Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

OH formation and H₂ adsorption at the liquid water-Pt(111) interface

Henrik H. Kristoffersen*, Tejs Vegge, and Heine Anton Hansen

Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby,

Denmark

*Tel: +45 45 25 82 05; E-mail: <u>hhkri@dtu.dk</u>

S1. AIMD reaction energies with D₂O at 35O K compared to H₂O at 300 K

MD simulations conducted at 350 K and with D₂O can be used to describe reactions with H₂O at room temperature, if the reactions energies are temperature independent and if the AIMD reaction energies are similar for D₂O and H₂O. We therefore show literature reaction enthalpies for H₂O(l) and D₂O(l) dissociation in Table S1. It is seen that the reaction enthalpy for H₂O(l) dissociation into H₂(g) and $\frac{1}{2}O_2(g)$ has a very small temperature dependence, i.e. ΔH^0 changes by -2 kJ/mol as the temperature is increased by 62 K (Table S1) from 298.15 K to 360 K. The reaction enthalpies for H₂O(l) dissociation and D₂O(l) dissociation do differ (by 9 kJ/mol, Table S1), but most of the difference (7 kJ/mol) is from changes in zero point energies, which are not included in the AIMD reaction energies, but are corrected for separately.

Table S1: Reaction enthalpies (from literature) and changes in zero point energies (Δ ZPE, our data) for H₂O(l) and D₂O(l) dissociation.

Reaction	ΔH ⁰ (298.15 K)	ΔH ⁰ (360 K)	ΔΖΡΕ
$H_2O(l) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$	285.8 kJ/mol ^a	283.9 kJ/mol ^a	-20.3 kJ/mol
$D_2O(l) \rightarrow D_2(g) + \frac{1}{2}O_2(g)$	294.6 kJ/mol ^b		-13.5 kJ/mol

^a <u>https://janaf.nist.gov/tables/H-063.html</u>

^bD. D. Wagman, et al., J. Phys. Chem. Ref. Data, 1982, Vol. 11, Suppl. No 2

S2. Picking *t*⁰ to remove internal energy transients at short *t*

Figure S1: Mean internal energy, as a function of elapsed time $(t-t_0)$ for the most stable MD simulation of (a) "32H₂O / Pt(111)" and (b) "8OH + 24H₂O / Pt(111)". The internal energy transients at short *t* are removed by increasing t_0 to 22 ps for "32H₂O / Pt(111)" and increasing t_0 to 18 ps for "8OH + 24H₂O / Pt(111)".

Figure S2: Total energy cost of hydroxyl formation (eq 4), as a function of elapsed time $(t-t_0)$

(Running average). The black graphs show the three MD simulations for " $32H_2O$ / Pt(111)" and the most stable simulation is used as the reference (0 eV). Included is also the two MD simulations for n_{OH} = 1, 2, 5, 6, 8, and 9, the three MD simulations for n_{OH} = 4, and the two MD simulation with n_{O*} = 4. From these plots, we estimate that ~30 ps are needed to get time average energies that oscillate by less than ±0.05 eV.

Table S2: For each MD simulation of n_{OH} interfaces; energy cost per formed *OH ($\Delta E/n_{OH}$), total energy cost (ΔE), average Bader charge in the Pt(111) slab ($\langle Q[Pt_{48}] \rangle_t$), average work function ($\langle WF \rangle_t$), average number of hydrogen bonds ($\langle HB \rangle_t$) and the chosen thermalisation time (t_0) are listed. The $\langle WF \rangle_t$ values in parenthesis are calculated with 0.25 ps interval sampling instead of 1 ps.

