Supporting Information

New Ru(II) Photocages Operative with Near-IR Light: New Platform for Drug Delivery in the PDT Window

Malik H. Al-Afyouni, Thomas N. Rohrabaugh, Jr., Kathlyn F. Al-Afyouni, and Claudia Turro*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210

*to whom correspondence should be addressed: <u>turro.1@osu.edu</u>

Table of Contents

I. X-ray Crystallography	S2
II. Cyclic Voltammetry	S4
III. Photolysis monitored by ¹ H NMR Spectroscopy	S5
IV. Photolysis Monitored by Electronic Absorption Spectroscopy	S10
V. Thermal Stability of 1 – 4	S13
VI. ESI Mass Spectrometry	S15
VII. Experimental and Calculated Bond Lengths of 2 – 4	S16
VIII. Calculated Frontier Molecular Orbitals for 1 and 3	S17
IX. Calculated Electronic Absorption Transitions and Assignments for $1 - 4$	S18
X. NMR spectra	S22
XI. Optimized Atomic Coordinates for 1 – 4	S27

Complex	2	3	4
CCDC Deposit Number	1841086	1841087	1841088
Empirical formula	$C_{39}H_{33}N_7F_{12}P_2Ru$	$C_{45}H_{32}N_8OF_{12}P_2Ru$	$C_{30}H_{25}N_4O_2F_3P_{0.5}Ru$
Formula weight	990.73	1091.79	647.09
Temperature (K)	150	150	150
Space group	Triclinic, P-1	Triclinic, P-1	Monoclinic, C2/m
a (Å)	11.0216(4)	11.9502(4)	18.5470(4)
b (Å)	14.4762(5)	13.3979(4)	23.5958(6)
c (Å)	14.5765(6)	13.5014(4)	17.8330(4)
α (deg)	83.804(1)	82.904(1)	90
β (deg)	85.851(1)	83.437(1)	119.975(1)
γ (deg)	69.748(1)	79.213(1)	90
Volume (Å ³)	2167.6(1)	2098.0(1)	6760.4(3)
Ζ	2	2	8
Density (calcd.)	1.518	1.562	1.272
Crystal size (mm)	0.31 x 0.27 x 0.12	0.19 x 0.15 x 0.08	0.31 x 0.27 x 0.08
Theta range for data collection (deg)	2.813 - 27.878	2.799-27.530	2.883-27.901
Absorption coefficient (mm ⁻¹)	0.524	0.542	0.533
F(000)	996	988	2620
Reflections collected	98530	88529	77031
Unique reflections	10322 [R(int)=0.025]	9651 [R(int)=0.032]	8270 [R(int)=0.031]
R1, wR2 (Ι>2θ)	0.0298, 0.0805	0.0473, 0.1275	0.0402, 0.0456
R1, wR2 (all data)	0.0305, 0.0812	0.0500, 0.1296	0.0981, 0.1017
Goodness-of-fit on F^2	1.028	1.065	1.099
Largest diff. peak/hole (eÅ ⁻³)	1.025/-0.711	1.880/-1.302	1.266/-0.709

Table S1. Crystallographic parameters for 2 - 4.

Figure S1. Thermal ellipsoid (left) and spacefill (right) drawings of complex **2** showing the steric clash of the NCCH₃ ligand with cocrystallized MeCN and PF_6^- . Disordered PF_6^- shown with all modeled partial space-occupying F atoms.

Figure S2. Cyclic voltammagram of dqpy in 0.1 M TBAPF₆ in CH₃CN at 200 mV/s.

Figure S3. Cyclic voltammagram of 4 in 0.1 M TBAPF₆ in CH₃CN at 200 mV/s.

Figure S4. Photolysis of **1** in CD₃CN ($\lambda_{irr} \ge 395$ nm): Full spectrum (top) and enhanced aliphatic region showing the appearance of free CH₃CN (bottom).

Figure S5. Photolysis of **2** in CD₃CN ($\lambda_{irr} \ge 395$ nm): Full spectrum (top) and enhanced aliphatic region showing the appearance of free CH₃CN (bottom).

Figure S6. Photolysis of **3** in CD₃CN ($\lambda_{irr} \ge 395$ nm): Full spectrum (top) and enhanced aliphatic region showing the appearance of free CH₃CN (bottom).

