Supporting Information

Chemically Stable Ionic Viologen-Organic Network: An Efficient Scavenger of Toxic Oxo-anions from Water

Partha Samanta,^a Priyanshu Chandra,^{†,a} Subhajit Dutta,^{†,a} Aamod V. Desai^a and Sujit K. Ghosh^{* a,b}

^a Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India. Phone: +91 20 2590 8076; E-mail: <u>sghosh@iiserpune.ac.in</u>

^b Centre for Energy Science, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.

⁺These authors contributed equally.

Experimental Section:

FE-SEM analysis:

For solid-state analysis <1 mg sample was adhered on double sided carbon tape and hence used for FE-SEM imaging. FESEM was done by using FEI Quanta 3D dual beam ESEM at 30 KV.

Adsorption isotherm experiment:

Compound-1 (5 mg) was immersed in 2 mL water solution of oxo-anion having different concentration (in case of $\text{CrO}_4^{2^-}$ ion concentration was taken in the range of 29-580 ppm and for ReO_4^- ion the range of concentration is 62.5-1251 ppm). After 2 hours UV-Visible spectroscopy was carried out with the supernatant solution and further fitted with following equation,

Langmuir model,
$$Q_e = \frac{Q_m C_e}{K_d + C_e}$$

where, C_e (ppm) and Q_e (mg gm⁻¹) are the oxo-anion concentration at equilibrium and amount of oxo-anion adsorbed at equilibrium respectively. Q_m (mg gm⁻¹) is the maximum amount of oxo-anion per unit mass of adsorbent to form a complete monolayer. K_d (mg/L) is a constant related to the affinity of the binding sites.

<u>Freundlich Model</u>, $Q_e = K_F C_e^{1/n}$

where, K_F and 1/n are the Freundlich model constants, indicating capacity and intensity of adsorption, respectively.

pH-dependent capture study:

Compound-1 (2 mg) was immersed in 2 mL solution of 2.5 mM oxo-anion (in case of CrO_4^{2-} ion pH-1.7, pH-4, pH-9, pH-10 and pH-12.4 were used, whereas for ReO_4^{-} ion pH-9, pH-10 and pH-12.4 were used) and stirred for 24 hours. After 1 day UV-Vis study was carried out to check the removal efficiency of compound-1. Following equation has been used for calculation and compared with the data at pH-7 for relative performance,

$$D_t = \frac{C_0 - C_t}{C_0} \ge 100\% = \frac{A_0 - A_t}{A_0} \ge 100\%$$

Where, D_t is the exchange capacity, C_0 and A_0 are initial concentration and absorbance of the oxo-anion solution respectively, C_t and A_t , are concentration and absorbance of the oxo-anion solution at specific times respectively.

Scheme S1: Synthesis scheme of compound-1.

Figures:

Figure S1: Thermogravimetric analysis (TGA) of as-synthesized compound-1 (wine red) and desolvated phase of compound-1 (green).

Figure S2: Infra-red (IR) spectroscopy of starting materials [precursor 1 (blue) and precursor 2 (green)] and compound-1 (wine red).

Figure S3: Low temperature (77 K) N₂ adsorption profile of compound-1.

Figure S4: Low temperature (195 K) CO₂ adsorption profile of compound-1.

Figure S5: Solid state ¹³C-NMR of compound-1.

Figure S6: FESEM images of compound-1.

Element	Weight %
С	73.08
N	6.46
0	17.61
CI	2.85
Total	100

Figure S7: EDX analysis of compound-1.

Figure S8: Elemental mapping of compound-1.

Figure S9: Infra-red (IR) spectroscopy of compound-1 (wine red), 2 M HCl treated compound-1 (green) and 2 M KOH treated compound-1 (blue).

Figure S10: FESEM images of a) 2 M HCl treated compound-1 and b) 2 M KOH treated compound-1.

Element	Weight %
С	71.60
N	7.60
0	14.58
CI	6.22
Total	100

Figure S11: EDX analysis of 2 M HCl treated compound-1.

