Supporting Information

Rhodium-catalyzed *ortho*-heteroarylation of phenols: directing group-enabled switching of the electronic bias for heteroaromatic coupling partner

Yimin Wu,^a Wei Li,^a Linfeng Jiang,^a Luoqiang Zhang,^a Jingbo Lan^a and Jingsong You*^a

^aKey Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China

*E-mail: jsyou@scu.edu.cn

Table of contents

I. General remarks	S3
II. General procedure for the synthesis of 2-phenoxypyridine derivatives	
III. Screening of directing groups	S4
IV. Optimization of the oxidative ortho-heteroarylation of phenol derivative	esS4
V. General procedure for the oxidative <i>ortho</i> -heteroarylation of derivatives	of phenol
VI. Gram-scale synthesis of 3a	S7
VII. Procedure for removal of the directing group	S8
VIII. Construction of furan-fused heteroacenes	.812
IX. Mechanistic study	S17
X. Single-crystal X-ray structure of 3n	
XI. Experimental data for the described substances	S22
XII. References	S44
XIII. Copies of ¹ H and ¹³ C NMR spectra	S46

I. General remarks

NMR spectra were recorded on a Agilent 400-MR DD2 or a Bruker AMX-400MHz spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (DMSO-*d*₆: $\delta = 2.50$ ppm; CDCl₃: $\delta = 7.26$ ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO-*d*₆ as the internal standard (DMSO-*d*₆: $\delta = 39.52$ ppm; CDCl₃: $\delta = 77.16$ ppm). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI) or a Waters-Q-TOF-Premier (ESI). X-Ray single-crystal diffraction data were collected on an Oxford Xcalibur E single crystal diffractometer. Melting points were determined with XRC-1 and are uncorrected.

All reagents were obtained from commercial suppliers and used without further purification unless otherwise stated. $RhCl_3 \cdot 3H_2O$ was purchased from Shaanxi Kaida Chemical Engineering (China) CO., Ltd. $AgSbF_6$ and $Cu(OAc)_2$ were purchased from Alfa Aesar. [Cp*RhCl_2]_2¹ and 2-phenoxypyridine derivatives² were prepared according to the literature procedures. All solvents were dried with an innovative technology solvent purification system (model no.: PS-MD-5). All reactions were carried out under a nitrogen atmosphere.

II. General procedure for the synthesis of 2-phenoxypyridine derivatives²

A 100 mL oven-dried round bottomed flask was charged with a magnetic stiring bar, CuI (190 mg, 1.0 mmol, 10 mol%), picolinic acid (246 mg, 2.0 mmol, 20 mol%), phenol (11 mmol), and K_3PO_4 (4.24 g, 20 mmol). The tube was then evacuated and back-filled with N₂. The procedure of evacuation/backfill was sequentially repeated two additional times. It was then added with 2-bromopyridine (10 mmol) and dimethylsulfoxide (25 mL) by syringe under an N₂ atmosphere. The tube was placed in a pre-heated oil bath at 90 °C and the reaction mixture was stirred for 24 h. The reaction mixture was cooled to room temperature and quenched with water (20 mL). CH₂Cl₂ (30 mL) was added and the mixture was stirred. The organic layer was separated and the aqueous layer was extracted twice more with dichloromethane (10 mL). Combined organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified via silica gel column using petromleum ester and ethyl acetate.

III. Screening of directing groups

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with phenol derivative (0.20 mmol), **2a** (3.0 equiv), $[Cp*RhCl_2]_2$ (5.0 mol%), AgSbF₆ (20 mol%), Ag₂CO₃ (3.0 equiv), and 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 150 °C in a pre-heated oil bath for 24 h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

IV. Optimization of the oxidative ortho-heteroarylation of phenol derivatives

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with 2-(*o*-tolyloxy)pyridine (**1a**, 0.20 mmol), benzothiophene (**2a**, 3.0 equiv), the catalyst (5.0-10 mol%), AgSbF₆ (20 mol%), oxidant (3.0 equiv), acid (1.0 equiv), base (30 mol%), and solvent. The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 150 °C in a pre-heated oil bath for 24 h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) to provide the desired product **3a**.

(1) Table S1. Screening of oxidant^a

\bigcirc	,⊂OPy + H— `H	oxidar [Cp*RhCl ₂] ₂ , 1,4-dioxane, 15	ht AgSbF ₆ 0 °C, 24 h
1a		2a	3a
	Entry	Oxidant	Yield $(\%)^b$
	1	Ag ₂ CO ₃	39
	2	AgOAc	16
	3	$Cu(OAc)_2$	67
	4	Cu(OAc) ₂ .H ₂ O	29
	5	Cu(OTf) ₂	trace
	6	CuCl ₂	n.d
	7	CuI	n.d
	8	BQ	trace
	9	PhI(OAc) ₂	trace
	10	$K_2S_2O_8$	trace
	11	NaClO ₃	trace
	12	O_2	n.d

^{*a*}Reaction conditions: 2-(*o*-tolyloxy) pyridine **1a** (37.0 mg, 0.2 mmol), benzo[*b*]thiophene **2a** (80.4 mg, 0.6 mmol), [Cp*RhCl₂]₂ (5.0 mol%), AgSbF₆ (20 mol%), oxidant (3.0 equiv), and 1,4-dioxane (0.5 mL) at 150 °C for 24 h under an N₂ atmosphere. ^{*b*}Yields of isolated products. n.d = no detection.

Table S2. Screening of solvent^a

) Н + н 1а	Cu(C <u>[Cp*RhCl₂]</u> solvent, 15	$(Ac)_2$ $2, AgSbF_6$ $0^{\circ}C, 24 h$ S 3a
-	Entry	Solvent	Yield (%) ^b
-	1	1,4-dioxane	68
	2^c	1,4-dioxane	49
	3	THF	59
	4	MeOH	n.d
	5	DMF	21
	6	DCE	22
	7	toluene	51
	8	o-xylene	30

^aReaction conditions: 2-(o-tolyloxy) pyridine 1a (37.0 mg, 0.2 mmol), benzo[b]thiophene 2a

(80.4 mg, 0.6 mmol), $[Cp*RhCl_2]_2$ (5.0 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (3.0 equiv), and solvent (0.5 mL) at 150 °C for 24 h under an N₂ atmosphere. ^{*b*}Yields of isolated products. ^{*c*}1,4-Dioxane (1.0 mL). THF = tetrahydrogen furan. DMF = dimethyl formamide. DCE = 1,2-dichloroethane. n.d = no detection.

Table S3. Screening of rhodium catalyst^a

^{*a*}Reaction conditions: 2-(*o*-tolyloxy) pyridine **1a** (37.0 mg, 0.2 mmol), benzo[*b*]thiophene **2a** (80.4 mg, 0.6 mmol), catalyst (5.0-10 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (3.0 equiv), and 1,4-dioxane (0.5 mL) at 150 °C for 24 h under an N₂ atmosphere. ^{*b*}Yields of isolated products. ^{*c*}Without AgSbF₆. n.d = no detection.

Table S4. Screening of additive^a

Ĺ	H OPy +	Cu(H-S- 1,4-dioxane add	$(OAc)_2$ $2l_2$, AgSbF ₆ p, 150 °C, 24 h dictive
	1a	2a	3a
	Entry	Additive	Yield (%) ^b
	1	PivOH	78
	2	AcOH	66
	3	PivOH and CsOPiv	65
	4	PivOH and KOAc	71
	5	PivOH and AgOPiv	72
	6	PivOH and CsOPiv	v 82

^{*a*}Reaction conditions: 2-(*o*-tolyloxy) pyridine **1a** (37.0 mg, 0.2 mmol), benzo[*b*]thiophene **2a** (80.4 mg, 0.6 mmol), [Cp*RhCl₂]₂ (5.0 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (3.0 equiv), acid (1.0 equiv), base (30 mol%), and 1,4-dioxane (0.5 mL) at 150 °C for 24 h under an N₂ atmosphere. ^{*b*}Yields of isolated products.

V. General procedure for the oxidative *ortho*-heteroarylation of phenol derivatives

Condition A: A flame-dried Schlenk test tube with a magnetic stirring bar was charged with phenol derivative (0.20 mmol), heteroarene (3.0 equiv), $[Cp*RhCl_2]_2$ (5.0 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (3.0 equiv), PivOH (1.0 equiv), CsOPiv (30 mol%), and 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 150 °C in a preheated oil bath for 24 h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

Condition B: A flame-dried Schlenk test tube with a magnetic stirring bar was charged with phenol derivative (0.20 mmol), heteroarene (2.0 equiv), $[Cp*RhCl_2]_2$ (5.0 mol%), AgSbF₆ (20 mol%), Ag₂O (2.0 equiv), Zn(OTf)₂ (30 mol%), and 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 100 °C in a pre-heated oil bath for 24 h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

Condition C: A flame-dried Schlenk test tube with a magnetic stirring bar was charged with phenol derivative (0.60 mmol), heteroarene (0.20 mmol), $[Cp*RhCl_2]_2$ (10.0 mol%), AgSbF₆ (40 mol%), Ag₂O (4.0 equiv), Zn(OTf)₂ (60 mol%), and 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 100 °C in a pre-heated oil bath for 48h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

VI. Gram-scale synthesis of 3a

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **1a** (4.0 mmol), **2a** (2.0 equiv), [Cp*RhCl₂]₂ (5.0 mol%), AgSbF₆ (20 mol%), Ag₂O (2.0

equiv), $Zn(OTf)_2$ (30 mol%), and 1,4-dioxane (4.0 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 100 °C in a pre-heated oil bath for 48 h. The reaction mixture was then cooled to room temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 40-50 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel using petroleum ether/acetone/Et₃N (120/5/1, v/v/v) as the eluent to yield **3a** as a white solid (798 mg, 63% yield).