Figure S7. Photolysis of 4 in CD₃CN ($\lambda_{irr} \ge 395$ nm): Full spectrum (top) and enhanced aliphatic region showing the appearance of free CH₃CN (bottom).

Figure S8. Photolysis of 4 in CD₃CN ($\lambda_{irr} = 735 \pm 15$ nm): Full spectrum (top) and enhanced aliphatic region showing the appearance of free CH₃CN (bottom).

Figure S9. Changes in the electronic absorption spectra upon irradiation of 1 (a), 2 (b), and 3 (c) ($\lambda_{irr} \ge 395$ nm, $t_{irr} = 0 - 30$ min) in H₂O (5% acetone).

Figure S10. Changes in the electronic absorption spectra upon irradiation of 2 ($\lambda_{irr} \ge 610$ nm, $t_{irr} = 0 - 2$ h) in H₂O (5% acetone).

Figure S11. Changes in the electronic absorption spectra upon irradiation of **3** ($\lambda_{irr} \ge 610$ nm, $t_{irr} = 0 - 2$ h) in H₂O (5% acetone).

Figure S12. Photolysis of 4 in H₂O (5% acetone) ($\lambda_{irr} \ge 715 \text{ nm}$) for 0 – 2 h in air.

Figure S13. Photolysis of **4** ($\lambda_{irr} \ge 610 \text{ nm}$): (a) in N₂ purged H₂O (5% acetone) at t = 0 (—) and t = 45 min (—) and aerated in the dark after photolysis t = 45 min (--) and (b) in aerated H₂O (5% acetone) with 10 equiv added ascorbic acid t = 0 (—), t = 15 min (—), t = 30 min (—), and t = 45 min (—).

Figure S14. Absorption spectrum of 1 in H_2O (5% acetone) at t = 0 (—) and t = 48 h (- -) in the dark at room temperature.

Figure S15. Absorption spectrum of 2 in H_2O (5% acetone) at t = 0 (—) and t = 48 h (- -) in the dark at room temperature.

Figure S16. Absorption spectrum of **3** in H_2O (5% acetone) at t = 0 (—) and t = 48 h (- -) in the dark at room temperature.

Figure S17. Absorption spectrum of 4 in H_2O (5% acetone) at t = 0 (—) and t = 48 h (- -) in the dark at room temperature.

Figure S18. Calculated (—) and experimental (—) ESI mass spectra of (a) 1, (b) 2, (c) 3, and (d) 4.

Figure S19. Calculated (—) and experimental (—) ESI mass spectrum of species generated from photolysis of **4** in aerated H_2O (5% acetone) consistent with $[Ru(dqpy)(acac)(OH)]^+$.

Ru–N / Å						
Source			bpy		CH ₃ CN	
	N2	N3	N4	N5	N6	N1
Calcd	2.169	1.988	2.166	2.090	2.063	2.017

 Table S2. Calculated Bond Lengths for 1.

 Table S3. Experimental and Calculated Bond Lengths for 2.

Ru–N / Å						
Source		dqpy		(CH ₃) ₂ bpy	CH ₃ CN
Source	N2	N3	N4	N5	N6	N1
Experiment	2.129(2)	1.979(2)	2.174(1)	2.099(2)	2.054(1)	2.044(1)
Calcd	2.163	1.986	2.170	2.095	2.067	2.014

 Table S4. Experimental and Calculated Bond Lengths for 3.

Ru–N / Å						
Source		dqpy		ph	en	CH ₃ CN
	N2	N3	N4	N5	N6	N1
Experiment	2.160(2)	1.971(3)	2.146(2)	2.103(3)	2.059(2)	2.038(2)
Calcd	2.170	1.986	2.165	2.103	2.072	2.013

 Table S5. Experimental and Calculated Bond Lengths for 4.

Ru–N / Å				Ru	-0/ Å	
Source		dqpy		CH ₃ CN	ac	ac
Source	N2	N3	N4	N1	01	O2
Experiment	2.096(3)	1.937(2)	2.124(2)	2.011(*)	2.090(2)	2.053(2)
Calcd	2.113	1.951	2.113	1.987	2.100	2.057

Figure S20. Calculated frontier molecular orbitals for 1.

Figure S21. Calculated frontier molecular orbitals for 3.

