.00000600
С	0.42420900	-1.21416500	-0.00002000
С	-0.23810700	-0.00000400	-0.00001500
С	0.42421500	1.21417000	0.00000000
С	1.81023100	1.20547700	0.00001300
С	2.50015500	-0.00000500	0.00001100
н	2.35152600	-2.14192700	-0.00001000
н	-0.14363600	-2.13279500	-0.00003000
н	-0.14365100	2.13278700	0.00000300
н	2.35153900	2.14191800	0.00002800
н	3.58234600	0.00001000	0.00002300
Ν	-1.71480500	-0.00000100	-0.00003000
0	-2.27375700	1.07266200	-0.00000700
0	-2.27376100	-1.07266000	0.00004500

toluene (surrogate for **2p**)

С	-1.19596100	1.19734100	0.00188800
С	0.19220800	1.19658400	-0.00784300
С	0.90738800	0.00276000	-0.01050500

S88

С	0.19561500	-1.19444300	-0.00786900
С	-1.19133700	-1.19994300	0.00187200
С	-1.89296300	-0.00199900	0.00756300
Н	-1.73363700	2.13703300	0.00148400
Н	0.73066900	2.13733200	-0.01633000
Н	0.73774200	-2.13328500	-0.01630400
Н	-1.72619500	-2.14125300	0.00142700
Н	-2.97511400	-0.00399600	0.01220400
С	2.41136000	0.00101400	0.00827000
Н	2.78529900	-0.12064300	1.02735700
Н	2.81151300	-0.81921500	-0.58801800
н	2.81185700	0.93613800	-0.38207200

pyridine (surrogate for **2q**)

С	-1.19185800	0.66815500	0.00000600
С	-1.13605100	-0.71901900	-0.00009400
С	1.13670200	-0.71802400	-0.00001300
С	1.19128600	0.66912700	-0.00002200
С	-0.00061100	1.37628600	0.00002200
н	-2.14723400	1.17515800	0.00007300
н	-2.04965200	-1.30417200	0.00009800
н	2.05074800	-1.30246400	0.00002500
н	2.14619400	1.17701200	-0.00002200
н	-0.00103100	2.45885800	0.00003500
Ν	0.00059600	-1.40907700	0.00005700

furan (surrogate for 2r)

С	-1.08714000	-0.34679400	0.00014700
С	-0.71635800	0.95272000	-0.00012300
С	0.71618700	0.95283700	0.00004400
С	1.08720000	-0.34661300	0.00013400
0	0.00010400	-1.14990700	-0.00018500
Н	-2.04137300	-0.84360700	0.00021700
Н	-1.37172300	1.80647700	-0.00022500
н	1.37139300	1.80671100	0.00007500
н	2.04153500	-0.84322600	0.00021100

1,3-Dimethoxybenzene (surrogate for 2t)

С	1.04508600	-0.21023600	0.00010000
С	-0.28218000	-0.64830500	0.00012800
С	-1.02020000	1.65077400	-0.00001400
С	0.29393800	2.05977200	-0.00001800
С	1.34607500	1.14360100	0.00003400
Н	-0.46043900	-1.71312200	0.00028300
Н	-1.84028100	2.35486400	-0.00007400
Н	0.52022400	3.11848900	-0.00002900
Н	2.36605400	1.49612700	0.00002600
С	-1.30755400	0.28156500	0.00001700
0	-2.62245000	-0.04759500	-0.00000900
0	1.97473100	-1.19928200	0.00016800
С	-2.95557600	-1.41700500	-0.00010300
Н	-4.04119300	-1.46669800	-0.00082300
Н	-2.56736400	-1.91769200	-0.89141800
н	-2.56857900	-1.91750400	0.89185500

С	3.33172500	-0.82029100	-0.00018400
н	3.58008100	-0.23789600	0.89124800
Н	3.90583400	-1.74312600	-0.00048200
н	3.57952100	-0.23766700	-0.89163000

pentafluorobenzene (surrogate for 2aa)

С	0.00000500	1.11117300	-0.00000100
С	-1.20184400	0.42203600	-0.00000400
С	-1.18722500	-0.96226900	-0.00000200
С	0.00002500	-1.66704300	0.00000000
С	1.18721300	-0.96227300	0.00000400
С	1.20181900	0.42209000	0.00000200
н	-0.00002000	-2.74738900	0.00000200
F	2.34795300	-1.60998100	-0.00000200
F	2.34624400	1.09099000	0.00000100
F	-0.00006400	2.43419100	-0.00000300
F	-2.34622600	1.09101600	0.00000400
F	-2.34790100	-1.61009300	-0.00000100

1-bromo-3-fluorobenzene (surrogate for 2ac)

С	0.21428000	0.18740200	0.00000200
С	-0.69022100	-0.86211100	0.00000500
С	-2.03634700	-0.54860800	0.00000200
С	-2.49917500	0.75288800	-0.00000400
С	-1.56641900	1.77938300	0.00000400
С	-0.20489400	1.50874300	0.00000100
н	-0.37026800	-1.89409900	0.00001700

Н	-3.56325800	0.94234400	-0.00000700
н	-1.90430500	2.80735000	-0.00000700
н	0.52030600	2.30968200	0.00000000
F	-2.92137900	-1.55253100	-0.0000300
Br	2.06590300	-0.20282000	-0.00000100