VII. Procedure for removal of the directing group³

To a solution of **3a** (63.4 mg, 0.2 mmol) in dry toluene (2 mL) was added MeOTf (67 $\mu L,\,0.6$ mmol) under an N_2 atmosphere. The reaction mixture was stirred at 100 $^\circ C$ for 2 h. After cooling to room temperature, the solvent was evaporated under vacuum. Without further purification, the crude pyridinium was subsequently added to a mixture of Na (115 mg, 5.0 mmol) and dry methanol (4.0 mL) under N₂. The reaction mixture was heated at 80 °C for 30 min. Then it was allowed to cool and H₂O (6 mL) was added, and then 2M HCl aqueous solution was added to acidify the reaction system. The resulting mixture was extracted with EtOAc (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/acetone (24/1, v/v) as the eluent to yield 5a (43.7 mg) in 91% yield as a white solid. M.p.: 64-66 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.34$ (s, 3H), 5.71 (s, 1H), 6.92 (t, J = 7.2 Hz, 1H), 7.18 (d, J = 6.8Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.37-7.41 (m, 2H), 7.50 (s, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.88 (d, J = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 16.4$, 120.4, 120.5, 122.3, 122.8, 123.8, 124.7, 124.8, 125.1, 128.2, 131.5, 139.7, 140.2, 140.4, 151.2 ppm. HRMS (ESI⁻): calcd for C₁₅H₁₁OS [M-H]⁻ 239.0536, found 239.0527.

To a solution of 3n (60.6 mg, 0.2 mmol) in dry toluene (2 mL) was added MeOTf (67 μ L, 0.6 mmol) under an N₂ atmosphere. The reaction mixture was stirred at 100 °C for 2 h. After cooling to room temperature, the solvent was evaporated under vacuum. Without further purification, the crude pyridinium was subsequently added to a mixture of Na (115 mg, 5.0 mmol) and dry methanol (4.0 mL) under N₂. The reaction mixture was heated at 80 °C for 30 min. Then it was allowed to cool and H₂O (6 mL) was added, and then 2 M HCl aqueous solution was added to acidify the reaction system. The resulting mixture was extracted with EtOAc (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/acetone (24/1, v/v) as the eluent to yield **5b** (39.8 mg) in 88% yield as a white solid. M.p.: 85-86 °C. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 6.91$ (t, J = 7.6 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 7.21 (t, J =7.6 Hz, 1H), 7.29-7.37 (m, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 10.4 Hz, 2H), 10.39 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta =$ 116.5, 119.7, 120.3, 121.6, 121.9, 123.4, 124.1, 124.4, 128.6, 129.4, 138.8, 139.9, 140.2, 154.3 ppm. HRMS (ESI-): calcd for C₁₄H₉OS [M-H]⁻ 225.0380, found 225.0376.

To a solution of **3t** (111.6 mg, 0.2 mmol) in dry toluene (2 mL) was added MeOTf (67 μ L, 0.6 mmol) under an N₂ atmosphere. The reaction mixture was stirred at 100 °C for 2 h. After cooling to room temperature, the solvent was evaporated under vacuum. Without further purification, the crude pyridinium was subsequently added to a mixture of Na (115 mg, 5.0 mmol) and dry methanol (4.0 mL) under N₂. The reaction mixture was heated at 80 °C for 30 min. Then it was allowed to cool and H₂O (6 mL) was added, and then 2M HCl aqueous solution was added to acidify the reaction system. The resulting mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/acetone (9/1, v/v) as the eluent to

yield **6c** (74.1 mg) in 77% yield as a white solid. M.p.: 165-166 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (s, 3H), 1.42-1.69 (m, 6H), 1.94 (d, J = 11.6 Hz, 1H), 2.03-2.19 (m, 3H), 2.28-2.39 (m, 2H), 2.47-2.54 (m, 1H), 2.93-2.96 (m, 2H), 5.40 (s, 1H), 6.80 (s, 1H), 7.29 (s, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.0$, 21.7, 26.0, 26.5, 29.6, 31.6, 36.0, 38.3, 43.9, 48.1, 50.5, 108.2, 116.3, 116.6, 122.4, 123.7, 125.5, 125.9, 128.7, 132.4, 134.3, 138.5, 138.7, 140.3, 151.3, 221.4 ppm. HRMS (ESI-): calcd for C₂₆H₂₄BrO₂S [M-H]⁻ 479.0686, 481.0665, found 479.0677, 481.0668.

To a solution of 3v (86.4 mg, 0.2 mmol) in dry toluene (2 mL) was added MeOTf (67 µL, 0.6 mmol) under an N₂ atmosphere. The reaction mixture was stirred at 100 °C for 2 h. After cooling to room temperature, the solvent was evaporated under vacuum. Without further purification, the crude pyridinium was subsequently added to a mixture of Na (115 mg, 5.0 mmol) and dry methanol (4.0 mL) under N₂. The reaction mixture was heated at 80 °C for 30 min. Then it was allowed to cool and H₂O (6 mL) was added, and then 2M HCl aqueous solution was added to acidify the reaction system. The resulting mixture was extracted with EtOAc (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/acetone (24/1, v/v) as the eluent to yield 6d (48.3 mg) in 68% yield as a white solid. M.p.: 87-88 °C. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.43$ (d, J = 8.4 Hz, 1H), 7.48-7.52 (m, 2H), 7.54-7.61 (m, 3H), 7.83 (d, J = 7.6 Hz, 1H), 7.91 (d, J = 7.2 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 8.33 (d, J= 7.6 Hz, 1H), 9.87 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 107.8, 113.4, 119.2, 122.7, 122.82, 122.83, 125.2, 125.4, 125.6, 127.2, 127.4, 128.5, 134.7, 136.2, 137.9, 138.3, 151.0 ppm. HRMS (ESI⁻): calcd for C₁₈H₁₀BrOS [M-H]⁻ 352.9641, 354.9621, found 352.9631, 354.9608.

To a solution of 3w (86.4 mg, 0.2 mmol) in dry toluene (2 mL) was added MeOTf (67 µL, 0.6 mmol) under an N₂ atmosphere. The reaction mixture was stirred at 100 °C for 2 h. After cooling to room temperature, the solvent was evaporated under vacuum. Without further purification, the crude pyridinium was subsequently added to a mixture of Na (115 mg, 5.0 mmol) and dry methanol (4.0 mL) under N₂. The reaction mixture was heated at 80 °C for 30 min. Then it was allowed to cool and H₂O (6 mL) was added, and then 2M HCl aqueous solution was added to acidify the reaction system. The resulting mixture was extracted with EtOAc (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/acetone (9/1, v/v) as the eluent to yield 6e (48.3 mg) in 68% yield as a white solid. M.p.: 49-50 °C. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.31-7.35$ (m, 2H), 7.45-7.52 (m, 2H), 7.54-7.58 (m, 1H), 7.76 (d, J =8.4 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.99 (s, 1H), 8.06 (d, J = 7.6 Hz, 1H), 10.34 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 107.2, 109.5, 122.2, 122.8, 122.9, 123.5, 125.5, 125.75, 125.81, 127.2, 127.3, 128.0, 131.9, 134.9, 135.7, 137.6, 138.0, 153.1 ppm. HRMS (ESI): calcd for C₁₈H₁₀BrOS [M-H]⁻ 352.9641, 354.9621, found 352.9637, 354.9612.

To a solution of **4k** (82 mg, 0.2 mmol) in dry toluene (2 mL) was added MeOTf (67 μ L, 0.6 mmol) under an N₂ atmosphere. The reaction mixture was stirred at 100 °C for 2 h. After cooling to room temperature, the solvent was evaporated under vacuum. Without further purification, the crude pyridinium was subsequently added to a mixture of Na (115 mg, 5.0 mmol) and dry methanol (4.0 mL) under N₂. The reaction mixture was heated at 80 °C for 30 min. Then it was allowed to cool and H₂O (6 mL) was added, and then 2M HCl aqueous solution was added to acidify the reaction system. The resulting mixture was extracted with EtOAc (3 × 10 mL). The combined

organic layers were dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/acetone (24/1, v/v) as the eluent to yield **6f** (50.6 mg) in 76% yield as yellow oil. ¹H NMR (400 MHz, DMSO- d_6): $\delta =$ 6.88 (t, J = 8.4 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 8.0 Hz, 2H), 7.95 (s, 1H), 9.96 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 112.4$, 112.6, 116.0, 119.0, 119.1, 124.3, 130.7, 131.6, 136.6, 155.1 ppm. HRMS (ESI-): calcd for C₁₀H₅Br₂OS [M-H]⁻ 330.8433, 332.8413, 334.8392, found 330.8430, 332.8407, 334.8386.