Complex	Exptl. λ (nm)	Calcd. λ (nm)	Assignment
	471	448	Ru $d_{yz}/d_{xz}/d_{xy} \longrightarrow bpy \pi^*/dqpy \pi^*$
1	550	529	Ru $d_{yz}/d_{xz}/d_{xy} \longrightarrow dqpy \pi^*$
	609	560	Ru $d_{yz}/dqpy \pi \longrightarrow dqpy \pi^*$ (HOMO \longrightarrow LUMO)
			Ru dug/dug/dug \longrightarrow Meabny $\pi^*/$
	456	446	$dqpy \pi^*$
2	558	544	Ru $d_{yz}/d_{xz}/d_{xy} \longrightarrow dqpy \pi^*$
	608	570	Ru $d_{yz}/dqpy \pi \longrightarrow dqpy \pi^*$ (HOMO \longrightarrow LUMO)
			Ru $d_{yz}/d_{xz}/d_{xy} \longrightarrow$ phen $\pi^*/$
	469	458	dqpy π*
3	534	532	Ru $d_{yz}/d_{xz}/d_{xy} \longrightarrow dqpy \pi^*$
	600	557	Ru $d_{yz}/dqpy \pi \longrightarrow dqpy \pi^*$ (HOMO \longrightarrow LUMO)
	540	517	Ru $d_{xy} \longrightarrow dqpy \pi^*$
4	703	598	Ru $d_{yz}/d_{xy} \longrightarrow dqpy \pi^*$
	770	730	Ru $d_{yz}/acac \pi \longrightarrow dqpy \pi^*$ (HOMO \longrightarrow LUMO)

Table S5. Calculated Electronic Absorption Transitions and Assignments for 1 - 4.

Figure S22. Calculated absorption spectrum of 1. Inset: overlay of experimental (—) and calculated (---) absorption spectra of 1.

Figure S23. Calculated absorption spectrum of **2**. Inset: overlay of experimental (—) and calculated (---) absorption spectra of **2**.

Figure S24. Calculated absorption spectrum of **3**. Inset: overlay of experimental (—) and calculated (---) absorption spectra of **3**.

Figure S25. Calculated absorption spectrum of **4**. Inset: overlay of experimental (—) and calculated (---) absorption spectra of **4**.

Figure S25. 400 MHz ¹H NMR spectrum of 1-Cl in acetone- d_6 .

Figure S26. 400 MHz ¹H NMR spectrum of 2-Cl in acetone- d_6 .

Figure S27. 400 MHz ¹H NMR spectrum of 3-Cl in acetone- d_6 .

Figure S28. 400 MHz ¹H NMR spectrum of 1 in acetone- d_6 .

Figure S29. 400 MHz ¹H NMR spectrum of 2 in acetone- d_6 .

Figure S30. 400 MHz ¹H NMR spectrum of 3 in acetone- d_6 .

Figure S31. 400 MHz ¹H NMR spectrum of 4 in acetone- d_6 .

Table S6. Optimized Atomic Coordinates (atomic number, x, y, z) for singlet $[1]^{2+}$.

44	8.030418000	3.760839000	3.623646000
7	8.303041000	5.767178000	4.392890000
7	9.885997000	3.675100000	4.332498000
7	7.320648000	3.126265000	5.401235000
7	8.538929000	4.471771000	1.754498000
7	6.158983000	3.958638000	2.714168000
7	8.576277000	1.707971000	3.182680000
6	6.162418000	4.576580000	1.489759000
6	6.952876000	2.771925000	6.448515000
6	7.417013000	6.828293000	4.486405000
6	10.473569000	4.814349000	4.786127000
6	4.966645000	4.838288000	0.807641000
6	7.495803000	4.858534000	0.951325000
6	10.533180000	2.480277000	4.351925000
6	6.022361000	6.624109000	4.370478000
6	9.602442000	5.993041000	4.729537000
6	7.882068000	8.165511000	4.760306000
6	9.760818000	1.378226000	3.769904000
6	6.953104000	9.236546000	4.809969000
6	5.140482000	7.684578000	4.455654000
6	5.603141000	9.005533000	4.653520000
6	9.802326000	4.629503000	1.296671000
6	11.778680000	4.775780000	5.290836000
6	7.881467000	0.704541000	2.523771000
6	7.730804000	5.427768000	-0.305808000
6	10.101512000	7.280234000	5.029464000
6	6.487312000	2.338422000	7.748400000
1	5.974447000	1.368425000	7.669370000
1	5.787569000	3.075510000	8.169641000
1	7.336813000	2.229719000	8.438880000
6	9.258397000	8.364822000	5.006543000
6	11.841028000	2.402492000	4.848084000
6	3.750388000	4.452725000	1.362813000
6	3.756539000	3.790625000	2.594876000
6	10.088804000	5.181931000	0.053845000
6	4.969227000	3.563944000	3.232682000
6	8.333512000	-0.665097000	2.559611000
6	9.034661000	5.598295000	-0.761670000
6	10.251472000	0.054055000	3.816299000
6	12.461500000	3.559238000	5.319396000
6	7.585019000	-1.672961000	1.899353000
6	6.030354000	-0.007316000	1.112134000
6	6.447509000	-1.355059000	1.188980000