1-chloro-3-fluorobenzene (surrogate for 2ad)

С	0.82615000	0.04925300	0.00000000
С	-0.16908400	-0.91498200	0.00000500
С	-1.48109000	-0.48248300	0.00000800
С	-1.82581900	0.85538300	0.00000000
С	-0.80520500	1.79458900	0.00000100
С	0.52573300	1.40293100	0.00000100
н	0.06133300	-1.97057400	0.00001200
н	-2.86867100	1.13993700	-0.00000400
н	-1.04933000	2.84872000	-0.00000800
н	1.32438500	2.13062200	0.00000000
F	-2.45339900	-1.40226700	-0.00000600
CI	2.48169200	-0.45626200	-0.00000200

1-fluoro-3-(trifluoromethyl)benzene (surrogate for 2ae)

С	-0.26468400	0.18419800	-0.03049800
С	0.66262800	-0.84820600	-0.02143000
С	2.00146400	-0.51555700	-0.00119100
С	2.43844800	0.79587100	0.01084700
С	1.49328600	1.80975500	0.00194800
С	0.13785900	1.51075200	-0.01795300

Н	0.36040400	-1.88656400	-0.03677200
Н	3.49998400	1.00167400	0.02370100
Н	1.81722200	2.84179700	0.00812900
Н	-0.60020000	2.30035500	-0.03102400
С	-1.72881300	-0.15896600	-0.00277300
F	2.90805600	-1.49928200	0.00349600
F	-2.48514100	0.82732000	-0.49289000
F	-2.15239800	-0.39272100	1.24724900
F	-1.99479900	-1.26024400	-0.71316000

1,3-dichlorobenzene (surrogate for 2af)

С	0.00006200	2.06518700	-0.00000100
С	-1.20655700	1.38110000	0.00002000
С	-1.18987200	-0.00469000	0.00001900
С	-0.00000500	-0.71520200	0.00001200
С	1.18979000	-0.00481200	-0.00001300
С	1.20655400	1.38109000	-0.00001600
н	0.00003300	3.14686800	-0.00001800
н	-2.14908600	1.90952000	0.00001000
н	-0.00012800	-1.79546400	0.00001600
н	2.14918100	1.90933300	-0.00000800
CI	2.68665200	-0.87606500	0.00000200
Cl	-2.68664200	-0.87607000	-0.00000900

1,2-dichlorobenzene (surrogate for 2aj)

С	-1.17511400	1.38601100	0.00000100
С	0.02946200	0.69596500	-0.00001800

S93

С	0.02946600	-0.69596600	-0.00000300
С	-1.17511000	-1.38601000	0.00000200
С	-2.37449700	-0.69385200	-0.00000500
С	-2.37449700	0.69384700	0.00000700
н	-1.15513400	2.46708600	0.00000500
Н	-1.15512900	-2.46708700	0.00001000
Н	-3.30701000	-1.24187800	-0.0000300
Н	-3.30701300	1.24187300	0.00001600
CI	1.50488500	-1.58736000	0.00000200
CI	1.50488100	1.58736300	0.00000200

3-fluorobenzonitrile (surrogate for 2ak)

С	-0.92639900	0.04904800	0.00000000
С	0.06573600	-0.92848800	-0.00000200
С	1.38138500	-0.51513400	0.00000000
С	1.73879200	0.82043300	0.00000300
С	0.73578300	1.77871300	0.00000400
С	-0.59798000	1.40311600	0.00000300
н	-0.17636100	-1.98192200	-0.00000400
н	2.78640400	1.08922400	0.00000400
н	0.99858700	2.82794000	0.00000700
н	-1.38505200	2.14393000	0.00000400
F	2.34488000	-1.44147800	-0.00000200
С	-2.30700500	-0.34924700	-0.00000200
Ν	-3.40991100	-0.66521600	-0.00000300

1,2,3-trifluorobenzene (surrogate for 2al)

С	-1.19259600	-0.01436700	-0.00000200
С	-0.00001600	-0.71868200	0.00000000
С	1.19258600	-0.01449000	-0.00000700
С	1.20669200	1.36629800	-0.00000400
С	0.00009100	2.05065100	0.00000500
С	-1.20660800	1.36638100	0.00000000
н	2.15811600	1.87921300	-0.00000400
н	0.00011000	3.13161100	0.00001000
н	-2.15795600	1.87943000	0.00000200
F	2.33127100	-0.70510600	0.00000300
F	-0.00011400	-2.04603200	0.00000300
F	-2.33128600	-0.70497400	-0.00000100

(3-fluorophenyl)trimethylsilane (surrogate for 2am)

С	-2.36020900	-0.53821900	-0.00000200
С	-1.96009800	1.80171600	0.00000500
н	-2.32844600	2.81964000	0.00002700
С	-1.00620200	-0.80379000	-0.00007400
н	-0.68449700	-1.83969500	-0.00012400
С	-0.09149100	0.25242600	-0.00010600
F	-3.22398100	-1.56673800	0.00000000
С	-0.59218800	1.55538200	-0.00006700
н	0.09138900	2.39601700	-0.00012500
Si	1.75587900	-0.11343100	0.00000300
С	2.69926000	1.50271500	-0.00196000
н	2.46688500	2.10051900	0.88160000
н	3.77449500	1.31367500	-0.00214500