To a solution of 4q (115.8 mg, 0.2 mmol) in dry toluene (4 mL) was added MeOTf (201 µL, 1.8 mmol) under an N₂ atmosphere. The reaction mixture was stirred at 100 °C for 18 h. After cooling to room temperature, the solvent was evaporated under vacuum. Without further purification, the crude pyridinium was subsequently added to Na (345 mg, 15.0 mmol) and dry methanol (10.0 mL) under N₂. The reaction mixture was heated at 80 °C for 6 h. Then it was allowed to cool and H₂O (15 mL) was added, and then 2M HCl aqueous solution was added to acidify the reaction system. The resulting mixture was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/ acetone (4/1, v/v) as the eluent to yield 6g (53.6 mg) in 63% yield as a white solid. M.p.: 183-185 °C. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 6.90$ (t, J = 7.2 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 7.26-7.32 (m, 4H), 10.02 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 112.5$, 116.0, 118.97, 119.03, 130.6, 131.6, 131.2, 155.2 ppm. HRMS (ESI-): calcd for C₁₆H₉Br₂O₂S [M-H]⁻ 422.8695, 424.8675, 426.8655, found 422.8687, 424.8662, 426.8651.

VIII. Construction of benzofuran-fused heteroarenes⁴

N-Bromosuccinimide (39.2 mg, 0.22 mmol) was added portion-wise to a solution of **5a** (48.0 mg, 0.20 mmol) in dichloromethane (2 mL) at 0 °C and the mixture was allowed to stir at room temperature for 18 h. After removal of the solvent under reduced pressure, the residue was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 40/1, v/v) afforded the desired product as a white solid (57.9 mg, 91% yield). M.p.: 71-73 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.25 (s, 3H), 6.87 (t, *J* = 7.6 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 8.83 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 16.8, 107.1, 119.3, 119.7, 122.7, 122.8, 125.4, 125.6, 125.7, 129.4, 132.0, 136.2, 137.8, 138.0, 153.1 ppm. HRMS (ESI⁻): calcd for C₁₅H₁₀BrOS [M-H]⁻ 316.9641, 318.9621, found 316.9644, 318.9620.

N-Bromosuccinimide (35.6 mg, 0.20 mmol) was added portion-wise to a solution of **5b** (45.2 mg, 0.20 mmol) in dichloromethane (2 mL) at 0 °C and the mixture was allowed to stir at room temperature for 18 h. After removal of the solvent under reduced pressure, the residue was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 40/1, v/v) afforded the desired product as yellow oil (53.0 mg, 87% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 6.93 (t, *J* = 7.6 Hz, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.2 Hz, 1H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 9.98 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 106.5, 116.1, 118.97, 118.99, 122.6, 122.7, 125.4, 125.5, 130.7, 131.8, 136.0, 137.6, 137.8, 155.3 ppm. HRMS (ESI⁻): calcd for C₁₄H₈BrOS [M-H]⁻ 302.9485, 304.9464, found 302.9485, 304.9466.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with 6a

(63.6 mg, 0.2 mmol), K₂CO₃ (138 mg, 1.0 mmol), and CuO (49.4 mg, 0.6 mmol) under an N₂ atmosphere. The tube was then evacuated and back-filled with N₂. The procedure of evacuation/backfill was sequentially repeated two additional times. Under a counter flow of argon, it was then added with pyridine (3 mL) by syringe. The resulting mixture was stirred for 3 min at room temperature, and then refluxed for 4 h. when the resulting solution was cooled to room temperature, the solvent was removed under reduced pressure. Purification via silica gel column chromatography (petroleum ether/dichloromethane = 4/1, v/v) afforded the desired product as a white solid (42.1 mg, 88% yield). M.p.: 112-114 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.64 (s, 3H), 7.17 (d, *J* = 7.2 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.4, 117.2, 119.0, 119.8, 123.0, 123.4, 123.7, 124.5, 124.9, 125.0, 125.4, 126.2, 142.1, 152.9, 157.9 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₁OS [M+H]⁺239.0525, found 239.0519.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **6b** (63.6 mg, 0.2 mmol), K₂CO₃ (138 mg, 1.0 mmol), and CuO (49.4 mg, 0.6 mmol) under an N₂ atmosphere. The tube was then evacuated and back-filled with N₂. The procedure of evacuation/backfill was sequentially repeated two additional times. Under a counter flow of argon, it was then added with pyridine (3 mL) by syringe. The resulting mixture was stirred for 3 min at room temperature, and then refluxed for 4 h. when the resulting solution was cooled to room temperature, the solvent was removed under reduced pressure. Purification via silica gel column chromatography (petroleum ether/dichloromethane = 4/1, v/v) afforded the desired product as a white solid (35.0 mg, 78% yield). M.p.: 114-115 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.40 (t, *J* = 7.2 Hz, 1H), 7.44-7.49 (m, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 6.8 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 112.7, 118.2, 119.4, 120.1, 123.3, 123.8, 124.2, 124.9, 125.41, 125.44, 125.5, 141.5, 152.2, 158.2 ppm. HRMS (ESI⁺): calcd for C₁₄H₈NaOS [M+Na]⁺247.0188, found 247.0192.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with 6c (96.2 mg, 0.2 mmol), K₂CO₃ (138 mg, 1.0 mmol), and CuO (49.4 mg, 0.6 mmol) under an N₂ atmosphere. The tube was then evacuated and back-filled with N₂. The procedure of evacuation/backfill was sequentially repeated two additional times. Under a counter flow of argon, it was then added with pyridine (3 mL) by syringe. The resulting mixture was stirred for 3 min at room temperature, and then refluxed for 4 h. when the resulting solution was cooled to room temperature, the solvent was removed under reduced pressure. Purification via silica gel column chromatography (petroleum ether/acetone = 8/1, v/v) afforded the desired product as a white solid (48.8 mg, 61% yield). M.p.: 206-207 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.94$ (s, 3H), 1.48-1.75 (m, 6H), 2.01-2.21 (m, 4H), 2.39-2.44 (m, 1H), 2.50-2.58 (m, 2H), 3.07-3.10 (m, 2H), 7.35-7.39 (m, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.64 (s, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.0, 21.8, 26.4, 26.7, 30.2, 31.7, 36.0, 38.3, 44.5, 48.1, 50.7, 112.2, 116.0, 118.8, 119.6, 122.1, 124.5, 124.7, 125.0, 125.4, 134.5, 135.7, 141.9, 152.8, 157.6, 221.1 ppm. HRMS (ESI⁺): calcd for C₂₆H₂₄NaO₂S [M+Na]⁺ 423.1389, found 423.1387.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **6d** (71 mg, 0.2 mmol), K₂CO₃ (138 mg, 1.0 mmol), and CuO (49.4 mg, 0.6 mmol) under an N₂ atmosphere. The tube was then evacuated and back-filled with N₂. The procedure of evacuation/backfill was sequentially repeated two additional times. Under a counter flow of argon, it was then added with pyridine (3 mL) by syringe. The resulting mixture was stirred for 3 min at room temperature, and then refluxed for 4 h. when the resulting solution was cooled to room temperature, the solvent was removed under reduced pressure. Purification via silica gel column chromatography (petroleum ether/dichloromethane = 4/1, v/v) afforded the desired product as a white solid (29.6 mg, 54% yield). M.p.: 237-238 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.43 (t, *J* = 7.6

Hz, 1H), 7.47-7.53 (m, 3H), 7.92 (d, J = 8.4 Hz, 1H), 7.99 (t, J = 9.2 Hz, 2H), 8.03 (s, 1H), 8.05 (d, J = 7.6 Hz, 1H), 8.17 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 108.4, 117.6, 118.1, 120.2, 124.6, 124.8, 125.20, 125.21, 125.47, 125.54, 128.1, 128.2, 130.6, 131.5, 142.7, 155.1, 158.0 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₀NaOS [M+Na]⁺ 297.0345, found 297.0343.$

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with 6e (71 mg, 0.2 mmol), K₂CO₃ (138 mg, 1.0 mmol), and CuO (49.4 mg, 0.6 mmol) under an N₂ atmosphere. The tube was then evacuated and back-filled with N₂. The procedure of evacuation/backfill was sequentially repeated two additional times. Under a counter flow of argon, it was then added with pyridine (3 mL) by syringe. The resulting mixture was stirred for 3 min at room temperature, and then refluxed for 4 h. when the resulting solution was cooled to room temperature, the solvent was removed under reduced pressure. Purification via silica gel column chromatography (petroleum ether/dichloromethane = 4/1, v/v) afforded the desired product as a white solid (30.7 mg, 56% yield). M.p.: 190-192 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (t, J = 7.6 Hz, 1H), 7.50-7.56 (m, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.78 (dd, J = 11.6 Hz, 8.8Hz, 2H), 7.91 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 8.47 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 118.1$, 119.6, 119.7, 120.0, 120.3, 122.2, 124.1, 124.5, 124.7, 125.1, 125.4, 125.6, 126.8, 128.6, 131.7, 141.8, 152.6, 154.2 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₁OS [M+H]⁺ 275.0525, found 275.0525.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **6f** (66.8 mg, 0.2 mmol), K_2CO_3 (138 mg, 1.0 mmol), and CuO (49.4 mg, 0.6 mmol) under an N_2 atmosphere. The tube was then evacuated and back-filled with N_2 . The procedure of evacuation/backfill was sequentially repeated additional two times. Under a counter flow of argon, it was then added with pyridine (3 mL) by syringe.