Element	Weight %
С	71.45
N	8.24
0	17.93
CI	2.38
Total	100

Figure S12: EDX analysis of 2 M KOH treated compound-1.

Figure S13: Thermogravimetric analysis (TGA) of compound-1 (blue), 2 M HCl treated compound-1 (wine red) and 2 M KOH treated compound-1 (green).

Figure S14: UV-Vis spectroscopy of CrO_4^{2-} ion solution in water in presence of compound-1 at different time intervals (Inset: images of CrO_4^{2-} ion solution and solid compound-1 before and after of capture study).

Figure S15: Decrease in the concentration of the CrO_4^{2-} ion from water after addition of compound-1.

Figure S16: UV-Vis spectra of only CrO_4^{2-} before (dark yellow) and after (blue) addition of compound-1 (time duration: 24hrs); capacity of compound-1 for CrO_4^{2-} ion has been calculated from this data.

Figure S17: Infra-red (IR) spectroscopy of compound-1 (purple) and compound- $1 \supset CrO_4^{2-}$ (dark yellow).

Figure S18: SEM images of CrO_4^{2-} encapsulated compound-1 (compound- $1 \supset CrO_4^{2-}$).

Element	Weight %
С	58.10
Ν	15.96
0	19.33
Cr	6.61
Total	100

Figure S19: EDX analysis of CrO_4^{2-} encapsulated compound-1 (compound- $1 \supset CrO_4^{2-}$).

Figure S20: Elemental mapping of CrO_4^{2-} encapsulated compound-1 (compound- $1 \supset CrO_4^{2-}$).

Figure S21: UV-Vis spectroscopy of MnO_4^- ion solution in water in presence of compound-1 at different time intervals (Inset: images of MnO_4^- ion solution and solid compound-1 before and after of capture study).

Figure S22: Infra-red (IR) spectroscopy of compound-1 (purple) and compound- $1 \supset MnO_4^-$ (green).

Figure S23: IR spectra of compound-1 (wine red) and ReO₄⁻ treated compound-1 (green).

Element	Weight %	
С	61.01	
N	13.87	
0	15.22	
Mn	9.90	
Total	100	

Figure S24: EDX analysis of MnO_4^- encapsulated compound-1 (compound-1 $\supset MnO_4^-$).

Figure S25: Elemental mapping of MnO_4^- encapsulated compound-1 (compound-1 $\supset MnO_4^-$).

Element	Weight %
С	69.23
N	3.63
0	21.82
Re	5.32
Total	100

Figure S26: EDX analysis of compound-1 after the capture of ReO_4^- .

Figure S27: Elemental mapping of compound-1 after the capture of ReO₄⁻.

Figure S28: SEM images of MnO_4^- encapsulated compound-1 (compound-1 \supset MnO_4^-).

Figure S29: SEM images of compound-1 after the treatment of ReO₄⁻ in water medium.

Figure S30: Decrease in the concentration of the MnO_4^- ion from water after addition of compound-1.

Figure S31: Decrease in the concentration of the ReO₄⁻ ion from water solution on addition of compound-1.

Figure S32: UV-Vis spectra of only MnO_4^- before (purple) and after (dark yellow) addition of compound-1 (time duration = 24hrs); capacity of compound-1 for MnO_4^- ion has been calculated from this data.

Figure S33: UV-Vis spectra of only ReO_4^- before (wine red) and after (green) the addition of compound-1 (time duration = 24hrs); capacity of compound-1 for ReO_4^- ion has been calculated from this data.

Figure S34: UV-Vis spectroscopy of ReO_4^- ion solution in water in presence of compound-1 at different time intervals (Inset: images of ReO_4^- ion solution and solid compound-1 before and after of capture study).

Figure S35: (a) Langmuir model and (b) Freundlich model of CrO_4^{2-} ion capture study with compound-1.

Figure S36: (a) Langmuir model and (b) Freundlich model of ReO_4^- ion capture study with compound-1.

Figure S37: Kinetic study of CrO_4^{2-} ion capture with compound-1.