п он	$\Delta E/n_{OH}$	ΔΕ	$\langle \mathbf{Q}[\mathbf{Pt}_{48}] \rangle_t$	$\langle \mathbf{WF} \rangle_t$	$\langle \mathbf{HB} angle_t^{a}$	t ₀
0		0 eV 0.21 eV 0.42 eV	-0.17 e -0.15 e -0.14 e	4.3 eV 4.5 eV 4.1 eV	56.0 54.7 54.5	22 ps 15 ps 13 ps
1	0.87 eV	0.87 eV	0.26 e	4.7 eV	54.9	20 ps
	0.99 eV	0.99 eV	0.26 e	4.3 eV	54.6	6 ps
2	0.89 eV	1.78 eV	0.66 e	4.2 eV (4.4 eV)	54.9	3 ps
	0.90 eV	1.81 eV	0.65 e	4.2 eV	55.0	16 ps
4	0.96 eV	3.83 eV	1.42 e	4.6 eV	53.2	3 ps
	0.98 eV	3.93 eV	1.45 e	4.5 eV	53.4	10 ps
	1.01 eV	4.05 eV	1.43 e	4.3 eV	52.5	1 ps
5	0.87 eV	4.36 eV	1.79 e	4.1 eV (4.3 eV)	53.9	1 ps
	0.91 eV	4.57 eV	1.77 e	4.7 eV	53.5	15 ps
6	0.91 eV	5.49 eV	2.10 <i>e</i>	4.6 eV	52.2	11 ps
	0.95 eV	5.69 eV	2.09 <i>e</i>	5.0 eV	52.2	7 ps
8	0.97 eV	7.76 eV	2.63 e	5.5 eV	51.7	18 ps
	0.97 eV	7.80 eV	2.64 e	5.3 eV	51.5	11 ps
$n_{\rm O^*} = 4$		8.27 eV 8.37 eV	2.62 e 2.61 e	5.1 eV 5.2 eV	51.2 51.3	67 ps 35 ps
9	1.02 eV	9.15 eV	2.91 e	5.3 eV	50.4	10 ps
	1.07 eV	9.66 eV	2.91 e	5.5 eV	49.2	6 ps

^a The number of hydrogen bonds at a given time is calculated by counting how many of the H atoms are

situated between 1.25 Å to 2.40 Å from one of the O atoms.

Figure S3: Total hydrogen adsorption energies (eq 5), as a function of elapsed time $(t-t_0)$. The black graphs show the three MD simulations for "32H₂O / Pt(111)" and the most stable simulation is used as the reference (0 eV). Included is also the single MD simulation for $n_{\rm H}$ = 1, 2, 4, 6, and 8.

Table S3: For each MD simulation of $n_{\rm H}$ interfaces; adsorption energy per H* ($E_{\rm ad}/n_{\rm H}$), total adsorption energy ($E_{\rm ad}$), average Bader charge in the Pt(111) slab ($\langle Q[Pt_{48}] \rangle_t$), average work function ($\langle WF \rangle_t$), average number of hydrogen bonds ($\langle HB \rangle_t$) and the chosen thermalisation time (t_0) are listed.

n _H	${ m E}_{ m ad}/n_{ m H}$	\mathbf{E}_{ad}	$\langle \mathbf{Q}[\mathbf{Pt}_{48}] \rangle_t$	$\langle \mathbf{WF} \rangle_t$	$\langle {f HB} angle_t{}^a$	t ₀
0		0 eV 0.21 eV 0.42 eV	-0.17 e -0.15 e -0.14 e	4.3 eV 4.5 eV 4.1 eV	56.0 54.7 54.5	22 ps 15 ps 13 ps
1	-0.09 eV	-0.09 eV	-0.12 e	4.8 eV	54.7	20 ps
2	-0.20 eV	-0.40 eV	-0.12 e	4.3 eV	54.5	4 ps
4	-0.36 eV	-1.43 eV	-0.12 e	4.3 eV	56.4	31 ps
6 ^b		-2.65 eV	-0.60 e	4.3 eV	55.1	11 ps
8 ^b		-2.96 eV	-0.61 e	3.7 eV	54.0	38 ps

^{*a*} The number of hydrogen bonds at a given time is calculated by counting how many of the H atoms are situated between 1.25 Å to 2.40 Å from one of the O atoms.

^{*b*} One H desorbs from the surface during the equilibration and the system has " $5H^* + H^+(aq) + e^-$ " or " $7H^* + H^+(aq) + e^-$ " during the energy sampling.

S5 Free energy corrections

Table S4: Corrections used to get reaction Gibbs free energies, $\Delta G(298.15 \text{ K}, 1 \text{ atm } \text{H}_2) = \Delta E_{\text{AIMD}} + \Delta ZPE + p\Delta V - T\Delta S$. The configurational entropy of adsorbed species is approximated by $S_{\text{conf}}(\theta) = -k_{\text{B}}(\ln[\theta/(1-\theta)]+1/\theta \ln[1-\theta]).$

Species		-TS ^b	$\mathbf{pV} \approx n_{(g)} k_{\mathrm{B}} \mathbf{T}$
H*	0.14 eV	-0.007 eV – TS _{conf} ($\theta_{\text{H*}}$)	0 eV
*ОН	0.28 eV	-0.079 eV – TS _{conf} (θ_{*OH})	0 eV
0*	0.05 eV	-0.038 eV – TS _{conf} (θ_{O^*})	0 eV
H ₂ O*	0.49 eV	-0.203 eV – TS _{conf} ($\theta_{\text{H2O}*}$)	0 eV
O ₂ (g)	0.10 eV	-0.634 eV	0.026 eV
H ₂ (g)	0.27 eV	-0.404 eV	0.026 eV
H ₂ O(l)	0.53 eV	-0.216 eV	0 eV