The resulting mixture was stirred for 3 min at room temperature, and then refluxed for 4 h. When the resulting solution was cooled to room temperature, the solvent was removed under reduced pressure. Purification via silica gel column chromatography (petroleum ether/dichloromethane = 4/1, v/v) afforded the desired product as yellow oil (46.8 mg, 92% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.38 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 6.8 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.92 (s, 1H), 7.94 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 93.6, 112.8, 119.0, 120.1, 123.4, 123.9, 125.6, 126.6, 155.3, 158.3 ppm. HRMS (ESI⁺): calcd for C₁₀H₆BrOS [M+H]⁺ 252.9317, 254.9297, found 252.9311, 254.9295.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **6g** (85.2 mg, 0.2 mmol), K₂CO₃ (276 mg, 2.0 mmol), and CuO (98.8 mg, 1.2 mmol) under an N₂ atmosphere. The tube was then evacuated and back-filled with N₂. The procedure of evacuation/backfill was sequentially repeated additional two times. Under a counter flow of argon, it was then added with pyridine (5 mL) by syringe. The resulting mixture was stirred for 3 min at room temperature, and then refluxed for 12 h. When the resulting solution was cooled to room temperature, the solvent was removed under reduced pressure. Purification via silica gel column chromatography (petroleum ether/dichloromethane = 4/1, v/v) afforded the desired product as a white solid (37.8 mg, 71% yield). M.p.: 193-195 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.41-7.48 (m, 4H), 7.82 (d, *J* = 7.6 Hz, 2H), 8.01 (d, *J* = 7.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 112.9, 119.7, 122.6, 123.9, 124.2, 125.6, 141.2, 158.1 ppm. HRMS (ESI⁺): calcd for C₁₆H₈NaO₂S [M+Na]⁺ 287.0137, found 287.0138.

IX. Mechanistic study

1. H/D exchange experiments

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **1a** (37.0 mg, 0.20 mmol), D₂O (73 μ L, 20.0 equiv), [Cp*RhCl₂]₂ (5.0 mol%), AgSbF₆ (20 mol%), Ag₂O (2.0 equiv), Zn(OTf)₂ (30 mol%), and 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 100 °C in a pre-heated oil bath for 1 h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) to provide the desired product. The deuterated ratio was calculated from ¹H NMR analysis. The ¹H NMR analysis showed that 42% hydrogen at the *ortho*-position of the phenyl ring of **1a** was deuterated.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **2a** (26.8 mg, 0.20 mmol), D₂O (73 μ L, 20.0 equiv), [Cp*RhCl₂]₂ (5.0 mol%), AgSbF₆ (20 mol%), Ag₂O (2.0 equiv), Zn(OTf)₂ (30 mol%), and 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 100 °C in a pre-heated oil bath for 1 h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was

purified by column chromatography on silica gel (petroleum ether) to provide the desired product. The deuterated ratio was calculated from ¹H NMR analysis. The ¹H NMR analysis showed that 13% hydrogen at the 2-position of **2a** was deuterated.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **1a** (37.0 mg, 0.20 mmol), **2a** (2.0 equiv), D₂O (73 μ L, 20.0 equiv), [Cp*RhCl₂]₂ (5.0 mol%), AgSbF₆ (20 mol%), Ag₂O (2.0 equiv), Zn(OTf)₂ (30 mol%), and 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 100 °C in a pre-heated oil bath for 1 h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) to provide [D]-**1a**, [D]-**2a** and **3a** (7.6 mg, 12% yield). The deuterated ratio was calculated from ¹H NMR analysis. The ¹H NMR analysis showed that 39% hydrogen at the *ortho*-position of the phenyl ring of **1a** and 9% hydrogen at the 2-position of **2a** were deuterated.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **1a** (37.0 mg, 0.20 mmol) or $[D_1]$ -**1a**(37.2 mg, 0.20 mmol), **2a** (2.0 equiv), $[Cp*RhCl_2]_2$ (5.0 mol%), AgSbF₆ (20 mol%), Ag₂O (2.0 equiv), Zn(OTf)₂ (30 mol%), and 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 100 °C in a pre-heated oil bath for 7 h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) to provide the desired product.

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **1a** (37.0 mg, 0.20 mmol), **2a** (2.0 equiv) or $[D_1]$ -**2a** (2.0 equiv), $[Cp*RhCl_2]_2$ (5.0 mol%), AgSbF₆ (20 mol%), Ag₂O (2.0 equiv), Zn(OTf)₂ (30 mol%), and 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N₂ atmosphere, and then heated at 100 °C in a pre-heated oil bath for 7 h. The reaction mixture was then cooled to room temperature, diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 25-35 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) to provide the desired product.

3. Possible reaction mechanism

Scheme S2. Plausible mechanistic pathway

X. Single-crystal X-ray structure of 3n

Figure S1. ORTEP diagram of **3n**. Thermal ellipsoids are shown at the 50% probability level. CCDC 1837385 (**3n**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

XI. Experimental data for the described substances

2-(2-(Benzo[b]thiophen-2-yl)-6-methylphenoxy)pyridine (3a)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **3a** as a white solid (52.1 mg, 82% yield). M.p.: 137-139 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.16 (s, 3H), 6.86-6.89 (m, 2H), 7.22-7.29 (m, 4H), 7.54 (s, 1H), 7.58-7.65 (m, 2H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 8.09 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 7.1, 110.4, 118.1, 122.0, 122.9, 123.6, 124.2, 126.0, 128.0, 128.4, 131.3, 132.8, 139.5, 139.7, 140.0, 140.3, 148.0, 148.8, 163.0 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₅NNaOS [M+Na]⁺ 340.0767, found 340.0775.

2-((3-(Benzo[b]thiophen-2-yl)-[1,1'-biphenyl]-2-yl)methyl)pyridine (3b)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **3b** as a white solid (64.2 mg, 84% yield). M.p.: 104-106 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.63-6.67 (m, 2H), 7.16-7.19 (m, 1H), 7.22-7.29 (m, 4H), 7.34-7.44 (m, 5H), 7.59 (s, 1H), 7.69 (d, *J* = 7.2 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.79 (dd, *J* = 6.8 Hz, 2.4 Hz, 1H), 7.90 (dd, *J* = 4.8 Hz, 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 110.9, 117.8, 122.0, 123.2, 123.7, 124.2, 124.3, 126.2, 127.3, 128.0, 129.1, 129.3, 129.7, 131.3, 137.0, 138.0, 138.9, 139.5, 140.0, 140.4, 147.4, 147.7, 162.9 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₈NOS [M+H]⁺ 380.1104, found 380.1108.

2-(2-(Benzo[b]thiophen-2-yl)-6-(*tert*-butyl)phenoxy)pyridine (3c)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **3c** as a white solid (58.2 mg, 81% yield). M.p.: 97-98 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.30 (s, 9H), 6.80 (t, *J* = 6.0 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 7.22-7.29 (m, 2H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.50-7.52 (m, 2H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 6.8 Hz, 1H), 7.70 (d, *J* = 7.2 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 3.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 30.6, 34.8, 110.9, 118.1, 122.0, 123.3, 123.5, 124.3, 125.6, 127.9, 129.1, 129.3, 139.1, 139.35, 139.47, 139.50, 142.9, 146.9, 148.9, 162.7 ppm. HRMS (ESI⁺): calcd for C₂₃H₂₂NOS [M+H]⁺ 360.1417, found 360.1417.

2-(2-(Benzo[b]thiophen-2-yl)-6-methoxyphenoxy)pyridine (3d)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **3d** as a white solid (42.6 mg, 64% yield).

M.p.: 154-156 °C. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.68$ (s, 3H), 7.02 (t, J = 6.0 Hz,1H), 7.12 (d, J = 8.4 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.28-7.35 (m, 3H), 7.50 (d, J = 8.0 Hz, 1H), 7.79-7.83 (m, 3H), 7.88 (d, J = 7.6 Hz, 1H), 8.02 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 56.0$, 110.6, 112.7, 118.6, 120.5, 122.0, 122.8, 123.7, 124.6, 124.7, 126.2, 128.1, 138.3, 138.8, 139.2, 139.5, 139.9, 147.1, 152.6, 162.4 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₆NO₂S [M+H]⁺ 334.0896, found 334.0893.

2-(2-(Benzo[b]thiophen-2-yl)-5-methylphenoxy)pyridine (3e)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **3e** as a white solid (45.6 mg, 72% yield). M.p.: 136-138 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.37 (s, 3H), 6.90-6.93 (m, 2H), 7.00 (s, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.23-7.29 (m, 2H), 7.58 (d, *J* = 2.0 Hz, 1H), 7.60-7.64 (m, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 7.6 Hz, 1H), 8.16 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.3, 111.5, 118.5, 122.0, 122.3, 123.5, 123.7, 124.1, 124.2, 124.7, 126.6, 129.9, 139.4, 139.5, 139.8, 140.0, 140.1, 147.9, 150.5, 163.5 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₅NNaOS [M+Na]⁺ 340.0767, found 340.0767.

