Electronic Supplementary Information

Degradable Polymer Prodrugs with Adjustable Activity from Drug-Initiated Radical Ring-Opening Copolymerization

Elise Guégain,¹ Johanna Tran,¹ Quentin Deguettes,¹ Julien Nicolas^{1,*}

¹Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France.

*To whom correspondence should be addressed.

Email: julien.nicolas@u-psud.fr

Tel.: +33 1 46 83 58 53

Figure S1. ¹H NMR spectrum in CDCl₃ in the 0–9 ppm region of Gem-digly-AMA-SG1.

Figure S2. ¹H NMR spectrum in CDCl₃ in the 0–8 ppm region of Gem-digly-P(OEGMA-*co*-MPDL) **P2d** ($f_{\text{MPDL},0} = 0.4$), (a) after one precipitation and before deprotection and (b) after deprotection. The colored area shows the TBDMS group and its removal after deprotection.

Figure S3. ¹H NMR spectrum in CDCl₃ in the 0–8 ppm region of Gem-digly-P(MMA-*co*-MPDL) **P5d** ($f_{\text{MPDL},0} = 0.4$), (a) after one precipitation and before deprotection and (b) after deprotection. The colored area shows the TBDMS group and its removal after deprotection.

Figure S4. Size exclusion chromatograms (CHCl₃ eluent, 1 mL.min⁻¹) of (a) Gem-P(OEGMA-*co*-MPDL), **P1–P3**, (b) Gem-digly-P(OEGMA-*co*-MPDL), **P1d–P3d**, (c) Gem-P(MMA-*co*-MPDL), **P4–P6** and (d) Gem-digly-P(MMA-*co*-MPDL), **P4d–P6d**.

Figure S5. ¹H NMR spectra in CDCl₃ in the 0–8 ppm region of Gem-P(OEGMA-*co*-MPDL) with (a) **P1** ($f_{MPDL,0} = 0.2$); (b) **P2** ($f_{MPDL,0} = 0.4$); (c) **P3** ($f_{MPDL,0} = 0.7$).

Figure S6. ¹H NMR spectra in CDCl₃ in the 0-8 ppm region of Gem-P(MMA-*co*-MPDL) with (a) **P4** ($f_{MPDL,0} = 0.2$); (b) **P5** ($f_{MPDL,0} = 0.4$); (c) **P6** ($f_{MPDL,0} = 0.7$).

Figure S7. ¹H NMR spectra in CDCl₃ in the 0–8 ppm region of Gem-digly-P(OEGMA-*co*-MPDL) with (a) **P1d** ($f_{MPDL,0} = 0.2$); (b) **P2d** ($f_{MPDL,0} = 0.4$); (c) **P3d** ($f_{MPDL,0} = 0.7$).

Figure S8. ¹H NMR spectra in CDCl₃ in the 0–8 ppm region of Gem-digly-P(MMA-*co*-MPDL) with (a) **P4d** ($f_{MPDL,0} = 0.2$); (b) **P5d** ($f_{MPDL,0} = 0.4$); (c) **P6d** ($f_{MPDL,0} = 0.7$).

Figure S9. ¹H NMR spectra in DMSO-d₆ in the 0–8 ppm region of Gem-P(OEGMA-*co*-MPDL) with (a) **P1** ($f_{MPDL,0} = 0.2$); (b) **P2** ($f_{MPDL,0} = 0.4$); (c) **P3** ($f_{MPDL,0} = 0.7$).

Figure S10. ¹H NMR spectra in DMSO-d₆ in the 0-8 ppm region of Gem-P(MMA-*co*-MPDL) with (a) **P4** ($f_{MPDL,0} = 0.2$); (b) **P5** ($f_{MPDL,0} = 0.4$); (c) **P6** ($f_{MPDL,0} = 0.7$).

Figure S11. ¹H NMR spectra in DMSO-d₆ in the 0–8 ppm region of Gem-digly-P(OEGMA*co*-MPDL) with (a) **P1d** ($f_{MPDL,0} = 0.2$); (b) **P2d** ($f_{MPDL,0} = 0.4$); (c) **P3d** ($f_{MPDL,0} = 0.7$).

Figure S12. ¹H NMR spectra in DMSO-d₆ in the 0–8 ppm region of Gem-digly-P(MMA-*co*-MPDL) with (a) **P4d** ($f_{MPDL,0} = 0.2$); (b) **P5d** ($f_{MPDL,0} = 0.4$); (c) **P6d** ($f_{MPDL,0} = 0.7$).