Н	2.46624800	2.09878500	-0.88651400
С	2.17250600	-1.10786200	1.53151700
Н	1.60376600	-2.03946700	1.56168100
Н	3.23397100	-1.36342200	1.55247400
Н	1.93933000	-0.54545000	2.43711300
С	2.17199900	-1.11130800	-1.52941800
Н	3.23335900	-1.36736800	-1.54984900
Н	1.60289000	-2.04273800	-1.55768800
Н	1.93909900	-0.55067200	-2.43618500
С	-2.86235000	0.74932400	0.00003900
н	-3.93232000	0.90654200	0.00008300

1-fluoro-3-iodobenzene (surrogate for 2am)

С	2.48456900	-0.57802700	-0.00000400
С	2.09682100	1.76393400	0.00000400
н	2.46940300	2.77978100	0.00000300
С	1.12820300	-0.84440800	-0.00000400
н	0.78016300	-1.86749100	-0.00000700
С	0.72676200	1.53961500	0.00000500
н	0.03499200	2.36977200	0.00000800
F	3.33509700	-1.61223000	-0.00001200
С	2.99315000	0.70579400	0.00000000
н	4.06334200	0.85758500	-0.00000400
С	0.25671900	0.23400100	0.00000100
I	-1.80153100	-0.12368000	0.00000200

2-(3-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (surrogate for 2ao)

С	-3.54189200	0.64082500	0.07540000
С	-3.31165300	-1.71512200	-0.18048700
н	-3.75692200	-2.69586200	-0.28741800
С	-2.17308900	0.80949100	0.09174800
н	-1.75548100	1.80290000	0.19763800
С	-1.34862500	-0.30991100	-0.02934100
С	-1.93193300	-1.57110000	-0.16493000
н	-1.29352200	-2.44085800	-0.25759300
F	-4.33391000	1.71934700	0.19177500
В	0.19693200	-0.14383100	-0.01383800
0	0.82457300	1.06017400	0.15837500
0	1.07378900	-1.18279900	-0.17155300
С	2.39141000	-0.67757100	0.13578700
С	2.22557700	0.85414800	-0.12434100
С	3.05251600	1.74547900	0.78024300
н	4.11676900	1.54646400	0.63822800
н	2.86371700	2.78984500	0.53156100
н	2.80207100	1.59287000	1.82795600
С	2.44283200	1.22984900	-1.58470400
н	2.12054800	2.26042900	-1.73213600
н	3.49399800	1.14858600	-1.86347300
н	1.85442200	0.58933600	-2.24340900
С	2.65866700	-1.00205700	1.59995800
н	2.55985400	-2.07795400	1.74296600
н	3.66393500	-0.70085500	1.89654000
н	1.93695100	-0.50223400	2.24767900
С	3.40829600	-1.36487000	-0.75327500

Н	4.39731600	-0.92493300	-0.60871500
н	3.46273600	-2.42232600	-0.49421700
н	3.13696900	-1.28305900	-1.80379500
С	-4.13192600	-0.60181100	-0.05880800
н	-5.21079600	-0.68042700	-0.06667100

(3-fluorophenyl)trimethylstannane (surrogate for 2ap)

С	-3.03466400	-0.56057400	0.00052000
С	-2.68168500	1.78688700	0.00128600
н	-3.07079900	2.79723700	0.00155200
С	-1.67402300	-0.79986200	0.00016900
н	-1.33649500	-1.83091700	-0.00079900
С	-0.78438500	0.27505000	0.00052300
С	-1.30895200	1.56813200	0.00088600
н	-0.64331900	2.42440800	0.00037800
Sn	1.34944500	-0.06053500	-0.00001100
С	1.86020800	-1.22752300	-1.73784000
н	2.92217500	-1.47132200	-1.74007900
н	1.29339400	-2.15840400	-1.74653900
н	1.62667100	-0.67504000	-2.64704500
С	1.88003900	-1.14492600	1.78462700
н	2.94599500	-1.37020700	1.79602100
н	1.63704500	-0.55905900	2.67018800
н	1.32916000	-2.08410700	1.83229200
С	2.29808200	1.87327600	-0.04984000
н	2.00299200	2.42148400	-0.94426300
Н	2.01854100	2.45982800	0.82510600

Н	3.38220000	1.76467400	-0.05671600
F	-3.87728200	-1.60678000	0.00002400
С	-3.56272700	0.71581400	0.00116000
н	-4.63561900	0.85153900	0.00131300

ferrocene (surrogate for 2aq)

С	1.76290800	1.04463100	-0.60052300
С	1.76339000	0.89397200	0.80743200
С	1.76456700	-0.49178600	1.09960400
С	1.76512000	-1.19787000	-0.12814800
н	1.73510900	1.97864000	-1.13776700
н	1.73601800	1.69342400	1.52984000
н	1.73817700	-0.93179600	2.08310100
н	1.73941800	-2.26916700	-0.24260000
Fe	-0.00017000	-0.00034600	-0.00009800
С	-1.76313900	0.02633200	1.20484000
С	-1.76273500	1.15384200	0.34747400
С	-1.76446000	-1.13729700	0.39725300
н	-1.73680500	0.05020500	2.28217200
С	-1.76343800	0.68689000	-0.98989100
н	-1.73676400	2.18561700	0.65794800
С	-1.76463600	-0.72928800	-0.95877000
н	-1.73993400	-2.15474800	0.75235600
н	-1.73735200	1.30129100	-1.87510400
н	-1.74030200	-1.38186900	-1.81630800
С	1.76395300	-0.24813400	-1.17891400
н	1.73765700	-0.47035600	-2.23322600