2-(2-(Benzo[b]thiophen-2-yl)-5-methoxyphenoxy)pyridine (3f)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **3f** as a white solid (43.3 mg, 65% yield). M.p.: 145-147 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.83 (s,3H), 6.75 (d, *J* = 2.4 Hz, 1H), 6.87 (d, *J* = 6.4 Hz, 1H), 6.94-6.97 (m, 2H), 7.22-7.30 (m, 2H), 7.53 (s, 1H), 7.64-7.70 (m, 2H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 8.18 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 55.7$, 108.7, 111.6, 111.8, 118.8, 120.3, 121.7, 122.0, 123.4, 124.0, 124.2, 130.9, 139.4, 139.6, 139.8, 140.2, 148.0, 151.7, 160.5, 163.4 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₆NO₂S [M+H]⁺ 334.0896, found 334.0895.

2-(2-(Benzo[b]thiophen-2-yl)-5-bromophenoxy)pyridine (3g)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/4/1, v/v/v) afforded the desired product **3g** as a white solid (49.6 mg, 65% yield). M.p.: 162-163 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.99 (t, *J* = 3.6 Hz, 1H), 7.01 (s, 1H), 7.27-7.33 (m, 2H), 7.37 (d, *J* = 2.0 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.62 (s, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.72 (t, *J* = 7.2 Hz, 2H), 7.77 (d, *J* = 6.8 Hz, 1H), 8.17 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 111.9, 119.2, 122.1, 123.1, 123.8, 124.5, 124.6, 126.4, 126.7, 128.7, 131.1, 138.2, 139.8, 139.9, 140.2, 148.0, 151.2, 162.9 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₃BrNOS [M+H]⁺ 381.9896, 383.9875, found 381.9889, 383.9869.

1-(4-(Benzo[b]thiophen-2-yl)-3-(pyridin-2-yloxy)phenyl)ethan-1-one (3h)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **3h** as a white solid (43.5 mg, 63% yield). M.p.: 178-180 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.60 (s, 3H), 7.13 (t, *J* = 6.0 Hz,1H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.33-7.40 (m, 2H), 7.74 (s, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 7.2 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 2H), 8.04 (s, 1H), 8.09 (d, *J* = 3.6 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 26.9, 111.9, 119.5, 122.2, 123.2, 124.1, 124.3, 124.8, 125.2, 125.4, 129.5, 131.1, 137.0, 137.3, 139.1, 139.9, 140.5, 147.4, 150.0, 162.5, 196.8 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₆NO₂S [M+H]⁺ 346.0896, found 346.0891.

Methyl 4-(benzo[b]thiophen-2-yl)-3-(pyridin-2-yloxy)benzoate (3i)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **3i** as a white solid (43.3 mg, 60% yield). M.p.: 165-166 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.86 (s, 3H), 7.15 (dd, *J* = 7.6 Hz, 4.8 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.33-7.40 (m, 2H), 7.70 (d, *J* = 2.0 Hz, 1H), 7.86-7.88 (m, 1H), 7.90-7.95 (m, 3H), 8.04 (s, 1H), 8.10-8.11 (m, 1H), 8.13 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 52.5, 112.1, 119.6, 122.2, 124.1, 124.29, 124.34, 124.8, 125.3, 126.0, 129.6, 130.1, 131.2, 136.9, 139.1, 139.9, 140.6, 147.5, 149.9, 162.3, 165.2 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₆NO₃S [M+H]⁺ 362.0845, found 362.0840.

2-(2-(Benzo[b]thiophen-2-yl)-4-methylphenoxy)pyridine (3j)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **3j** as a white solid (33.6 mg, 53% yield). M.p.: 99-101 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.43 (s, 3H), 6.92-6.95 (m, 2H), 7.10 (d, *J* = 8.0 Hz, 1H), 7.20 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.24-7.32 (m, 2H), 7.62-7.67 (m, 3H), 7.72 (d, *J* = 6.8 Hz, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 8.16 (dd, *J* = 4.8 Hz, 1.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.2, 111.4, 118.5, 122.0, 122.8, 123.3, 123.7, 124.26, 124.27, 127.2, 130.1, 130.6, 135.3, 139.4, 139.5, 140.1, 140.2, 147.9, 148.4, 163.7 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₅NNaOS [M+Na]⁺ 340.0767, found 340.0771.

2-(2-(Benzo[b]thiophen-2-yl)-4-methoxyphenoxy)pyridine (3k)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **3k** as a white solid (31.3 mg, 47% yield). M.p.: 62-64 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.87 (s, 3H), 7.01-7.07 (m, 2H), 7.10 (d, *J* = 8.4 Hz, 1H), 7.16 (d, *J* = 9.2 Hz, 1H), 7.29-7.37 (m, 2H), 7.43 (d, *J* = 2.8 Hz, 1H), 7.80-7.85 (m, 2H), 7.89-7.90 (m, 2H), 8.06 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 55.7, 111.3, 113.3, 115.5, 118.8, 122.1, 122.8, 123.7, 124.6, 124.7, 125.1, 127.5, 138.2, 139.2, 139.6, 140.1, 143.5, 147.3, 156.5, 163.1 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₆NO₂S [M+H]⁺ 334.0896, found 334.0893.

1-(3-(Benzo[b]thiophen-2-yl)-4-(pyridin-2-yloxy)phenyl)ethan-1-one (31)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **31** as a white solid (43.3 mg, 49% yield). M.p.: 107-109 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.69 (s, 3H), 7.16 (t, *J* = 6.0 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.32-7.39 (m, 3H), 7.87 (d, *J* = 7.2 Hz, 1H), 7.89-7.94 (m, 2H), 7.99-8.01 (m, 2H), 8.12 (d, *J* = 3.6 Hz, 1H), 8.47 (d, *J* = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 26.9, 112.2, 119.8, 122.2, 123.5, 123.6, 123.9, 124.7, 124.9, 126.7, 129.4, 129.6, 134.0, 137.3, 139.2, 139.6, 140.6, 147.5, 153.9, 162.2, 196.8 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₆NO₂S [M+H]⁺ 346.0896, found 346.0892.

Methyl 3-(benzo[b]thiophen-2-yl)-4-(pyridin-2-yloxy)benzoate (3m)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **3m** as a white solid (31.0 mg, 43% yield). M.p.: 99-100 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.96 (s, 3H), 7.01-7.06 (m, 2H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.27-7.35 (m, 2H), 7.70-7.80 (m, 4H), 8.04 (d, *J* = 6.4 Hz, 1H), 8.18 (d, *J* = 2.0 Hz, 1H), 8.53 (d, *J* = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 52.4, 112.3, 119.4, 122.1, 122.8, 123.5, 123.9, 124.4, 124.6, 127.1, 127.4, 130.4, 131.8, 138.2, 139.8, 139.9, 140.4, 148.0, 154.5, 162.8, 166.4 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₆NO₃S [M+H]⁺ 362.0845, found 362.0843.

2-(2-(Benzo[b]thiophen-2-yl)phenoxy)pyridine (3n)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **3n** as a white solid (40.1 mg, 66% yield). M.p.: 133-135 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.96 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.27-7.33 (m, 3H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.65-7.69 (m, 2H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 8.17 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 111.6, 118.7, 122.0, 122.9, 123.4, 123.7, 124.3, 124.4, 125.6, 127.6, 129.4, 130.2, 139.2, 139.6, 140.1, 140.2, 148.0, 150.7, 163.5 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₄NOS [M+H]⁺ 304.0791, found 304.0795.

2-(2-(Benzo[b]thiophen-2-yl)-4,5-dimethylphenoxy)pyridine (30)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **30** as a white solid (48.1 mg, 73% yield). M.p.: 120-122 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.28$ (s, 3H), 2.32 (s, 3H), 6.906.93 (m, 2H), 6.98 (s, 1H), 7.22-7.31 (m, 2H), 7.57 (s, 2H), 7.61-7.65 (m, 1H), 7.69 (d, J = 7.2 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 8.15 (dd, J = 4.8 Hz, 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.5$, 19.9, 111.4, 118.4, 122.0, 122.2, 123.5, 124.1, 124.2, 124.4, 124.8, 131.0, 134.1, 138.5, 139.4, 139.5, 140.0, 140.2, 148.0, 148.4, 163.8 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₈NOS [M+H]⁺ 332.1104, found 332.1101.