^a Zero point energies (ZPE) are based on frequency peaks obtained from the spectral density of MD trajectory velocity-velocity autocorrelation functions [J. Martí, *J. Chem. Phys.* **1999**, *110* (14), 6876-6886]. The frequencies with deuterium are multiplied by sqrt(2) to get hydrogen frequencies.
^b Entropy of H*, *OH, and O* is obtained from [A. A. Peterson, *et al., Energy Environ. Sci.* **2010**, 3 (9), 1311–1315], while H₂O* is calculated in a similar fashion for this project. The entropy of O₂(g), H₂(g), and H₂O(l) is obtained from <u>http://kinetics.nist.gov/janaf/</u>.

$n \operatorname{H_2O}(\mathbf{l}) \rightarrow n \frac{1}{2} \operatorname{H_2}(\mathbf{g}) + n \operatorname{*OH}$

 $\Delta G(298.15 \text{ K}, 1 \text{ atm } \text{H}_2) = \Delta E_{\text{AIMD}} + n (-0.115 \text{ eV} - 0.065 \text{ eV} + 0.013 \text{ eV} - \text{TS}_{\text{conf}}(\theta_{*\text{OH}}))$

$n \mathbf{H}^* \rightarrow n \frac{1}{2} \mathbf{H}_2(\mathbf{g})$

 $\Delta G(298.15 \text{ K}, 1 \text{ atm } \text{H}_2) = \Delta E_{\text{AIMD}} + n (-0.005 \text{ eV} - 0.195 \text{ eV} + 0.013 \text{ eV} - \text{Ts}_{\text{conf}}(\theta_{\text{H}^*}))$

$8*OH \rightarrow 4O* + 4H_2O(l)$

 $\Delta G(298.15 \text{ K}, 1 \text{ atm } \text{H}_2) = \Delta E_{\text{AIMD}} + (+0.08 \text{ eV} - 0.384 \text{ eV}) = \Delta E_{\text{AIMD}} - 0.304 \text{ eV}$

S6 Movies of the MD trajectories

Video of the most stable MD trajectory for;

"32H₂O / Pt(111)" (32H2O+Pt111.mpg),

"OH + 31H₂O / Pt(111)" (OH+31H2O+Pt111.mpg),

"2OH + 30H₂O / Pt(111)" (2OH+30H2O+Pt111.mpg),

"5OH + 27H₂O / Pt(111)" (5OH+27H2O+Pt111.mpg), and

"8OH + 24H₂O / Pt(111)" (8OH+24H2O+Pt111.mpg).

The simulation time $(t-t_0)$ is included in the videos.

S7 Structure of the nine *OH and four O* interfaces

Figure S4: Side view and top view of water-Pt(111) interface and average atomic density as a function of height above the Pt(111) surface for (a) nine *OH and (b) four O*. The atomic configurations are taken at the end of the MD samplings and surface bound species are depicted with increased radii. *OH and O* are colored blue for O and yellow for H, while H₂O is colored red for O and cyan for H.

S8 Coverage of surface bound H₂O* and second layer water

Figure S5: Coverage of surface bound water (H_2O^*), surface bound H_2O^* plus *OH (*OH + H_2O^*), and second layer H_2O (2nd layer) for different number of *OH at the liquid water-Pt(111) interface.

S9 Pt(111) CV without and with shifted $\Delta E(n_{OH}=2)$

Figure S6: *OH coverage as a function of electrostatic potential (blue curve) and simulated Pt(111) cyclic voltammogram (CV) (red dashed curve, proportional to $d\theta/dU$) for (a) unmodified energies (Similar to Fig. 3) and (b) with $\Delta E(n_{OH}=2)$ shifted by -0.04 eV. The exact shape of the butterfly feature seen between 0.55 V and 0.70 V in the simulated Pt(111) CV is strongly depended on the total energy costs of forming one, two and five *OH at the interface. Here we show that stabilizing the total energy cost of forming two *OH ($\Delta E(n_{OH}=2)$) by -0.04 eV allows the 1/6 ML *OH coverage to contribute, before the *OH coverage jumps to 5/12 ML. This makes the shoulder peak more pronounced (it reaches a scan rate normalized current of 500 μ F cm⁻²) and the sharp peak less pronounced (it reaches 2000 μ F cm⁻²). With this -0.04 eV shift in $\Delta E(n_{OH}=2)$, the agreement between the simulated CV and experimental CV becomes better [Gómez-Marín, A. M.; Clavilier, J.; Feliu, J. M., *J. Electroanal. Chem.* **2013**, *688*, 360–370].