(trifluoromethoxy)benzene (surrogate for 2ar)

С	-2.45135600	-1.20244300	0.09110100
С	-1.11699000	1.20921500	-0.29050400
С	-3.11753500	0.00031000	0.28302900
Н	-2.96978000	-2.14090600	0.23636300
Н	-0.57572900	2.13170400	-0.45074200
Н	-4.15829800	0.00063000	0.57894900
С	-2.45079700	1.20276600	0.09090700
Н	-2.96886400	2.14146000	0.23591300
С	-0.47137900	-0.00031000	-0.47065700
0	0.85804800	-0.00084600	-0.90757400
С	1.80313700	-0.00001500	0.05184200
F	2.98464600	-0.00029400	-0.53809400
F	1.72555500	-1.07166700	0.84301100
F	1.72532000	1.07266400	0.84156400
С	-1.11752100	-1.20954600	-0.29033900
н	-0.57674500	-2.13230700	-0.45049800

1-pentafluorosulfanyl-3-fluorobenzene (surrogate for 2as)

С	-2.60624700	-0.54593700	0.00021000
F	-3.46805800	-1.56791800	-0.00011600
С	-2.19344400	1.79573900	-0.00006400
н	-2.55589500	2.81465700	-0.00022600
С	-0.82660800	1.55586700	0.00001700
н	-0.12512500	2.37677400	0.00000500
С	-0.37795500	0.24604200	0.00004600

С	-1.25403500	-0.82610100	0.00003700
Н	-0.91427900	-1.85158900	-0.00008900
S	1.39695400	-0.08243100	-0.0000900
F	1.24704700	-1.19510400	1.12163400
F	1.65527800	1.01090800	1.12029100
F	2.94635700	-0.36997300	-0.00010200
F	1.24702600	-1.19496200	-1.12178600
F	1.65499700	1.01116400	-1.12011500
С	-3.09731500	0.74504100	0.00009200
н	-4.16616400	0.90810000	0.00017400

1-pentafluorosulfanyl-3-chlorobenzene (surrogate for 2at)

С	2.37609700	-0.04605100	-0.00017500
С	1.60187300	2.21635000	0.00006100
Н	1.80836300	3.27804800	0.00029800
С	0.28740200	1.77394800	-0.00002800
Н	-0.53013900	2.47978500	0.00002500
С	0.04333200	0.41096500	-0.00004500
С	1.07248100	-0.51468200	-0.00004900
Н	0.87653200	-1.57661100	0.00009000
S	-1.66091600	-0.18519500	0.00004600
F	-1.34374400	-1.26242800	-1.12087500
F	-2.08191700	0.85513000	-1.12135000
F	-3.14862200	-0.70380000	-0.00000500
F	-1.34384300	-1.26230500	1.12112500
F	-2.08172600	0.85554400	1.12113200
CI	3.67874000	-1.18385400	0.00005300

С	2.65225500	1.31241800	-0.00011800
Н	3.67935100	1.65046600	-0.00018000

1-pentafluorosulfanyl-4-fluorobenzene (s	surrogate for 2au)
--	----------------------------

С	-3.04429600	-0.00003200	0.00001500
С	-0.99416000	1.20797600	-0.00002700
Н	-0.45045000	2.14172800	-0.00005700
С	-0.31536600	0.00004000	0.00002100
С	-2.37924300	-1.21111200	-0.00001100
Н	-2.94371300	-2.13292300	0.00000300
С	-0.99411800	-1.20794500	0.00003800
Н	-0.45035600	-2.14165200	0.00005900
S	1.48471000	0.00007700	-0.00000700
F	1.54279200	-1.12238200	1.12108900
F	1.54258200	-1.12219400	-1.12130700
F	3.06159800	-0.00017700	-0.00005300
F	1.54269500	1.12244400	-1.12121700
F	1.54268200	1.12221900	1.12145500
F	-4.37992600	-0.00005000	0.00000000
С	-2.37929300	1.21107900	0.00003100
н	-2.94381200	2.13285100	-0.00000600

1-pentafluorosulfanyl-4-chlorobenzene (surrogate for 2av)

С	2.70419000	-0.00000500	0.00000500
С	0.63816700	-1.20665200	0.00006700
Н	0.09673300	-2.14182600	0.0008800
С	-0.04116800	0.00006700	0.00002400

С	2.02350000	1.20755100	0.00006500
н	2.57407000	2.13763100	0.00009300
CI	4.43273000	-0.00004600	-0.00000400
С	0.63821900	1.20676100	-0.00004600
н	0.09685300	2.14196800	-0.00007800
S	-1.84260900	0.00006900	0.00001000
F	-1.89917000	1.12282400	1.12043800
F	-1.89900100	1.12118000	-1.12206700
F	-3.41882300	-0.00023600	-0.00007100
F	-1.89898500	-1.12278300	-1.12029700
F	-1.89895300	-1.12115700	1.12194900
С	2.02344700	-1.20753600	-0.00005800
н	2.57394800	-2.13765500	-0.00010800