2-(2-(Benzo[b]thiophen-2-yl)-4,6-di-*tert*-butylphenoxy)pyridine (3p)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/4/1, v/v/v) afforded the desired product **3p** as a white solid (67.2 mg, 81% yield). M.p.: 164-166 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.41 (s, 9H), 1.42 (s, 9H), 6.65 (dd, *J* = 6.0 Hz, 4.8 Hz, 1H), 6.66 (d, *J* = 8.4 Hz, 1H), 7.19-7.27 (m, 2H), 7.36-7.41 (m, 2H), 7.51 (d, *J* = 2.4 Hz, 1H), 7.55 (d, *J* = 2.4 Hz, 1H), 7.63 (d, *J* = 7.2 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.96 (dd, *J* = 4.2 Hz, 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 30.9, 31.6, 34.9, 35.5, 110.6, 117.5, 121.9, 123.4, 123.6, 123.8, 124.0, 125.3, 127.0, 128.6, 138.8, 140.0, 141.0, 142.4, 147.2, 147.6, 163.4 ppm. HRMS (ESI⁺): calcd for C₂₇H₂₉NNaOS [M+Na]⁺ 438.1862, found 438.1870.

2-(2-(Benzo[b]thiophen-2-yl)-6-(*tert*-butyl)-4-methoxyphenoxy)pyridine (3q)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 150/10/1, v/v/v) afforded the desired product **3q** as a white solid (68.1 mg, 87% yield). M.p.: 151-153 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.36 (s, 9H), 3.86 (s, 3H), 6.64 (dd, *J* = 6.8 Hz, 5.2 Hz, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 7.02 (d, *J* = 2.8 Hz, 1H), 7.06 (d, *J* = 3.2 Hz, 1H), 7.18-7.25 (m, 2H), 7.37-7.41 (m, 2H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.68 (d, *J* = 7.2 Hz, 1H), 7.96 (dd, *J* = 4.8 Hz, 1.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 30.8, 35.5, 55.6, 110.7, 113.2, 114.9, 117.5, 121.9, 123.5, 123.8, 124.0, 124.1, 130.2, 138.8, 139.9, 140.1, 140.4, 143.2, 144.8, 147.6, 156.4, 163.6 ppm. HRMS (ESI⁺): calcd for C₂₄H₂₃NNaO₂S [M+Na]⁺412.1342, found 412.1352.

Methyl 3-(3-(benzo[*b*]thiophen-2-yl)-5-(*tert*-butyl)-4-(pyridin-2-yloxy)phenyl)pro -panoate (3r)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 150/10/1, v/v/v) afforded the desired product **3r** as a white solid (76.8 mg, 86% yield). M.p.: 86-88 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.38 (s, 9H), 2.73 (t, *J* = 8.0 Hz, 2H), 3.03 (t, *J* = 8.0 Hz, 2H), 3.72 (s, 3H), 6.65 (t, *J* = 6.0 Hz, 1H), 6.72 (d, *J* = 7.6 Hz, 1H), 7.18-7.26 (m, 2H), 7.34-7.42 (m, 4H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.95 (dd, *J* = 4.8 Hz, 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 30.83, 30.84, 35.3, 35.7, 51.9, 110.8, 117.6, 121.9, 123.4, 123.7, 123.9, 124.0, 128.1, 129.4, 129.6, 137.4, 138.8, 139.9, 140.0, 140.3, 143.4, 147.6, 147.9, 163.3, 173.5 ppm. HRMS (ESI⁺): calcd for C₂₇H₂₈NO₃S [M+H]⁺ 446.1784, found 446.1789.

Ethyl 6-(benzo[*b*]thiophen-2-yl)-1,2-dimethyl-5-(pyridin-2-yloxy)-1*H*-indole- -3carboxylate (3s)

Purification via silica gel column chromatography (petroleum ether/dichloromethane/ethyl acetate/Et₃N = 60/30/10/1, v/v/v/v) afforded the desired product **3s** as a white solid (49.5 mg, 56% yield). M.p.: 245-247 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.36$ (t, J = 8.0 Hz, 3H), 2.78 (s, 3H), 3.73 (s, 3H), 4.34 (dd, J = 14.4 Hz, 7.2 Hz, 2H), 6.87-6.90 (m, 2H), 7.22-7.30 (m, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.62 (d, J = 6.8 Hz, 2H), 7.69 (d, J = 7.2 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.91 (s, 1H), 8.14 (d, J = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.2$, 14.7, 30.0,

59.6, 104.5, 110.3, 111.0, 115.5, 118.1, 122.0, 122.4, 122.5, 123.5, 124.0, 124.2, 127.5, 134.5, 139.3, 140.0, 140.3, 140.5, 146.3, 147.4, 148.0, 164.4, 165.8 ppm. HRMS (ESI⁺): calcd for C₂₆H₂₃N₂O₃S [M+H]⁺ 443.1424, found 443.1429.

(*8R*,9*S*,13*S*,14*S*)-2-(3-Bromobenzo[*b*]thiophen-2-yl)-13-methyl-3-(pyridin-2-yloxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (3t) Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 150/10/1, v/v/v) afforded the desired product 3t as a white solid (54.7 mg, 49% yield). M.p.: 115-116 °C. ¹H NMR (400 MHz, CDCl₃): δ = 0.94 (s, 3H), 1.64-1.67 (m, 6H), 1.97 (d, *J* = 12.0 Hz, 1H), 2.05-2.21 (m, 3H), 2.37-2.56 (m, 3H), 2.97-3.00 (m, 2H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.85 (t, *J* = 6.0 Hz, 1H), 7.01 (s, 1H), 7.33 (t, *J* = 6.8 Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.49-7.54 (m, 2H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 3.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.0, 21.7, 25.8, 26.5, 29.6, 31.6, 36.0, 38.0, 44.3, 48.1, 50.5, 107.6, 111.5, 118.3, 122.1, 122.6, 123.3, 123.5, 124.9, 125.3, 130.0, 135.0, 136.7, 138.2, 138.6, 139.2, 139.7, 147.5, 149.6, 163.5, 221.0 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₉BrNO₂S [M+H]⁺ 558.1097, 560.1076, found 558.1099, 560.1074.

(8*R*,9*S*,13*S*,14*S*,17*S*)-2-(3-Bromobenzo[*b*]thiophen-2-yl)-13-methyl-3-(pyridin-2-yl)vy)-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-17-yl acetate (3u)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 200/10/1, v/v/v) afforded the desired product **3u** as a white solid (91.5 mg, 76% yield). M.p.: 88-90 °C. ¹H NMR (400 MHz, CDCl₃): δ = 0.86 (s, 3H), 1.28-1.63 (m, 6H), 1.70-1.80 (m, 2H), 1.88-1.95 (m, 2H), 2.06 (s, 3H), 2.19-2.36 (m, 3H), 2.93 (t, *J* = 4.4 Hz, 2H), 4.70 (t, *J* = 8.4 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.84 (t, *J* = 5.6 Hz, 1H), 6.99 (s, 1H), 7.32 (t, J = 6.8 Hz, 1H), 7.40 (t, J = 6.8 Hz, 1H), 7.48-7.52 (m, 2H), 7.69 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.2$, 21.3, 23.4, 26.1, 27.1, 27.7, 29.7, 36.9, 38.2, 43.0, 44.1, 49.9, 82.8, 107.6, 111.5, 118.3, 122.1, 122.5, 123.1, 123.4, 124.9, 125.2, 129.9, 135.2, 137.1, 138.2, 138.6, 139.2, 139.9, 147.5, 149.4, 163.5, 171.4 ppm. HRMS (ESI⁺): calcd for C₃₃H₃₃BrNO₃S [M+H]⁺ 602.1359, 604.1339, found 602.1355, 604.1337.

2-((2-(3-Bromobenzo[b]thiophen-2-yl)naphthalen-1-yl)oxy)pyridine (3v)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **3v** as a white solid (53.6 mg, 62% yield). M.p.: 173-174 °C. ¹H NMR (400 MHz, DMSO- d_6): δ = 6.98 (t, J = 6.0 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.69-7.74 (m, 2H), 7.77 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 4.8 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 107.7, 110.3, 118.8, 122.4, 122.5, 122.7, 122.9, 125.4, 125.5, 125.9, 127.2, 127.52, 127.54, 128.2, 128.5, 134.5, 134.8, 137.2, 137.9, 140.2, 147.1, 147.3, 163.3 ppm. HRMS (ESI⁺): calcd for C₂₃H₁₅BrNOS [M+H]⁺432.0052, 434.0032, found 432.0055, 434.0034.

2-((3-(3-Bromobenzo[b]thiophen-2-yl)naphthalen-2-yl)oxy)pyridine (3w)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **3w** as a white solid (47.5 mg, 55% yield). M.p.: 116-117 °C. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 6.93$ (d, J = 8.4 Hz, 1H), 7.00 (t, J = 6.0 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.68 (t, J = 6.8 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.83 (s, 1H), 7.96 (d, J = 4.0 Hz, 1H), 7.98 (d, J = 4.0 Hz, 1H), 8.03-8.07 (m, 2H), 8.22 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 107.8$, 111.1, 119.0, 119.3, 122.7, 123.0, 125.55, 125.58, 125.9, 126.1, 127.2, 127.6, 128.1, 130.2, 132.5, 134.1, 134.4, 137.3, 137.9, 140.0, 147.2, 149.2, 163.0 ppm. HRMS (ESI⁺): calcd for C₂₃H₁₅BrNOS [M+H]⁺ 432.0052, 434.0032, found 432.0051, 434.0028.

