
Supplementary Information
Chimera: enabling hierarchy based multi-objective

optimization for self-driving laboratories

Florian Häse,1 Loïc M. Roch,1 and Alán Aspuru-Guzik2, 3, 4

1Department of Chemistry and Chemical Biology,

Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Chemistry and Department of Computer Science,

University of Toronto, Toronto, Ontario M5S 3H6, Canada
3Vector Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Canada

4Canadian Institute for Advanced Research (CIFAR) Senior Fellow,

Toronto, Ontario M5S 1M1, Canada∗

∗Electronic address: alan@aspuru.com

1

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2018

mailto:alan@aspuru.com


S.1. SUPPLEMENTARY INFORMATION

S.1.1. Benchmark functions

The influence of the smoothing parameter τ on the shape of the achievement scalarizing

function has been demonstrated on a set of three one-dimensional objectives, presented in Eq. 1.

Note, that all objectives were considered on the x ∈ [−1, 5]. The three objectives are also shown

in Fig. 1 in the main text (see Sec. 3.1).

f0(x) =



−2x+ 1 if x ≤ 1

x− 2 if 1 < x ≤ 3

7− 2x if 3 < x ≤ 3.5

2x− 7 if 3.5 < x

(1)

f1(x) = 1− 2 exp[−(x− 2.5)2] (2)

f2(x) =
(
(5− x)2 + exp(x− 2)

)
/100 (3)

In addition, we benchmarked the performance of Chimera on six well-established analytic

sets of objective functions. All of these functions are defined on two dimensional parameter

spaces and benchmark sets comprise of two or three different objectives. Contour plots of all

objective functions as well as the locations of the global minimum of each objective are presented

in Fig. S.3. Note, that for all objective functions the parameter space has always been rescaled to

the unit square [0, 1]2 and the objective function values were rescaled to the [0, 1] interval. Python

implementations of all objective functions are provided on GitHub.[1]

For all benchmark optimization procedures we chose a particular set of tolerances and limits

on the objective functions in each benchmark set. Tolerances and limits used throughout all

optimization runs for all benchmark functions are listed in Tab. S.1. Goal of all optimization

procedures on the analytic benchmark set is to minimize each individual objective given the

defined hierarchies and tolerances.

2



Figure S.1: Contour plots of the employed benchmark functions

Benchmark set Objective Tolerance Limit

Ackley
f0 50% 1.808

f1 20% 2.616

Fonseca
f0 50% 0.500

f1 50% 0.873

Viennet

f0 20% 1.650

f1 12% 17.296

f2 20% -0.136

ZDT1
f0 25% 2.653

f1 25% 0.150

ZDT2
f0 25% 2.980

f1 25% 0.150

ZDT3
f0 25% 2.391

f1 25% 0.150

Table S.1: Tolerances and limits for all analytic benchmark sets used for assessing the performance of

Chimera.

3



S.1.2. Influence of the smoothing parameter on optimization behavior

In this section we study the influence of the value of the smoothing parameter τ on the behavior

of the optimization procedure. On the one hand, smoothing parameters which are too small yield

a rather rough ASF, which could be more challenging for the optimization algorithm. On the other

hand, smoothing parameters which are too large might smoothen the objectives too much, such

that the location of the global optimum of the ASF is shifted away from the Pareto optimal point

(see Sec. 3.1). To test this hypothesis, we ran Phoenics on the set of one dimensional objectives

presented in Sec. S.1.1 with tolerances of 30% on objective 0, 40% on objective 1 and 50% on

objective 2 in combination with different choices of the smoothing parameter τ .

To assess the influence of the value of the smoothing parameter τ on the optimization behavior,

we consider an ensemble of 25 individual optimization runs for each smoothing parameter

value. For each parameter value, we count how many of the individual optimization runs found

parameter points for which all objectives meet the specified tolerances. Results are reported in

Fig. S.2 for a total of 400 optimization iterations in each run.