(3-chlorophenyl)trimethylsilane (surrogate for 2aw)

С	-2.08966600	-0.03366600	0.00000800
С	-1.31682100	2.22361600	0.00000200
н	-1.52360600	3.28629900	0.00004300
С	-0.78483500	-0.49618100	-0.00016200
н	-0.61431300	-1.56709700	-0.00029700
С	0.28481300	0.40229900	-0.00024500
С	-0.00463600	1.76745000	-0.00019100
н	0.80297300	2.49022500	-0.00037200
Si	2.04889600	-0.25883700	-0.00006400
С	3.24479100	1.17980000	-0.00620100
н	3.11622900	1.80973900	0.87619500
н	4.27347100	0.81416000	-0.00629900

Н	3.11389500	1.80398800	-0.89235000
С	2.29512800	-1.30601200	1.53198400
Н	1.58710700	-2.13672700	1.55587900
Н	3.30273300	-1.72593900	1.55976400
Н	2.14721500	-0.71644400	2.43828300
С	2.29130400	-1.31649700	-1.52548100
Н	3.29972400	-1.73439800	-1.55415800
Н	1.58515200	-2.14901400	-1.54026500
Н	2.13838800	-0.73408600	-2.43554100
CI	-3.40048800	-1.17348400	0.00005000
С	-2.37119600	1.32420100	0.00011000
н	-3.39850900	1.66218700	0.00023200

(3-chlorophenyl)trimethylstannane (surrogate for **2ax**)

С	-2.80870600	-0.05794300	0.00196300
С	-2.14056700	2.23237700	0.00379400
н	-2.39675700	3.28454200	0.00429300
С	-1.48234300	-0.46094800	0.00131000
н	-1.26764800	-1.52413300	-0.00142200
С	-0.45888900	0.48667600	0.00219300
С	-0.80854500	1.83735400	0.00286500
н	-0.03577400	2.59892900	0.00131800
CI	-4.06538300	-1.25789500	-0.00014700
Sn	1.60885900	-0.14011900	-0.00036500
С	1.91539500	-1.44921900	-1.68399800
н	2.93254300	-1.83972100	-1.68823300
н	1.22473800	-2.29100500	-1.63610900

Н	1.74208100	-0.91616900	-2.61785000
С	2.01149400	-1.20660900	1.82787200
Н	3.00005400	-1.66373400	1.79667900
Н	1.96570900	-0.53161900	2.68146900
Н	1.27170800	-1.99378400	1.97252600
С	2.81444600	1.63894600	-0.15234200
н	2.57914400	2.18220700	-1.06720500
н	2.63618500	2.29727300	0.69779600
н	3.87294700	1.38107900	-0.16893500
С	-3.15260100	1.28459000	0.00346400
н	-4.19445600	1.57494300	0.00368100

2-(3-chloroophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (surrogate for 2ay)

С	3.28108800	-0.17615800	0.02220400
С	2.79303800	2.15817600	-0.16807400
н	3.13500900	3.18196700	-0.24780800
С	1.92948800	-0.47588800	0.03646800
н	1.60526300	-1.50593900	0.11562800
С	0.99034000	0.55234200	-0.05115700
С	1.43647700	1.87048800	-0.15335700
н	0.70944600	2.67041100	-0.22157900
В	-0.53116000	0.23326500	-0.03055700
0	-1.50126800	1.18998100	-0.15873100
0	-1.04212400	-1.02639600	0.12274000
С	-2.46119500	-0.94441300	-0.13513800
С	-2.76236600	0.56103800	0.15703500
С	-3.85101500	1.16842500	-0.70477900

Н	-4.79468500	0.64104700	-0.55089600
н	-3.99411900	2.21299400	-0.42797200
н	-3.59210900	1.12634500	-1.76071800
С	-3.03600700	0.83392100	1.63053800
Н	-3.03665300	1.91166100	1.79188600
Н	-4.00380300	0.43409100	1.93492700
Н	-2.26092100	0.39326200	2.25923300
С	-2.66858000	-1.31272700	-1.59864800
Н	-2.25512500	-2.30620300	-1.77101800
Н	-3.72794900	-1.32396300	-1.85766200
Н	-2.15473400	-0.60880100	-2.25500200
С	-3.18908000	-1.92230800	0.76517300
Н	-4.26932000	-1.80700300	0.65313700
Н	-2.92275200	-2.94183300	0.48644100
Н	-2.92584900	-1.77313200	1.81022700
С	3.72473400	1.13367600	-0.07973600
н	4.78628500	1.34052600	-0.08896200
CI	4.44608400	-1.45881500	0.13221600

1-fluoro-3-(trifluoromethoxy)benzene (surrogate for 2az)

С	2.29992300	-0.58575100	-0.00168700
С	1.90260900	1.75763700	0.11101800
н	2.25840700	2.76251100	0.29396200
С	0.99062000	-0.83162600	-0.36672200
н	0.64026400	-1.83651800	-0.55438300
С	0.14881800	0.25950900	-0.48384000
С	0.57966700	1.55347500	-0.25410700