6	9.532510000	-0.965162000	3.242214000
6	6.725522000	0.994677000	1.762309000
1	10.599363000	4.294912000	1.958529000
1	7.328635000	10.243709000	5.001668000
1	5.649149000	5.613862000	4.250228000
1	5.018160000	3.052857000	4.193287000
1	11.158156000	7.409262000	5.257904000
1	12.255984000	5.678381000	5.669183000
1	4.067620000	7.497407000	4.382888000
1	11.127059000	5.280763000	-0.263241000
1	9.224530000	6.041052000	-1.740036000
1	2.815056000	4.653315000	0.839149000
1	2.831952000	3.449463000	3.061261000
1	11.191687000	-0.154964000	4.323580000
1	13.478379000	3.512781000	5.710462000
1	9.634192000	9.370947000	5.202732000
1	4.892086000	9.830987000	4.705271000
1	12.376529000	1.454580000	4.859965000
1	9.885200000	-1.997244000	3.291132000
1	7.941683000	-2.703637000	1.950661000
1	5.880768000	-2.132773000	0.675600000
1	6.401321000	2.023511000	1.673571000
1	5.149718000	0.248427000	0.520335000
1	4.987650000	5.337912000	-0.160230000
1	6.892877000	5.733692000	-0.930992000

Table S7. Optimized Atomic Coordinates	(atomic number, x, y, z) for singlet [2] ²⁺ .
--	---

44	7.401868000	10.227444000	9.919843000
7	6.101570000	11.707933000	9.296761000
7	6.451310000	8.725505000	9.035007000
7	8.226401000	11.940301000	10.801365000
7	8.444216000	10.105224000	8.020570000
7	5.954582000	9.674450000	11.428773000
7	8.755737000	8.942117000	10.676231000
6	7.479696000	13.082643000	10.688069000
6	6.289278000	12.951828000	9.840083000
6	5.417474000	14.004774000	9.545478000
1	5.584946000	14.983443000	9.995555000
6	8.066773000	8.995920000	7.325070000
6	5.775990000	10.132809000	12.724259000
6	9.463446000	10.882106000	7.489846000
6	5.060860000	11.533803000	8.449576000
1	4.947107000	10.537596000	8.024831000
6	6.909826000	8.259584000	7.843210000

6	6.790414000	10.867345000	13.381082000
1	7.730188000	11.035126000	12.868282000
6	5.352235000	8.194130000	9.634858000
6	4.576598000	9.829162000	13.464462000
6	4.663585000	7.138427000	9.025973000
1	3.789915000	6.696062000	9.502082000
6	9.510451000	8.164400000	11.104690000
6	4.332966000	13.830714000	8.678945000
6	5.118575000	6.644308000	7.802947000
1	4.593605000	5.821357000	7.316921000
6	9.813021000	12.123152000	8.071123000
1	9.251650000	12.476726000	8.926316000
6	9.397885000	12.015480000	11.481241000
1	9.978962000	11.094930000	11.525838000
6	6.246241000	7.204770000	7.203316000
1	6.595554000	6.828250000	6.243296000
6	4.175584000	12.549750000	8.122822000
1	3.358999000	12.337972000	7.430625000
6	6.610273000	11.328274000	14.671261000
1	7.417108000	11.874636000	15.163093000
6	10.179132000	10.471314000	6.306697000
6	9.847745000	13.177964000	12.086638000
1	10.802869000	13.165319000	12.614741000
6	5.040086000	8.794890000	10.935601000
6	10.447773000	7.203545000	11.646001000
1	11.463220000	7.404555000	11.273714000
1	10.161435000	6.184229000	11.347290000
1	10.457212000	7.254922000	12.744918000
6	3.859596000	8.449103000	11.630969000
1	3.144444000	7.767645000	11.173253000
6	8.727734000	8.562560000	6.153570000
1	8.399255000	7.652196000	5.655220000
6	4.410090000	10.344753000	14.775473000
1	3.486954000	10.116377000	15.311983000
6	7.888695000	14.279721000	11.288121000
1	7.272574000	15.173038000	11.183313000
6	9.792294000	9.276255000	5.661567000
1	10.329258000	8.941568000	4.771843000
6	5.406125000	11.088485000	15.371453000
1	5.278121000	11.470924000	16.384888000
6	11.235628000	11.274544000	5.806259000
1	11.769481000	10.936269000	4.915907000
6	11.565274000	12.465885000	6.416018000
1	12.373088000	13.083674000	6.021800000
6	3.608652000	8.990866000	12.868058000
1	2.686595000	8.759436000	13.404942000