Figure S.2: Rates of successful optimizations on the one dimensional benchmark set out of 25 individual

optimization runs conducted with Phoenics on Chimera with different values of the smoothing parameter τ

(see legend). Larger values of τ generally show lower success rates later on in the optimization procedures.

In addition to the success rates, we report average optimization traces in Fig. S.3, where we

depict the average closest achieved objective function values for all three objectives over the

4



progress of the optimization. The target values for all three objectives are indicated via dashed

lines. Background colors in the plots indicate if the currently best performing parameter set

violates objective 0 (red), objective 1 (yellow), objective 2 (blue) or non of the constraints (white).

Figure S.3: Influence of the value of the smoothing parameter τ on the convergence of the optimization run.

Reported traces have been averaged over 25 individual optimization runs with different random seeds. We

do not observe a strong dependence of the optimization behavior on the smoothing parameter.

We observe, that all three objectives are quickly achieved by all optimization runs if the

smoothing parameter τ is small (τ ≤ 0.03). At the same time, we observe that smoothing

parameter values slightly above zero allow for faster convergence towards the target objective

values. With these observations we chose to apply a smoothing value of τ = 0.001 to all other

optimization procedures presented in this work.

5



S.1.3. Detecting locally competing objectives

The construction of Chimera allows to locate regions in the parameter space where two

particular objectives, fi and fj , do not compete with each other locally. Local competition

between two objectives can generally be determined via the monotonicity of the two objectives

along curves within the considered parameter space region. Note that for smooth fi and fj we

can always find a finite sized region around any point in the parameter space such that both fi and

fj are monotonic along any curve within this region. If both fi and fj are either monotonically

increasing or monotonically decreasing, simultaneous improvements on both objectives are

possible and the objectives do not compete. If, however, fi and fj differ in their monotonicity then

one objective cannot be improved without degrading the other objective. Thus, the two objectives

compete with each other.

Chimera is constructed such that it is sensitive only to a single objective in any region of

the parameter space, or mostly influenced by a single objective if the Heaviside function is

replaced with the logistic function. For two particular objectives, fi and fj , we refer to Ri as the

region where Chimera is mostly sensitive to fi, and to Rj the region where Chimera is mostly

sensitive to fj . Furthermore, we denote with {x∗} the set of points transitioning from Ri to Rj .

Without loss of generality we assume a hierarchy where fi is assigned a higher importance than fj .

Within this definition, the two objectives fi and fj do not compete with each other locally in

finite sized regions around parameter points {x∗} if and only if Chimera is monotonic within

these regions.

First, we consider the implication of Chimera being monotonic if fi and fj do not compete with

each other. If fi and fj do not compete, both are either monotonically increasing or monotonically

decreasing along every curve passing through x∗. By construction, the values of Chimera are

larger for parameter points in Ri than for parameter points in Rj as fi is assigned the higher

importance. The transition occurs because fi assumes low values close to the transition point x∗

and reaches its tolerance criterion (see main text Fig. 1). Thus, we can find a region within Ri

where fi monotonically increases along a curve directed towards x∗. Based on our assumption, fj

is monotonically decreasing along the same curve. Therefore, Chimera is also monotonic along

6



this curve.

Next, we consider the implication of fi and fj not competing with each other in proximity to

a transition point x∗ if Chimera is monotonic along curves passing through x∗. Again, Chimera

assumes larger values in Ri than in Rj by construction. We define a curve going from Ri to

Rj while passing through x∗. By assumption, Chimera is monotonically decreasing along this

curve. Since Chimera is dominated by fi in Ri and dominated by fj in Rj , both fi and fj are

monotonically decreasing along this curve and thus do not compete.

This behavior of Chimera can be exploited when analyzing relations between different objec-

tives. In particular, this behavior provides a qualitative tool to identify locally competing or non-

competing objectives. Analyzing the parameter region in which objectives are locally competing

might reveal insights into fundamental underpinnings of the competition.