Figure S38: Kinetic study of ReO₄⁻ ion capture with compound-1.

Figure S39: Bar diagram representing relative % removal of CrO_4^{2-} ion from water by compound-1 at different pH-medium.

Figure S40: Bar diagram representing relative % removal of ReO₄⁻ ion from water by compound-1 at different alkaline pH-medium.

Figure S41: Recyclability test of compound-1 for CrO_4^{2-} ion.

Figure S42: Recycle test of compound-1 for ReO_4^- ion.

Figure S43: Representation of the compound-1 loaded column used for column chromatographic separation of oxo-anion from water.

Figure S44: UV-Vis spectra of the 2.5 mM ReO₄⁻ solution before (wine red) and after (green) passing through the compound-1 loaded column.

Figure S45: (a) Regeneration of the column with 3 M HCl solution; (b) images of HCl solution before (top) and after (bottom) passing through the column.

Figure S46: (a) Recyclability test with the regenerated column; (b) images of CrO_4^{2-} solution (top) and after (bottom) passing through the column.

Figure S47: Powder X-ray diffraction (PXRD) pattern of compound-1.

Table S1: A comparison table of CrO_4^{2-} capture $(CrO_4^{2-}$ mg/gm) with some well-studied examples in the literature (N.D.: Not done)

Compound	Capacity	Selectivity	Reference
	(mg/gm)		
Compound-1	133	Cl ⁻ , NO ₃ ⁻ , Br ⁻ , SO ₄ ²⁻	This work
Carbon nanocomposites	3.74	N.D.	1
Polyaniline	18.1	N.D.	2
MOR-2	263	Cl^- , NO_3^- , HCO_3^- , etc.	3
SLUG-21	60	NO_3^-, CO_3^{2-}	4
1-ClO ₄	62.9	halide anions	5
1-NO ₃	82.5	NO_3^-, CO_3^{2-}	6
Fe nanoparticles	109	N.D.	7
Zn–Co-SLUG-35	68.5	NO ₃ ⁻ , SO ₄ ²⁻	8
TJU-1	279	Cl ⁻ , HCO ₃ ⁻ , NO ₃ ⁻ , SO ₄ ²⁻	9
MgAl-LDHs	112	N.D.	10
ED-rGO	100	N.D.	11
ZIF-67	5.88-13.34	N.D.	12

Table S2: A comparison table of ReO_4^- and MnO_4^- capture (mg/gm) with some well-studied examples in the literature

Element	Compound	Capacity (mg/gm)	Selectivity	Reference
ReO ₄ -	Compound-1	517	$Cl^-, NO_3^-, Br^-, SO_4^{2-}$	This Work
MnO ₄ ⁻	Compound-1	297.3	$Cl^-, NO_3^-, Br^-, SO_4^{2-}$	This Work
ReO ₄ -	D318 resin	351	-	13
ReO ₄ -	PAF-1-F	420	SO ₄ ²⁻ , PO ₄ ³⁻	14
ReO ₄ -	Dowex1x8	98.1	-	14
ReO ₄ -	Purolite 530E	96	-	14
ReO ₄ -	SLUG-21	602	-	15
ReO ₄ -	UiO-66-NH ₃ ⁺	159	NO ₃ ⁻ , SO ₄ ²⁻ , PO ₄ ³⁻	16
ReO ₄ -	SCU-100	541	$CO_3^{2-}, SO_4^{2-}, PO_4^{3-}$	17
ReO ₄ -	SCU-101	217	various anions	18
ReO ₄ -	PolyDMAEMA hydrogels	30.5	-	19
ReO ₄ -	4-ATR resin	354		20
ReO ₄ -	SBN	786	-	21
ReO ₄ -	LDHs	130	-	21
MnO ₄ -	SLUG-21	283	NO_3^-, CO_3^{2-}	15

References:

[1] J. Zhu, S. Wei, H. Gu, S. B. Rapole, Q. Wang, Z. Luo, N. Haldolaarachchige, D. P. Young, Z. Guo, *Environ. Sci. Technol.* 2012, 46, 977-985.