2-(2,6-Bis(benzo[b]thiophen-2-yl)phenoxy)pyridine (3x)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **3x** as a white solid (62.6 mg, 72% yield). M.p.: 191-192 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 6.86 (t, *J* = 6.0 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.29-7.36 (m, 4H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 5.2 Hz, 4H), 7.85 (d, *J* = 4.8 Hz, 1H), 7.90 (t, *J* = 8.4 Hz, 4H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.5, 118.7, 122.1, 123.5, 123.8, 124.6, 124.7, 126.6, 129.2, 130.1, 138.1, 139.2, 139.5, 139.8, 146.5, 146.9, 161.9 ppm. HRMS (ESI⁺): calcd for C₂₇H₁₈NOS₂ [M+H]⁺ 436.0824, found 436.0825.

2-(2-Methyl-6-(5-methylthiophen-2-yl)phenoxy)pyridine (4a)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 100/2/1, v/v/v) afforded the desired product **4a** as a white solid (48.1 mg, 85% yield). M.p.: 82-83 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.13 (s, 3H), 2.41 (s, 3H), 6.62 (s, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.90 (t, *J* = 6.4 Hz, 1H), 9.13 (d, *J* = 2.8 Hz, 1H), 7.18 (d, *J* = 4.8 Hz, 2H), 7.53 (t, *J* = 4.8 Hz, 1H), 7.63 (t, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.3, 17.1, 110.3, 117.9, 125.4, 125.8, 126.1, 126.9, 128.6, 130.0, 132.5, 136.7, 139.4, 140.4, 147.9, 148.0, 163.0 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₅NNaOS [M+Na]⁺ 304.0767, found 304.0777.

2-(2-Methyl-6-(4-methylthiophen-2-yl)phenoxy)pyridine (4b)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 100/2/1, v/v/v) afforded the desired product **4b** as a white solid (32.8 mg, 59% yield). M.p.: 104-106 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.13 (s, 3H), 2.19 (s, 3H), 6.80 (s, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 6.90 (t, *J* = 6.4 Hz, 1H), 7.14 (s, 1H), 7.19-7.20 (m, 2H), 7.55 (t, *J* = 4.8 Hz, 1H), 7.61-7.65 (m, 1H), 8.11 (d, *J* = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.9, 17.1, 110.4, 118.0, 121.5, 125.8, 127.0, 128.4, 130.3, 132.6, 137.5, 138.7, 139.4, 148.0, 148.1, 162.9 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₅NNaOS [M+Na]⁺ 304.0767, found 304.0773.

2-(2-(5-Methoxythiophen-2-yl)phenoxy)pyridine (4c)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 150/10/1, v/v/v) afforded the desired product **4c** as a white solid (29.4 mg, 52% yield). M.p.: 60-61 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.85 (s, 3H), 6.12 (d, *J* = 4.0 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.96 (t, *J* = 6.0 Hz, 1H), 7.06 (d, *J* = 4.0 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.2-7.28 (m, 2H), 7.64-7.68 (m, 2H), 8.17 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 60.1, 104.0, 111.5, 118.5, 123.3, 123.7, 124.6, 125.5, 127.5, 127.8, 128.3, 139.5, 147.9, 149.5, 163.5, 167.1 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₄NO₂S [M+H]⁺ 284.0740, found 284.0738.

1-(5-(2-(Pyridin-2-yloxy)phenyl)thiophen-2-yl)ethan-1-one (4d)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N =

90/10/1, v/v/v) afforded the desired product **4d** as a white solid (41.3 mg, 70% yield). M.p.: 113-114 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.49 (s, 3H), 7.11-7.16 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 6.8 Hz, 1H), 7.66 (d, *J* = 4.0 Hz, 1H), 7.86-7.91 (m, 2H), 7.95 (d, *J* = 6.8 Hz, 1H), 8.09 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 26.5, 111.7, 119.4, 123.7, 125.6, 125.9, 127.2, 128.9, 130.2, 133.9, 140.4, 143.6, 145.7, 147.5, 150.0, 162.4, 191.0 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₄NO₂S [M+H]⁺ 296.0740, found 296.0744.

5-(3-Methyl-2-(pyridin-2-yloxy)phenyl)thiophene-2-carbaldehyde (4e)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4e** as a white solid (39.3 mg, 66% yield). M.p.: 114-116 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.14 (s, 3H), 6.92 (t, *J* = 6.0 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 7.23-7.27 (m, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.42 (d, *J* = 4.0 Hz, 1H), 7.59-7.63 (m, 2H), 7.65-7.69 (m, 1H), 8.06 (d, *J* = 4.0 Hz, 1H), 9.81 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 17.1, 110.9, 118.4, 126.1, 127.0, 127.2, 127.4, 132.4, 133.1, 136.5, 139.8, 143.1, 147.8, 148.8, 149.4, 162.5, 183.2 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₃NNaO₂S [M+Na]⁺ 318.0559, found 318.0568.

2-(2-Methyl-6-(5-nitrothiophen-2-yl)phenoxy)pyridine (4f)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4f** as a white solid (33.6 mg, 54% yield). M.p.: 146-148 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.13 (s, 3H), 6.95-6.98 (m, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 7.25-7.29 (m, 2H), 7.35 (d, *J* = 6.4 Hz, 1H), 7.60 (d, *J* = 6.4 Hz, 1H), 7.70-7.73 (m, 1H), 7.80 (d, *J* = 4.4 Hz, 1H), 8.05-8.07 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 17.1, 111.1, 118.8, 124.9, 126.2, 126.3, 126.8, 128.7, 132.9, 133.3, 140.0, 146.9, 147.9, 148.8, 162.1 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₂N₂NaO₃S [M+Na]⁺ 335.0461, found 335.0471.

Methyl (E)-3-(5-(3-methyl-2-(pyridin-2-yloxy)phenyl)thiophen-2-yl)acrylate (4g)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4g** as a white solid (61.6 mg, 88% yield). M.p.: 79-81 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.13 (s, 3H), 3.76 (s, 3H), 6.40 (d, *J* = 15.6 Hz, 1H), 6.89-6.93 (m, 2H), 7.11 (d, *J* = 3.6 Hz, 1H), 7.19-7.28 (m, 3H), 7.56 (d, *J* = 7.2 Hz, 1H), 7.64-7.69 (m, 2H), 8.09 (d, *J* = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 17.1, 51.8, 110.6, 115.9, 118.3, 126.0, 126.96, 127.01, 127.6, 131.3, 131.4, 132.9, 137.5, 139.4, 139.6, 142.5, 147.9, 148.4, 162.7, 167.5 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₇NNaO₃S [M+Na]⁺ 374.0821, found 374.0824.

(4-Chlorophenyl)(5-(2-(pyridin-2-yloxy)phenyl)thiophen-2-yl)methanone (4h)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4h** as a white solid (39.1 mg, 50% yield). M.p.: 119-120 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.99-7.03 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.40-7.46 (m, 4H), 7.52 (d, *J* = 4.0 Hz, 1H), 7.72 (t, *J* = 6.8 Hz, 1H), 7.77-7.80 (m, 3H), 8.16 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 112.1, 119.1, 123.4, 125.6, 126.4, 126.8, 128.8, 129.5, 130.1, 130.7, 135.1, 136.6, 138.6, 139.8, 142.5, 147.9, 148.2, 150.8, 163.0, 187.1 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₅CINO₂S [M+H]⁺ 392.0507, 394.0477, found 392.0507,
394.0477.

Methyl 3-methyl-5-(3-methyl-2-(pyridin-2-yloxy)phenyl)thiophene-2-carboxyla - te (4i)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 150/10/1, v/v/v) afforded the desired product **4i** as a white solid (44.1 mg, 65% yield). M.p.: 118-120 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.13 (s, 3H), 2.46 (s, 3H), 3.81 (s, 3H), 6.90-6.92 (m, 2H), 7.13 (s, 1H), 7.19-7.28 (m, 2H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 8.08 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 16.2, 17.1, 51.7, 110.7, 118.2, 125.9, 126.2, 127.2, 127.4, 130.6, 131.6, 132.9, 139.6, 143.4, 146.1, 147.9, 148.6, 162.6, 163.5 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₈NO₃S [M+H]⁺ 340.1002, found 340.1004.

2-(2-(5-Bromobenzo[b]thiophen-2-yl)phenoxy)pyridine (4j)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/5/1, v/v/v) afforded the desired product **4j** as a white solid (38.9 mg, 51% yield). M.p.: 99-100 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.95-6.99 (m, 2H), 7.21 (d, *J* = 8.4 Hz, 1H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.41 (t, *J* = 6.8 Hz, 1H), 7.55 (s, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.68 (t, *J* = 6.8 Hz, 1H), 7.79 (d, *J* = 6.0 Hz, 1H), 7.86 (s, 1H), 8.16 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 111.6, 118.3, 118.8, 121.9, 123.36, 123.38, 125.6, 126.2, 127.1, 127.3, 129.7, 130.1, 138.8, 139.7, 141.2, 141.6, 148.0, 150.8, 163.3 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₃BrNOS [M+H]⁺ 381.9896, 383.9875, found381.9891, 383.9871.