Н	-0.11577800	2.37340400	-0.36337300
0	-1.16338500	0.04454200	-0.90854300
С	-2.08376300	-0.15225500	0.05780600
F	-1.80363800	-1.21402000	0.81493200
F	-2.18860400	0.89469900	0.87718300
F	-3.25106100	-0.34761900	-0.52555800
F	3.13509800	-1.62383500	0.11669500
С	2.77654200	0.68835300	0.24113800
н	3.81152400	0.82518900	0.52123900

1-chloro-3-(trifluoromethoxy)benzene (surrogate for 2ba)

С	2.05109500	-0.09023100	-0.04098500
С	1.26958300	2.16470500	0.12505700
н	1.46203500	3.20947500	0.32906400
С	0.78622400	-0.52438900	-0.40337700
н	0.58560000	-1.56513000	-0.61461400
С	-0.22329500	0.41641300	-0.49142900
С	-0.00614700	1.75814000	-0.23725300
н	-0.82426300	2.45897100	-0.32606700
CI	3.33511000	-1.24361200	0.07676700
0	-1.48688600	-0.00426600	-0.91025500
С	-2.36183600	-0.33690600	0.06174700
F	-1.91557500	-1.33692300	0.82199800
F	-2.62561500	0.68607200	0.87614800
F	-3.48615900	-0.71502800	-0.51546900
С	2.30436500	1.24681200	0.22603600
Н	3.30105200	1.55786100	0.50574600

3-fluorophenyl acetate, conformation A (surrogate for **2bb**)

E(RM062X) = -484.12428891 a.u.

С	-1.79479100	-0.44897500	-0.00000100
С	-1.11166300	1.83232500	-0.00012600
Н	-1.35493500	2.88653900	-0.00014800
С	-0.48809200	-0.88092700	0.00004700
Н	-0.24794400	-1.93560300	0.00005800
С	0.52967800	0.06950400	0.00001600
С	0.21606700	1.42544300	-0.00015800
Н	1.00131700	2.16917200	-0.00028600
F	-2.78115500	-1.35532900	0.00016500
С	1.94677700	-0.42829200	0.00001300
С	3.06431100	0.58459900	0.00030700
Н	2.99912600	1.22583000	-0.88037800
Н	2.99901400	1.22547600	0.88127400
Н	4.01339800	0.05652600	0.00025000
0	2.17616000	-1.61223200	-0.00034100
С	-2.13138600	0.89408600	-0.00002200
н	-3.17426600	1.18130600	0.00001800

3-fluorophenyl acetate, conformation B (surrogate for **2bb**)

E(RM062X) = -484.12409276 a.u.

С	-1.72605100	-0.54945300	-0.00002300
С	-1.27822900	1.78739300	0.00004000
н	-1.63086200	2.81026000	0.00006600
С	-0.37687100	-0.84421200	-0.00001400

S108
Н	-0.06831400	-1.88084800	-0.00003600
С	0.53654500	0.20578700	-0.00003500
С	0.08070500	1.52170600	-0.00005200
Н	0.81047100	2.31983300	-0.00009700
F	-2.60543600	-1.56161700	0.00000600
С	2.01879600	-0.03775800	-0.00004400
С	2.51190400	-1.46344600	0.00003700
н	2.14603200	-1.99367100	0.88106300
н	2.14556900	-1.99388700	-0.88070500
н	3.59795400	-1.45810600	-0.00028100
0	2.78869800	0.89033600	0.00003600
С	-2.19934800	0.74726100	0.00002300
н	-3.26621300	0.92460900	0.00006200

3-chlorophenyl acetate, conformation A (surrogate for **2bc**)

E(RM062X) = -844.47427445 a.u.

С	-1.45775200	-0.01983900	-0.00001300
С	-0.49426000	2.16999400	0.00007700
Н	-0.61632800	3.24510400	0.00019600
С	-0.19596300	-0.59252200	-0.00006800
Н	-0.10676300	-1.67014400	-0.00002800
С	0.92658300	0.22928500	-0.00002600
С	0.77250700	1.61315000	0.00008900
Н	1.66095100	2.23012000	0.00017700
С	2.31934200	-0.33378000	0.00002600
С	2.49013000	-1.83233300	0.00021500
Н	2.01746600	-2.27097000	0.88073700

Н	2.01812700	-2.27110500	-0.88058600
н	3.55149400	-2.06290500	0.00054700
0	3.27303600	0.40441600	-0.00028800
CI	-2.85511600	-1.04419500	-0.00005500
С	-1.61998900	1.35577700	0.00005000
н	-2.61584000	1.77749700	0.00010200

3-chlorophenyl acetate, conformation B (surrogate for **2bc**) E(RM062X) = -844.47411726 a.u.