[2] B. Qiu, C. Xu, D. Sun, H. Wei, X. Zhang, J. Guo, Q. Wang, D. Rutman, Z. Guo, S. Wei, *RSC Adv.* 2014, *4*, 29855-29865.

[3] S. Rapti, D. Sarma, S. A. Diamantis, E. Skliri, G. S. Armatas, A. C. Tsipis, Y. S. Hassan, M. Alkordi, C. D. Malliakas, M. G. Kanatzidis, T. Lazarides, J. C. Plakatouras, M. J. Manos, *J. Mater. Chem. A* **2017**, *5*, 14707–14719.

[4] H. Fei, M. R. Bresler, S. R. J. Oliver, *J. Am. Chem. Soc.* **2011**, *133*, 11110–11113.

[5] P. Shi, B. Zhao, G. Xiong, Y. Hou, P. Cheng, *Chem. Commun.* 2012, 48, 8231–8233.

[6] L. Li, X. Feng, R. Han, S. Zang, G. Yang, *J. Hazard. Mater.* **2017**, *321*, 622–628.

[7] J. Cao, W. -X. Zhang, J. Hazard. Mater. 2006, 132, 213–219.

[8] H. Fei, C. S. Han, J. C. Robins, S. R. J. Oliver, *Chem. Mater.* 2013, 25, 647–652.

[9] H. Yang, H. Fei, *Chem. Commun.* **2017**, *53*, 7064–7067.

[10] Y. Li, B. Gao, T. Wu, D. Sun, X. Li, B. Wang, F. Lu, Water Res. 2009, 43, 3067–3075.

[11] H. -L. Ma, Y. Zhang, Q. -H. Hu, D. Yan, Z. -Z. Yu, M. Zhai, *J. Mater. Chem.* **2012**, 22, 5914–5916.

[12] X. Li, X. Gao, L. Ai, J. Jiang, Chem. Eng. J. 2015, 274, 238-246.

[13] Z. Shu, M. Yang, Chinese. J. Chem. Eng. 2010, 18, 372-376.

[14] D. Banerjee, S. K. Elsaidi, B. Aguila, B. Li, D. Kim, M. J. Schweiger,
A. A. Kruger, C. J. Doonan, S. Ma, P. K. Thallapally, *Chem. Eur. J.* **2016**, *22*, 17581–17584.

[15] H. Fei, D. L. Rogow, S. R. J. Oliver, *J. Am. Chem. Soc.* **2010**, *13*2, 7202–7209.

[16] D. Banerjee, W. Xu, Z. Nie, L. E. V. Johnson, C. Coghlan, M. L. Sushko, D. Kim, M. J. Schweiger, A. A. Kruger, C. J. Doonan, P. K. Thallapally, *Inorg. Chem.* **2016**, *55*, 8241–8243.

[17] D. Sheng, L. Zhu, C. Xu, C. Xiao, Y. Wang, Y. Wang, L. Chen, J. Diwu, J. Chen, Z. Chai, S. Wang, *Environ. Sci. Technol.* **2017**, *51*, 3471–3479.

[18] L. Zhu, V. Sheng, C. Xu, X. Dai, M. A. Silver, J. Li, P. Li, Y. Wang,
Y. Wang, L. Chen, C. Xiao, J. Chen, R. Zhou, C. Zhang, O. K. Farha, Z.
Chai, T. E. Albrecht-Schmitt, S. Wang, *J. Am. Chem. Soc.* 2017, *139*, 14873-14876.

[19] Y. Yan, M. Yi, M. L. Zhai, H. F. Ha, Z. F. Luo, X. Q. Xiang, *React.*

Funct. Polym. 2004, 59, 149-154.

[20] C. Xiong, C. Yao, X. Wu, *Hydrometallurgy* **2008**, *90*, 221-226.

[21] Zhu, L.; Xiao, C.; Dai, X.; Li, J.; Gui, D.; Sheng, D.; Chen, L.; Zhou,
R.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. *Environ. Sci. Technol. Lett.* 2017, 4, 316–322.