S.1.4. Analytic benchmarks

We benchmarked Chimera by running a number of optimization algorithms based on different

methods on six well-established analytic benchmark sets introduced in Sec. S.1.1. Details of the

benchmark studies are provided in the main text (see Sec. 4.2). In this section, we report the

complete results of this benchmark study.

S.1.4.1. Performance after completion of the optimization procedures

In Fig. S.4, we report the average smallest achieved relative deviation of objectives from Pareto

optimal objectives for the remaining four benchmark sets: ZDT1, ZDT2, ZDT3 and Ackley.

Benchmark results on the Fonseca and the Viennet sets are reported in the main text (see Sec. 4.2).

Four different optimization algorithms (grid search, CMA-ES, spearmint, and Phoenics; see

Sec. 2 for details) have been run on both Chimera and c-ASF for a total of 100 optimization

iterations.

In accordance with results on the Fonseca and the Viennet variant benchmark sets (see Sec. 4.2)

7



Figure S.4: Average smallest deviations from Pareto optimal points achieved by the four studied optimiza-

tion algorithms on the remaining benchmark sets. Results are averaged over 25 independent runs executed

for 100 iterations each.

we find that Chimera leads the optimization algorithms closer to the Pareto optimal values with

the same number of function evaluations.

S.1.4.2. Performance during the optimization procedures

In addition to the average achieved smallest deviations at the end of the optimization pro-

cedures we also report the traces of achieved objectives over the duration of the optimization

procedure. Fig. S.5 depicts the objective traces for all six benchmark functions after every

iteration of the optimization procedures. Uncertainty bands highlight the 68 % confidence interval

computed from the 25 repetitions of each optimization run.

Overall, we observe that Chimera enables the studied optimization algorithms to get closer

to the Pareto optimal values faster from the very beginning of the optimization procedure. The

fact, that tolerances are defined with respect to the current observed minima and maxima of the

objectives therefore does not seem to significantly delay the optimization procedure.

Furthermore, as reported in the main text (see Sec. 4.2), we find that Chimera samples points

in accordance with the imposed hierarchy, i.e. improvements on the sub-objective are not realized

if they come along with degradations on the main objective. However, c-ASF sometimes shows

this behavior.

8



Figure S.5: Optimization traces depicting the smallest deviations between sampled objectives and Pareto

optimal objectives averaged over 25 optimization runs with the four employed optimization algorithms

on Chimera and c-ASF. Uncertainty bands highlight the 68 % confidence interval computed from the 25

repetitions of each optimization run.

S.1.5. Virtual model of the N9

In this section we detail the construction of a probabilistic model to reproduce and interpolate

experimental results obtained from autonomous calibrations of a robotic sampling sequence for

direct-inject HPLC analysis.[2] Provided sufficient coverage of the space of experimental param-

eters, the trained probabilistic model can then be used to query experimental results for any set of

experimental conditions without running the experiment.

S.1.5.1. Dataset of experimental results

The experimental procedure consists in the characterization of an unknown chemical sample

via high-performance liquid chromatography (HPLC). The calibration of the setup involves an

optimization of six experimental parameters. For each experiment, the response of the HPLC

as well as the execution time of the experiment can be measured. Details of the experimental

procedure are described elsewhere.[2]

9



An autonomous sampling sequence of the experimental procedure allowed to the efficient

execution of a total of 1, 500 individual experiments for the acquisition of experimental outcomes

for given experimental conditions. Parameters for the experimental procedure were generated

by uniformly sampling the parameter space, to ensure uniform and uncorrelated coverage of the

parameter space. Experimental results are depicted in Fig. S.6

Figure S.6: Experimental results of individual auto-calibration experiments on the robotic sampling se-

quence. Panel (A): Achieved peak areas for different parameter choices. Panel (B): Achieved execution

times for different parameter choices.

S.1.5.2. Training a Bayesian neural network

We construct a test set by randomly sampling 10 % of all points in the dataset. From the

remaining 90 % of the dataset, we select the most diverse 80 % for the training set based on

principal component analysis (PCA) analysis following a procedure reported in the literature.[3]

The remaining 10 % of the dataset are used as a validation set for early stopping.