С	1.48784000	0.00637700	-0.0000200
С	0.38724500	2.13138300	-0.00003300
Н	0.43677500	3.21216000	-0.00005800
С	0.27034100	-0.64561800	-0.00002900
Н	0.21224200	-1.72561600	-0.00008200
С	-0.90526700	0.10118400	-0.00001300
С	-0.84394300	1.49087400	0.00004300
Н	-1.75107000	2.07996400	0.00012700
С	-2.20879800	-0.64560400	-0.00003100
С	-3.48975600	0.15131400	0.00005800
Н	-3.53787600	0.79403100	0.88079900
Н	-3.53802000	0.79397300	-0.88074500
Н	-4.33045100	-0.53622700	0.00011300
0	-2.22163100	-1.85122300	-0.00004400
CI	2.95349500	-0.91706900	0.00003700
С	1.56005500	1.39361200	-0.00004700
н	2.52572800	1.88053100	-0.00010300

1-ethynyl-3-fluorobenzene (surrogate for 2bd)

С	1.39483400	-0.53239600	0.00001700
С	0.79559900	1.76861200	-0.00000500
Н	1.07725600	2.81330100	0.00080000
С	0.07124500	-0.91833700	0.00001800
Н	-0.18828900	-1.96772500	0.00004300
С	-0.91295200	0.07059700	0.00000100
С	-0.54445900	1.41741300	0.00001200
Н	-1.31470800	2.17605900	0.00001400
С	-2.29655600	-0.29961100	-0.00002200
С	-3.45545600	-0.60691700	-0.00003100
Н	-4.48347700	-0.87994100	0.00013600
F	2.34005100	-1.48239500	-0.00000400
С	1.78323600	0.79370600	-0.00001800
н	2.83581900	1.04146100	-0.00006500

1-ethynyl-3-chlorobenzene (surrogate for 2be)

С	1.10728300	-0.05461100	0.00002500
С	-0.00497300	2.06076200	-0.00000800
Н	0.03803300	3.14182900	0.00006400
С	-0.10716200	-0.71646000	0.00003300
Н	-0.14125000	-1.79672700	0.00005700
С	-1.28935800	0.02526400	0.00001300
С	-1.23233300	1.41977400	0.00001100
Н	-2.15276100	1.98713300	-0.00003200
CI	2.57302600	-0.97841800	-0.00001000
С	-2.55222400	-0.64962100	-0.00001800

S111

С	-3.60884100	-1.21578100	-0.00002900
н	-4.54566800	-1.71908200	0.00005600
С	1.17470800	1.33033300	-0.00001100
н	2.13761000	1.82200200	-0.00007600

1,2-difluorobenzene (surrogate for 2bf, 2bm)

С	-0.65624800	1.39311900	-0.00000100
С	0.53242600	0.69295300	-0.00001700
С	-0.65624300	-1.39311900	0.00000400
С	-1.85583500	-0.69361400	-0.00000600
С	-1.85583600	0.69361000	0.00000500
Н	-0.62236100	2.47421300	0.00000500
Н	-0.62235600	-2.47421200	0.00001000
Н	-2.79014200	-1.23795900	-0.00000800
Н	-2.79014600	1.23795100	0.00001500
С	0.53243000	-0.69294900	0.00000200
F	1.69893500	-1.34029200	0.00000100
F	1.69893500	1.34029200	0.00000500

1,4-difluorobenzene (surrogate for 2bg)

С	1.36058200	0.00001700	-0.0000300
С	0.69372900	-1.20981700	0.0000300
С	-0.69372500	-1.20981600	-0.00000200
С	-1.36058200	0.00001200	-0.00000700
С	-0.69374400	1.20982000	0.00000400
С	0.69374100	1.20982100	0.00000100
Н	1.25909900	-2.13137000	0.00002100

Н	-1.25909500	-2.13137200	-0.00000400
н	-1.25906600	2.13140300	0.00000000
н	1.25906000	2.13140500	0.00000200
F	-2.70216000	-0.00001600	0.00000200
F	2.70216000	-0.00001500	-0.00000100

1-chloro-2-fluorobenzene (surrogate for 2bh)

С	-0.40252000	-1.46042500	0.00000000
С	0.42411900	-0.34712800	-0.00000100
С	-0.14314300	0.91844400	-0.00001300
С	-1.51346300	1.08947600	-0.00000400
С	-2.33459200	-0.02811700	0.00000800
С	-1.77991200	-1.30024400	-0.00000200
Н	0.04616500	-2.44440800	0.00000400
н	-1.91100700	2.09530400	-0.00000600
н	-3.40867600	0.09898500	0.00001500
н	-2.41816100	-2.17331300	-0.00000400
F	0.64833200	1.99072300	0.00000600
Cl	2.13845600	-0.51324200	0.00000100

1-fluoro-2-methylbenzene (surrogate for 2bi)

С	-0.49330600	-1.44481900	0.00000200
С	0.61660200	-0.60699700	-0.00001000
С	0.36525500	0.75770000	-0.00001600
С	-0.90369000	1.29783200	-0.00000600
С	-1.99118300	0.43490400	0.00000500
С	-1.78572000	-0.93653700	0.00000300

Н	-0.33442300	-2.51667100	0.00000100
Н	-1.02305200	2.37268700	-0.00001000
Н	-2.99530600	0.83763200	0.00001700
Н	-2.63073600	-1.61182400	0.00000600
F	1.42055100	1.59192700	0.00001100
С	2.02783900	-1.11588800	0.00000000
н	2.57098900	-0.76079900	-0.87714100
н	2.57084900	-0.76117600	0.87738500
н	2.04192900	-2.20436400	-0.00022100

1-fluoro-3-methylbenzene (surrogate for 2bj)

