SUPPORTING INFORMATION

Replacing $H^{\scriptscriptstyle +}$ by $Na^{\scriptscriptstyle +}$ or $K^{\scriptscriptstyle +}$ in phosphopeptide anions and cations prevents electron capture dissociation

Eva-Maria Schneeberger and Kathrin Breuker*

Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck, Austria email: eva-maria.schneeberger@uibk.ac.at, kathrin.breuker@uibk.ac.at website: www.bioms-breuker.at/

Figure S1. Site-specific fragmentation efficiency (*c*, *z*[•] and *c*[•], *z* fragments) in niECD of A)(M-2H)²⁻, B) (M-3H+Na)²⁻, C) (M-4H+2Na)²⁻, D) (M-5H+3Na)²⁻, and E) (M-6H+4Na)²⁻ ions using a skimmer potential of 10 V, and of F) (M-2H)²⁻, G) (M-3H+Na)²⁻, H) (M-4H+2Na)²⁻, J) (M-5H+3Na)²⁻, and K) (M-6H+4Na)²⁻ ions using a skimmer potential of 80 V.

Figure S2. Site-specific fragmentation efficiency (*c*, *z*[•] and *c*[•], *z* fragments) in niECD of A) (M-2H)²⁻, B) (M-3H+K)²⁻, and C) (M-4H+2K)²⁻ ions using a skimmer potential of 10 V, and of D) (M-2H)²⁻, E) (M-3H+K)²⁻, F) (M-4H+2K)²⁻, and G) (M-5H+3K)²⁻ ions using a skimmer potential of 80 V.

Figure S3. A) Percentage stacked area plots illustrating the yield of *c*, *z*[•] and *c*[•], *z* fragments (filled circles), products from loss of small molecules (>70% NH₃; <30% CO, CONH₃, C₂H₆O, C₂H₄O₂) from reduced molecular ions (open circles), and reduced molecular ions (triangles) of which ~20% showed loss of H[•] but not K[•], from niECD of phosphopeptide anions with a net charge of 2- at 10 V (left) and 80 V (right) skimmer potential and B) corresponding electron capture efficiency versus the number of K⁺ attached; solid lines in A are meant to guide the eye and dashed lines in B are exponential fit functions.

Figure S4. A) Spectrum from ECD of $(M+2H)^{2+}$ ions using a skimmer potential of 10 V (asterisks indicate harmonic signals), and site-specific fragmentation efficiency (*c*, *z* and *c*, *z* fragments) in ECD of B) $(M+2H)^{2+}$, C) $(M+H+Na)^{2+}$, D) $(M+2Na)^{2+}$, and E) $(M-H+3Na)^{2+}$ ions at 80 V skimmer potential; F) yield of *c* and *z* fragments, products from loss of small molecules from reduced molecular ions, and reduced molecular ions from ECD of phosphopeptide ions with a net charge of 2+ at 80 V skimmer potential and G) corresponding electron capture efficiency versus the number of Na⁺ attached, lines in F and G are meant to guide the eye.

Figure S5. Spectrum from IRMPD (25% laser power, 180 ms irradiation time) of $(M+2H)^{+}$ (~95%) and $(M+H)^{+}$ (~5%) ions formed by ECD of $(M+2H)^{2+}$ ions at 80 V skimmer potential.

Figure S6. Relative abundance of c, z and c, z fragments from ECD of (M+3H)³⁺ ions at 10 V versus 50 V skimmer potential, the solid line shows a linear fit with a correlation coefficient of 0.999807.

Figure S7. ECD spectra of phosphopeptide ions with a net charge of 3+ and up to four Na⁺ attached as indicated.

Figure S8. Site-specific fragmentation efficiency (c, z and c, z fragments) in ECD of A) (M+3H)³⁺, B) (M+2H+Na)³⁺, C) (M+H+2Na)³⁺, D) (M+3Na)³⁺, and E) (M-H+4Na)³⁺ ions at 10 V skimmer potential and F) - I) corresponding Na⁺ occupancy of c or c (left axes) and z or z (right axes) fragments with up to four Na⁺ attached.

Figure S9. Site-specific fragmentation efficiency (*c*, *z*[•] and *c*[•], *z* fragments) in ECD of A) (M+3H)³⁺, B) (M+2H+K)³⁺, C) (M+H+2K)³⁺, and D) (M+3K)³⁺ ions at 10 V skimmer potential and E)-G) corresponding K⁺ occupancy of *c* or *c*[•] (left axes) and *z*[•] or *z* (right axes) fragments with up to three K⁺ attached; H) yield of *c*, *z*[•] and *c*[•], *z* fragments, products from loss of small molecules from reduced molecular ions, and reduced molecular ions from ECD of phosphopeptide ions with a net charge of 3⁺ at 10 V skimmer potential and I) corresponding electron capture efficiency versus the number of K⁺ attached

Figure S10. Site-specific fragmentation efficiency (c, z^* and c^* , z fragments) in ECD of phosphopeptide ions with a net charge of 3+ versus the number of Na⁺ (circles) or K⁺ (triangles) attached.

Figure S11. Hydrogen atom transfer between c and z fragments and fragmentation efficiency in ECD of phosphopeptide ions with a net charge of 3+ and up to four Na⁺ attached, illustrated for cleavage sites A) 3, B) 6, C) 10, D) 11, E) 12, and F) 15.

Figure S12. Spectrum from IRMPD (25% laser power, 180 ms irradiation time) of $(M-H+4Na)^{2+}$ (~92%) and $(M-2H+4Na)^{2+}$ (~8%) ions formed by ECD of $(M-H+4Na)^{3+}$ ions at 10 V skimmer potential.