S10 DFT energy vs work function

Figure S7: Plots of $E_{DFT}(t)$ versus WF(t) for $n_{OH} = 1, 2, 5, 6, 8, 9$ and $n_{O*} = 4$. The data points represent atomic configurations taken at 1 ps or 0.25 ps intervals along the MD trajectories. The WF(t) can change by 3 eV without any systematic stabilization or destabilization of $E_{DFT}(t)$, even with nine *OH on the surface. Therefore, our MD data does not indicate any *OH stabilization or destabilization due to the electrostatic potential at the interface.

S11 Water orientation vs work function

In an attempt to approximate the water orientation by a single geometric quantity, we define $\delta \rho_z(t)$ as the sum over the z-coordinates of H atoms divided by 2, minus the sum over the z-coordinates of O atoms.

$$\delta \rho_{z}(t) \equiv \frac{1}{2} \sum_{j \in \mathcal{H}_{atoms}} z_{j}(t) - \sum_{i \in \mathcal{O}_{atoms}} z_{i}(t)$$

Hereby, a shift in $\delta \rho_z(t)$ over time will indicate a change in the average water orientation. The quantify $\delta \rho_z(t)$ is of course also proportional to the dipole in the z direction originating from the water layer assuming that H atoms have half positive charge and O atoms have one negative charge. Therefore, $\delta \rho_z(t)$ could be related to WF(t). Figure S8 shows the relationship between WF(*t*) and $\delta \rho_z(t)$ for the most stable "2OH+ 30H₂O / Pt(111)" and "5OH+ 27H₂O / Pt(111)" AIMD simulations and it is clear that there is a strong correlation. When $\delta \rho_z(t)$ is larger than the average value, i.e. when more water molecules have hydrogen pointing away from the surface, WF(*t*) is very low. Opposite, when $\delta \rho_z(t)$ is low because more water molecules have hydrogen pointing toward the surface, WF(*t*) is very high.

Figure S8: Plots of $\delta \rho_z(t)$ versus WF(*t*) for $n_{OH} = 2$ and 5. The data points represent atomic configurations taken at 0.25 ps intervals along the MD trajectories.

S12 Autocorrelation functions

Figure S9: Time correlation functions for DFT energy, work function, and $\delta \rho_z(t)$ calculated for the most stable "2OH+ 30H₂O / Pt(111)" and "5OH+ 27H₂O / Pt(111)" AIMD simulations. The autocorrelation functions are calculated asCorr(A)= $\langle A(t)A(t+\Delta t)\rangle - \langle A(t)\rangle\langle A(t+\Delta t)\rangle$. Solid lines make

use of the full MD trajectory data, while circles+dashed lines are calculated from data points taken at 0.25 ps intervals along the MD trajectories.

The main observation is that it may require a time-shift (Δt) of ~2 ps to remove the short time correlation in both DFT energy, work function, and $\delta \rho_z(t)$. In addition, both interfaces are subject to very long time-shift correlations. The time-shifts are not the same for the two interfaces, where "2OH+ $30H_2O / Pt(111)$ " is oscillating with a period of $\Delta t \approx 5$ ps and "5OH+ $27H_2O / Pt(111)$ " is oscillating with a period of $\Delta t \approx 5$ ps and "5OH+ $27H_2O / Pt(111)$ " is oscillating with a period of $\Delta t \approx 5$ ps and "5OH+ $27H_2O / Pt(111)$ " is oscillating on the surface or in the liquid water film can respond to the very fast proton transfer dynamics occurring on the surface.

S13 Bader charge of a desorbing H atom

Figure S10: (a) Bader charge and distances along 300 fs, where the H atom desorbs into the water film, as observed in the $6H + 32H_2O / Pt(111)$ simulation. Between 0 fs and 100 fs, the water molecule approaches the adsorbed H atom (H--O distance decreases, red curve). In the same period, the Bader charge (dashed blue) on the desorbing H atom increases from ~0 *e* to 0.4 *e*. Between 100 fs and 250 fs, the H atom is both connected to the Pt atom in the surface and the O atom in water. At 250 fs, the H atom detaches from the Pt atom (H--Pt distance increases, black curve) and the Bader charge on the H atom is increased to ~0.6 *e*. Atomic configuration at (b) 0 fs, (c) 100 fs, (d) 200 fs, and (e) 300 fs.