The probabilistic model was set up as a fully connected Bayesian neural network with three

10



layers and 192 neurons per layer. Distributions of weights and biases were adapted via variational

expectation-maximization, which was carried in Edward, version 1.3.5,[4] with the Adam

optimization algorithm,[5] a learning rate of 10−2.5, and 100 randomly chosen training points per

batch.

For the peak area, one of the experimental results to reproduce, we observe that some of the

experimentally obtained values are exactly zero, but never negative. To incorporate these features

in our model, we employ a modified version of the leaky ReLU activation function, as shown in

Eq. 4. The modification to the traditional leaky ReLU consists in splitting the activation function

into three piece-wise linear parts. While positive inputs x > 0 are processed just like in traditional

ReLU or leaky ReLU activation functions, negative inputs are mapped onto zero if the inputs are

slightly negative, but mapped onto a linear function with small slope for large negative inputs.

f(x) =


x if 0 < x

0 if − dx < x ≤ 0

αx if x ≤ −dx

(4)

We chose α = 0.1 and dx = 2. With this choice of the leakage parameter, the activation

function is flat for inputs x ∈ [−2, 0]. Weights and biases were regularized via a Laplacian prior,

corresponding to L1 regularization in traditional neural networks. Every 200 training epochs we

computed the prediction accuracy on the training and the validation set by sampling predictions

from 200 network instances. Network training was aborted if the prediction error on the validation

set was found to either increase or to be twice as large as the prediction error on the training set.

Fig. S.7 illustrates the prediction accuracies on the peak areas and execution times obtained by

averaging over 200 samples after completion of the training procedure. Prediction errors for the

two experimental results are reported in Tab. S.2. Correlations between predicted properties and

target properties of 97.8 % f for the peak areas and 99.7 % for the execution times.

11



Dataset HPLC response [a.u.] Execution time [s]

Training 117.16 2.20

Validation 147.04 1.90

Test 193.64 1.75

Table S.2: RMSDs of experimental results predicted by the trained Bayesian neural network from the actual

experimental results for all three datasets.

Figure S.7: Predictions of Bayesian neural networks compared to experimental results on the N9 system.

Panel (A) displays scatter plots for comparing peak areas, and panel (B) shows results for execution times.

The lines of perfect agreement are represented in black. Pearson correlation coefficients ρ are reported for

both properties.

S.1.6. Optimizations on periodic domains

The inverse-design problem of finding excitation energy transfer systems discussed in the

main text (see Sec. 5.2) involves a total of ten independent parameters. Four of these parameters

describe the orientation of transition dipoles with respect to a principal axis, expressed in terms

of an angle ϕ ∈ [0, 2π]. The orientation of the transition dipoles is periodic, which imposes a

constraint on the response surface of objectives with respect to these parameters. This constraint

can be taken into account when constructing approximations to response surfaces during the

optimization procedure. Indeed, by accounting for this periodicity constraint, a more accurate

approximation to the response surface can be found, which has the potential to determine the

location of the global minimum in fewer optimization iterations.

In this section, we demonstrate how Phoenics can be expanded to account for periodic

12



boundary conditions on the parameter domain. Phoenics constructs approximations to an

objective function by estimating the kernel density of observed parameter points and reweight-

ing those by the corresponding observed objective function value.[6] Kernel densities pk are

estimated via a Bayesian neural network as shown in Eq. 5. The Bayesian neural network

is used to sample random variables φ3 in the parameter domain based on previously observed

parameter points xk. Ref. [6] provides a detailed description of the construction of kernel densities

pk(x) =

〈√
τn
2π

exp
[
−τn

2
(x− φ3(θ;xk))

2
]〉

BNN
. (5)

Importantly, the construction of the kernel densities pk at an arbitrary point x ∈ Rd in the pa-

rameter domain depends on the distance d(x, φ3(θ;xk)) = x− φ3(θ;xk) between this parameter

point x and the random variable φ3(θ;xk) sampled from the Bayesian neural network. We now

consider a scenario where the objective f is periodic with periodicity P , i.e. f(x) = f(x + P )

for all x ∈ Rd. A periodicity constraint on the parameter domain can be formulated by replacing

this distance d(x, φ3(θ;xk)) by a periodic distance dperiodic(x, φ3(θ;xk)).