6	9.081594000	14.356773000	12.013894000	
6	10.834122000	12.892923000	7.547018000	
1	11.072999000	13.852374000	8.009109000	
6	3.401150000	14.954415000	8.339230000	
1	2.352618000	14.626021000	8.373523000	
1	3.590385000	15.312522000	7.314420000	
1	3.522439000	15.806613000	9.019455000	
6	9.525772000	15.623972000	12.680510000	
1	9.423197000	15.540436000	13.774400000	
1	8.933285000	16.487722000	12.354144000	
1	10.586224000	15.830740000	12.476361000	

Table S8. Optimized Atomic Coordinates (atomic number, x, y, z) for singlet [3]²⁺.

4.4	0.052(45000	2 7202 45000	2 (202 42000
44	8.053645000	3./39345000	3.638243000
7	8.322302000	5.750772000	4.391549000
7	9.907540000	3.661430000	4.345156000
7	7.317645000	3.118216000	5.405836000
7	8.593297000	4.439293000	1.764132000
7	6.170126000	3.920473000	2.720198000
7	8.598703000	1.681000000	3.217673000
6	6.228310000	4.502722000	1.476549000
6	5.255833000	5.365469000	-0.604025000
6	6.930240000	2.768780000	6.447627000
6	7.433874000	6.810158000	4.480499000
6	10.495241000	4.805573000	4.786876000
6	5.077999000	4.769306000	0.688841000
6	7.527834000	4.775104000	0.963638000
6	10.556439000	2.467604000	4.374379000
6	6.040486000	6.601664000	4.359888000
6	9.621418000	5.981754000	4.725705000
6	7.894610000	8.149061000	4.752491000
6	9.783105000	1.358215000	3.808224000
6	6.962170000	9.217228000	4.798945000
6	6.505177000	5.634360000	-1.093222000
6	5.155147000	7.659518000	4.440398000
6	5.613334000	8.981926000	4.639232000
6	9.830301000	4.640998000	1.281088000
6	11.802503000	4.773302000	5.286522000
6	7.903032000	0.669398000	2.572529000
6	7.683259000	5.331650000	-0.331787000
6	10.116965000	7.271388000	5.021448000
6	6.442040000	2.341265000	7.741219000
1	5.906024000	1.384666000	7.653143000