С	-1.19217400	-0.19555400	-0.00649600
С	-0.04323500	-0.98394900	-0.00524600
С	1.19469200	-0.37636400	0.00034500
С	1.34997600	0.99688400	0.00389100
С	0.20457300	1.77759200	0.00112900
С	-1.05324900	1.18857200	-0.00439600
Н	-0.10189400	-2.06526800	-0.00911400
Н	2.34258800	1.42505000	0.00689900
Н	0.29472300	2.85607200	0.00188000
Н	-1.93894900	1.81162500	-0.00785700
F	2.29161600	-1.15027500	0.00086200
С	-2.54833500	-0.84454900	0.00496700
н	-2.62810400	-1.60036600	-0.77741000
Н	-2.72963500	-1.34122700	0.96010500
Н	-3.33675600	-0.10919600	-0.14742800

1-fluoro-4-(trifluoromethyl)benzene (surrogate for 2bk)

С	-0.35088500	0.01761500	-0.02176400
С	0.32924300	-1.19404300	-0.01511900
С	1.71281500	-1.21082100	-0.00350600
С	2.38587500	-0.00230700	0.00241100
С	1.73072800	1.21304700	-0.00336200
С	0.34407500	1.21728900	-0.01459400
н	-0.22477800	-2.12379600	-0.02429900
н	2.30408000	2.12947700	-0.00099600
н	-0.19535700	2.15427300	-0.02284100
С	-1.85173000	0.00455700	-0.00086300
F	-2.37206400	1.19539900	-0.31227100
F	-2.32758300	-0.32692400	1.20854800
F	-2.35201800	-0.88857000	-0.86447800
н	2.27397300	-2.13475700	-0.00134300
F	3.72292700	-0.01292900	0.01156400

1-chloro-4-fluorobenzene (surrogate for 2bl)

С	-0.25982200	1.20689800	0.00000200
С	1.12696200	1.20912700	0.00000600
С	1.79453900	0.00001800	0.00000600
С	1.12692900	-1.20911700	0.00000400
С	-0.25981300	-1.20689200	0.00000500
С	-0.94180200	0.00002500	0.00000200
н	-0.81165700	2.13650300	-0.00001000
н	1.69025800	2.13204400	0.00000800
Н	1.69028200	-2.13200100	0.00000000

Н	-0.81170500	-2.13646300	-0.00000700
F	3.13429400	-0.00002900	-0.00001000
CI	-2.67575200	-0.00001000	-0.00000300

(difluoromethyl)benzene (surrogate for 2bu)

С	-1.73388100	1.27644900	0.21026600
С	-0.36152700	1.11649300	0.10428700
С	0.16793400	-0.14711000	-0.12734600
С	-0.67137300	-1.24426600	-0.25430500
С	-2.04534100	-1.08297000	-0.14513800
С	-2.57548000	0.17771400	0.08713000
н	-2.15019700	2.25975300	0.38650600
н	0.30310700	1.96611500	0.19173000
н	-0.25041700	-2.22627400	-0.43765600
н	-2.70053500	-1.93839200	-0.24418500
н	-3.64711200	0.30677800	0.16865200
С	1.65226200	-0.34412000	-0.19850700
н	1.93732600	-1.23159800	-0.76687700
F	2.26063500	0.73168900	-0.75935800
F	2.17406100	-0.47052500	1.05308100

7. References and footnotes

- 1. C. K. Chung, Z. Liu, K. W. Lexa, T. Andreani, Y. Xu, D. A. DiRocco, G. R. Humphrey and R. T. Ruck, *J. Am. Chem. Soc.* 2017, **139**, 10637.
- 2. H. Kim, Y. Nguyen, C. P.-H. Yen, L. Chagal, A. J. Lough, B. M. Kim and J. Chin, *J. Am. Chem. Soc.* 2008, **130**, 12184.
- 3. Typically, a small amount of EtOAc was added to dissolve the product. In this case, the EtOAc:Et₂O ratio should not exceed ca. 20:80 to avoid DMSO extraction.
- 4. If no precipitation occurs overnight, the solvent can be exchanged to Et₂O or MeCN.
- 5. S. Pikul and E. J. Corey, *Org. Synth.* 1993, **71**, 30.
- 6. 2,6-lutidine can be used to replace triethylamine as base.
- 7. C. K. Chung, G. R. Humphrey, Z. Liu, M. Mclaughlin, Y. Xu and Y. Yu, WO2017091453 A1, June 1, 2017
- 8. R. E. Carhart, D. H. Smith and R. Ventkataraghavan, *J. Chem. Inf. Comput. Sci.* 1985, **25**, 64.
- 9. R. Nilakantan, N. Bauman, J. S. Dixon and R. Venkataraghavan, *J. Chem. Inf. Comput. Sci.* 1987, **27**, 82.
- 10. D. Rogers and M. Hahn, J. Chem. Inf. Model. 2010, 50, 742.
- 11. Molecular Operating Environment (MOE), Version 2016, Chemical Computing Group, Montreal, Canada, 2016. http://www. chemcomp.com/
- 12. V. Svetnik, A. Liaw, A. C. Tong, J. C. Culberson, R. P. Sheridan and B. P. Feuston, *J. Chem. Inf. Comput. Sci.* 2003, **43**, 1947.
- 13. C. Cortes and V. N. Vapnik, *Machine Learning* 1995, **20**, 273.
- 14. Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
- 15. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT, 2009.