Computing the periodic distance from all periodic images of the kernel density is computation-

ally costly. As a compromise between the computational demand of the approach and accuracy of

the periodicity constraint, we only account for nearest periodic images and neglect higher order

periodic images. This approximation becomes more accurate with more optimization iterations,

as the precision τn increases.

We illustrate the construction of periodic objective function approximations one a one-

dimensional example. The considered objective function f consists of the product of two cosine

functions, as shown in Eq. 6, with a period of P = 1. Phoenics was used to determine the

location of the global minimum of this function within the x ∈ [0, 1] interval by constructing the

approximation with and without periodicity support. Note, that the global minimum is located at

x∗ = 0.05.

f(x) = − cos ((π(x− 0.05)) cos (3π(x− 0.05)) (6)

13



Fig. S.8 shows the approximations constructed to the objective function after two, five and eight

optimization iterations with and without periodicity support. We find that the optimization run

without periodicity support tend to sample the objective function at large values of x. Only after a

few optimization iterations, the location of the global minimum at small values of x is discovered.

In contrast, the optimization procedure supporting periodicity in the objective function discovers

the location of the global minimum within much fewer iterations, and needs fewer observations to

construct reasonable approximations to the objective function.

Figure S.8: Optimization runs using Phoenics on a periodic one-dimensional objective function. Upper

panels depict the approximation to the objective function constructed by Phoenics without accounting for

the periodicity of the objective. Lower panels, in contrast, depict the approximations constructed with

periodicity taken into account.

S.1.7. Excitonics application

Here we present the average optimization traces for all studied objective hierarchy permu-

tations of the excitonics application. While the order of the hierarchy in the objectives was

changed between different permutation runs, all other parameters such as tolerances were kept the

same. Fig. S.9 shows optimization traces for all six permutations of hierarchies averaged over 25

individual optimization runs. Optimization traces are sorted by hierarchy from top to bottom for

all permutations.

14



Figure S.9: Optimization traces for the three objectives in the excitonics application averaged over 25

individual optimization runs for all six possible permutations. Top panels present the optimization traces

for the main objectives in each permutation, central panels the optimization traces for the sub-objective and

bottom panels the traces for the least important objective. Dashed black lines indicate the lower/upper limits

on each of the objectives.

[1] F. Häse, L. M. Roch, C. Kreisbeck, and A. Aspuru-Guzik, GitHub (2018), URL https://github.

com/aspuru-guzik-group/phoenics.

[2] L. M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza, L. P. E. Yunker, J. E. Hein, and A. Aspuru-

Guzik, chemRxiv preprint chemRxiv:5953606 (2018).

[3] F. Häse, C. Kreisbeck, and A. Aspuru-Guzik, Chem. Sci. 8, 8419 (2017).

[4] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M. Blei, arXiv preprint

arXiv:1610.09787 (2016).

[5] D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980 (2014).

[6] F. Häse, L. M. Roch, C. Kreisbeck, and A. Aspuru-Guzik, arXiv preprint arXiv:1801.01469 (2018).

15

https://github.com/aspuru-guzik-group/phoenics
https://github.com/aspuru-guzik-group/phoenics

	Supplementary Information
	Benchmark functions
	Influence of the smoothing parameter on optimization behavior
	Detecting locally competing objectives
	Analytic benchmarks
	Performance after completion of the optimization procedures
	Performance during the optimization procedures

	Virtual model of the N9
	Dataset of experimental results
	Training a Bayesian neural network

	Optimizations on periodic domains
	Excitonics application

	References