Figure S13. Evolution of the SEC chromatograms at different time during the hydrolytic degradation under accelerated conditions (KOH 5%) of Gem-P(OEGMA-*co*-MPDL) as function of the MPDL content: (a) •, control ($F_{MPDL} = 0$); (b) \blacktriangle , P1 ($F_{MPDL} = 0.06$); (c) •, P2 ($F_{MPDL} = 0.12$); (d) \blacktriangledown , P3 ($F_{MPDL} = 0.25$).

Figure S14. Evolution of the SEC chromatograms at different time during the hydrolytic degradation under accelerated conditions (KOH 5%) of Gem-P(MMA-*co*-MPDL) as function of the MPDL content: (a) ●, control ($F_{MPDL} = 0$); (b) ▲, P4 ($F_{MPDL} = 0.06$); (c) ■, P5 ($F_{MPDL} = 0.12$); (d) ▼, P6 ($F_{MPDL} = 0.25$).

Figure S15. Evolution with time of the average diameter and the particle size distribution (PSD) of Gem-P(MMA-*co*-MPDL) (**P6**) nanoparticles in water and in cell culture medium determined by DLS.

Figure S16. Representative Cryo-TEM images of Gem-P(MMA-*co*-MPDL) **P6** nanoparticles. Scale bar = 100 nm.

Figure S17. Representative Cryo-TEM images of Gem-digly-P(MMA-*co*-MPDL) **P6d** nanoparticles. Scale bar = 100 nm.

Figure S18. Number-average diameters of Gem-digly-P(OEGMA-co-MPDL) prodrugs **P2d** (a) and **P3d** (b) after solubilization in water. Note that number-average representation is shown here to highlight the most representative species (that is the soluble copolymer fraction).

Figure S19: Cell viability (MTT test) with increasing concentrations of Gem-P(OEGMA-*co*-MPDL) (**P2**) either under the form of the purified soluble copolymer or the raw mixture (containing 8 wt.% nanoparticles) on A549 cells.

Table S1. Experimental Conditions and Macromolecular Properties of Gem-P(OEGMA-co-MPDL) Polymer Prodrugs P3' and P3''.

Prodrug	Alkoxyamine	Methacrylic ester	f _{mpdl,0}	Conv. ^a (%) / Time (h)	M _n ^b (g/mol)	Ð	Drug loading (wt.%)
Р3'	Gem-AMA-SG1	OEGMA	0.7	15 / 8	7 300	1.27	3.6
P3"	Gem-AMA-SG1	OEGMA	0.7	20 / 8	2 900	1.55	9.0

^a OEGMA conversion determined by ¹H NMR. ^b Determined by SEC after precipitation.

Table S2. Predicted HLB of Gem-digly-PMMA₄ and Gem-digly-PMMA₄ from Marvin Sketch 18.10 using the Davies or the Griffin method.

Prodrug	Predicted HLB ^a		
	Davies method	Griffin method	
Gem-digly-PMMA ₄	18.23	11.83	
Gem-PMMA ₄	14.03	10.79	

^aPredicted using Marvin Sketch 18.10

Duadana	D_z		%NP	
Prourug	(nm)	PSD	(wt. %)	
P1	166	0.51	< 1	
P2	146	0.13	8	
P3	163 <i>ª</i>	0.19	16	

 Table S3. Characterization of Gem-P(OEGMA-co-MPDL) Nanoparticles.

^{*a*} After 30 days, $D_z = 157$ nm, PSD = 0.21. After ultracentrifugation (40000 rpm, 4 h, 4 °C) and resuspension, $D_z = 156$ nm, PSD = 0.19.

Table S4. In Vitro Cytotoxicity (IC₅₀) of Gem-Based Polymer Prodrugs Against A549 and MiaPaCa-2 Cancer Cells.

	F _{MPDL}	A549	MiaPaCa-2
Prodrug	(mol. %)	IC ₅₀ (μΜ)	IC ₅₀ (μΜ)
P1	6	0.30	0.13
P2	12	0.88	0.45
P3	25	2.14	1.07
P1d	7	0.04	0.03
P2d	11	0.11	0.17
P3d	22	0.40	0.34
P4	10	-	-
P5	19	-	-
P6	29	-	-
P4d	7	~1	0.92
P5d	12	-	2.11
P6d	29	-	3.55