1	5.756997000	3.093603000	8.159624000
1	7.282183000	2.208401000	8.438881000
6	9.270398000	8.353175000	4.998009000
6	11.866236000	2.396335000	4.865974000
6	3.821618000	4.412065000	1.227895000
6	3.773137000	3.800343000	2.471748000
6	10.066201000	5.188408000	0.010787000
6	4.957657000	3.566866000	3.185666000
6	8.351478000	-0.700601000	2.630212000
6	8.999755000	5.543354000	-0.798924000
6	10.271771000	0.034067000	3.874260000
6	12.487370000	3.558243000	5.323452000
6	7.600601000	-1.716618000	1.985327000
6	6.053017000	-0.058630000	1.168160000
6	6.465134000	-1.406451000	1.268292000
6	9.550077000	-0.992580000	3.317108000
6	6.750073000	0.951359000	1.803600000
1	10.659514000	4.355165000	1.927196000
1	6.625982000	6.075817000	-2.084259000
1	7.334209000	10.225840000	4.989808000
1	5.672739000	5.589875000	4.236983000
1	4.939620000	3.084307000	4.162671000
1	11.173413000	7.404189000	5.248612000
1	12.279825000	5.680026000	5.654823000
1	4.083156000	7.469344000	4.362684000
1	11.095482000	5.325593000	-0.321230000
1	9.165575000	5.971948000	-1.789037000
1	2.909035000	4.603760000	0.660427000
1	2.823479000	3.492122000	2.910104000
1	11.211888000	-0.168800000	4.384185000
1	13.505984000	3.516890000	5.710521000
1	9.643107000	9.360806000	5.192569000
1	4.899733000	9.805355000	4.688136000
1	12.402787000	1.449123000	4.884455000
1	4.369909000	5.588322000	-1.201603000
1	9.900355000	-2.024572000	3.382410000
1	7.954126000	-2.747415000	2.053265000
1	5.896673000	-2.190521000	0.766606000
1	6.431911000	1.980257000	1.696173000
1	5.175200000	0.190591000	0.569437000

Table S9. Optimized Atomic Coordinates (atomic number, x, y, z) for singlet [4]⁺.

44	3.230037000	6.931500000	4.044855000
8	4.018610000	5.200474000	4.933652000
8	1.796944000	5.779671000	3.123545000

7	4.344429000	6.982276000	2.250372000
7	2.291260000	8.352137000	3.091860000
7	1.825566000	7.507101000	5.514439000
7	4.628502000	8.015983000	4.949329000
6	3.782038000	7.819408000	1.334199000
6	1.148953000	8.850552000	3.646569000
6	1.659637000	4.502246000	3.226506000
6	2.593062000	8.550677000	1.776428000
6	7.980608000	5.082754000	1.285575000
1	8.918689000	4.577143000	1.051638000
6	0.931376000	8.412038000	5.026532000
6	5.541258000	6.363427000	1.930009000
6	2.641777000	5.958839000	8.763868000
1	3.409851000	5.314018000	9.195295000
6	7.414157000	4.959280000	2.574279000
1	7.928542000	4.364871000	3.331866000
6	2.725241000	6.314650000	7.430414000
1	3.539943000	5.954907000	6.804556000
6	4.328439000	8.003096000	0.042643000
1	3.833245000	8.672912000	-0.658921000
6	1.744265000	7.155705000	6.851628000
6	3.565629000	4.002724000	4.780546000
6	7.347760000	5.851626000	0.330694000
1	7.778583000	5.971124000	-0.665726000
6	6.131787000	6.517460000	0.627338000
6	-0.125823000	8.928477000	5.811402000
1	-0.823494000	9.639136000	5.370628000
6	6.221954000	5.581919000	2.894633000
1	5.786133000	5.481251000	3.887005000
6	5.476992000	7.343010000	-0.318159000
1	5.903399000	7.464318000	-1.315920000
6	1.775395000	9.371317000	0.991439000
1	2.005031000	9.537911000	-0.060024000
6	0.310365000	9.675526000	2.888657000
1	-0.604503000	10.079892000	3.319422000
6	5.462248000	8.619613000	5.495652000
6	0.641727000	9.952280000	1.561525000
1	-0.004853000	10.591440000	0.959769000
6	-0.265244000	8.537044000	7.119977000
1	-1.084064000	8.916540000	7.734451000
6	0.622346000	7.253606000	9.046006000
1	-0.194383000	7.631870000	9.664563000
6	0.683548000	7.652371000	7.686907000
6	1.583061000	6.419028000	9.578859000
1	1.532291000	6.120231000	10.626956000
6	2 463556000	3.639365000	3,989789000

1	2.205561000	2.581677000	3.963941000
6	0.510273000	3.939601000	2.428943000
1	-0.429837000	4.412249000	2.750171000
1	0.422082000	2.852982000	2.540956000
1	0.644878000	4.181936000	1.364238000
6	4.321142000	2.938651000	5.537254000
1	5.376313000	2.935832000	5.224070000
1	3.901075000	1.938962000	5.377923000
1	4.305671000	3.164192000	6.614450000
6	6.498158000	9.368817000	6.174454000
1	7.492596000	9.021984000	5.856711000
1	6.413070000	9.239880000	7.263624000
1	6.411142000	10.440487000	5.941741000