2-(2-(3,4-Dibromothiophen-2-yl)phenoxy)pyridine (4k)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 150/5/1, v/v/v) afforded the desired product **4k** as yellow oil (41.9 mg, 51% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 6.91 (d, *J* = 8.4 Hz, 1H), 7.06 (t, *J* = 6.0 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.36 (t, *J* = 6.8 Hz, 1H), 7.51-7.56 (m, 2H), 7.77 (t, *J* = 6.4 Hz, 1H), 7.88 (s, 1H), 8.07 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.1, 112.4, 113.3, 119.0, 122.9, 125.1, 125.5, 131.0, 132.1, 135.0, 140.1, 147.2, 151.4, 162.7 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₀Br₂NOS [M+H]⁺ 409.8844, 411.8824, 413.8803, found 409.8850, 411.8830, 413.8808.

2-(2-(Benzofuran-2-yl)-6-methylphenoxy)pyridine (4l)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 100/2/1, v/v/v) afforded the desired product **4I** as a white solid (44.1 mg, 73% yield). M.p.: 104-105 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.16 (s, 3H), 6.86-6.92 (m, 2H), 7.07 (s, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.26-7.31 (m, 2H), 7.43-7.48 (m, 2H), 7.63 (t, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 7.2 Hz, 1H), 8.13 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 16.9, 106.3, 109.7, 111.0, 118.2, 121.2, 122.8, 124.5, 124.6, 125.6, 126.0, 129.5, 131.4, 132.5, 139.7, 148.3, 148.5, 151.8, 154.1, 162.7 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₅NNaO₂ [M+Na]⁺ 324.0995, found 324.1001.

2-(2-(5-Butylfuran-2-yl)-6-methylphenoxy)pyridine (4m)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 160/4/1, v/v/v) afforded the desired product **4m** as yellow oil (55.2 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.6 Hz, 3H), $\delta = 1.32$ -1.41 (m, 2H), 1.56-1.64 (m, 2H), $\delta = 2.13$ (s, 3H), 2.61 (t, J = 7.6 Hz, 2H), 5.94 (d, J = 3.2 Hz, 1H), 6.55 (d, J = 3.2 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.91-6.94 (m, 1H), 7.15 (d, J = 7.6Hz, 1H), 7.21 (t,J = 7.6 Hz, 1H), 7.61-7.66 (m, 1H), 7.76 (d, J = 8.0 Hz, 1H), 8.15-8.17 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.0$, 16.9, 22.4, 27.9, 30.2, 107.2, 109.6, 110.7, 117.9, 124.1, 125.1, 125.8, 129.5, 132.3, 139.6, 146.9, 148.0, 148.2, 156.0, 163.0 ppm. HRMS (ESI⁺): calcd for C₂₀H₂₁NNaO₂ [M+Na]⁺ 330.1465, found 330.1466.

2-(2-Methyl-6-(thieno[3,2-b]thiophen-2-yl)phenoxy)pyridine (4n)

Purification via silica gel column chromatography petroleum ether/acetone/Et₃N = 150/5/1, v/v/v) afforded the desired product **4n** as a white solid (28.3 mg, 45% yield). M.p.: 126-127 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.14 (s, 3H), 6.87-6.90 (m, 2H), 7.16 (d, *J* = 5.2 Hz, 1H), 7.22-7.24 (m, 2H), 7.28 (d, *J* = 5.2 Hz, 1H), 7.50 (s, 1H), 7.57-7.63 (m, 2H), 8.10 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 17.1, 110.4, 118.1, 118.3, 119.5, 126.0, 126.9, 127.3, 128.6, 130.8, 132.7, 139.3, 139.5, 139.8, 141.3, 148.0, 148.2, 162.8 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₃NNaOS₂ [M+Na]⁺ 346.0331, found 346.0342.

2-(2-Methyl-6-(1-methyl-1H-pyrrol-2-yl)phenoxy)pyridine (40)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 120/3/1, v/v/v) afforded the desired product **40** as a white solid (27.2 mg, 52% yield).

M.p.: 91-93 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.12 (s, 3H), 3.56 (s, 3H), 6.40 (t, *J* = 2.4 Hz, 1H), 6.50 (t, *J* = 2.4 Hz, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 6.87-6.90 (m, 1H), 6.94 (m, 1H), 7.08 (d, *J* = 7.2 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.55-7.59 (m, 1H), 8.17-8.19 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 17.1, 36.4, 108.1, 109.3, 117.6, 119.9, 121.80, 121.82, 125.8, 126.3, 128.2, 129.6, 132.0, 139.4, 148.0, 148.3, 163.4 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆N₂NaO [M+Na]⁺287.1155, found 287.1158.

(8*R*,9*S*,13*S*,14*S*)-2-(5-(4-Chlorobenzoyl)thiophen-2-yl)-13-methyl-3-(pyridin-2-yloxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (4p)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4p** as a white solid (60.2mg, 53% yield). M.p.: 184-186 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 0.86 (s, 3H), 1.14-1.21 (m, 2H), 1.35-1.62 (m, 6H), 1.81 (d, *J* = 6.0 Hz, 1H), 1.94-2.10 (m, 4H), 2.30 (t, *J* = 12.0 Hz, 1H), 2.42-2.58 (m, 3H), 2.85 (s, 2H), 6.92 (s, 1H), 7.12 (t, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 3H), 7.68 (d, *J* = 3.6 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 3H), 7.88 (t, *J* = 7.6 Hz, 1H), 8.12 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 13.5, 21.2, 25.3, 25.7, 28.7, 31.3, 35.4, 37.4, 43.5, 47.3, 49.6, 111.6, 119.2, 123.0, 123.3, 125.5, 126.7, 128.8, 130.6, 135.7, 136.1, 137.2, 137.3, 139.6, 140.3, 141.3, 147.5, 147.6, 148.0, 162.6, 186.0, 219.6 ppm. HRMS (ESI⁺): calcd for C₃₄H₃₁ClNO₃S [M+H]⁺ 568.1708, 569.1741, found 568.1705, 569.1744.

2,2'-(((3,4-Dibromothiophene-2,5-diyl)bis(2,1-phenylene))bis(oxy))dipyridine (4q)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4q** as a white solid (48.7 mg, 42% yield). M.p.: 40-42 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 6.84 (d, *J* = 8.3 Hz, 2H), 7.04 (t, *J* = 6.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.46-7.52 (m, 4H), 7.74 (t, *J* = 6.8 Hz, 2H), 8.01 (d, *J* = 3.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.3, 113.3, 119.1, 122.8, 124.98, 125.03, 131.0, 132.0, 134.3, 140.1, 147.2, 151.5, 162.7 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₇Br₂N₂O₂S [M+H]⁺ 578.9372, 580.9352, 582.9331, found 578.9366, 580.9360, 582.9323.

2,2'-(((3,4-Dibromothiophene-2,5-diyl)bis(6-methyl-2,1-phenylene))bis(oxy)) - dipyridine (4r)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4r** as a white solid (111.9 mg, 92% yield). M.p.: 46-48 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.02 (s, 6H), 6.75 (d, *J* = 8.0 Hz, 2H), 7.01 (t, *J* = 6.4 Hz, 2H), 7.21-7.27 (m, 4H), 7.39 (d, *J* = 3.6 Hz, 2H), 7.73 (t, *J* = 6.4 Hz, 2H), 7.94 (d, *J* = 3.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 16.4, 110.3, 113.1, 118.6, 125.2, 126.1, 129.7, 131.9, 132.4, 134.5, 140.1, 147.0, 149.5, 162.3 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₁Br₂N₂O₂S [M+H]⁺ 606.9685, 608.9665, 610.9644, found 606.9688, 608.9660, 610.9651.

2,2'-(((3,4-Dibromothiophene-2,5-diyl)bis(6-(*tert*-butyl)-2,1-phenylene))bis(oxy)) - dipyridine (4s)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4s** as a white solid (121.8 mg, 88% yield). M.p.: 185-186 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.30 (s, 18H), 6.72 (d, *J* = 8.4 Hz, 2H), 6.89-6.93 (m, 4H), 7.25 (t, J = 8.0 Hz, 2H), 7.52 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.90 (d, J = 3.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 30.3$, 34.7, 110.6, 112.9, 118.3, 124.8, 126.8, 128.5, 129.9, 135.3, 139.4, 142.6, 146.9, 150.5, 162.3 ppm. HRMS (ESI⁺): calcd for C₃₄H₃₃Br₂N₂O₂S [M+H]⁺ 691.0624, 693.0604, 695.0583, found 691.0625, 693.0611, 695.0584.

2,2'-(((3,4-Dibromothiophene-2,5-diyl)bis(5-bromo-2,1-phenylene))bis(oxy)) · dipyridine (4t)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4t** as a white solid (135.8 mg, 92% yield). M.p.: 61-62 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 6.86 (d, *J* = 8.4 Hz, 2H), 7.07 (t, *J* = 6.0 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.49 (s, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.76 (t, *J* = 8.0 Hz, 2H), 8.03 (d, *J* = 3.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.4, 113.9, 119.5, 123.1, 124.4, 125.9, 128.1, 133.5, 140.3, 147.2, 152.0, 162.2 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₅Br₄N₂O₂S [M+H]⁺ 736.7562, 738.7541, 740.7521, found 736.7566, 738.7545, 740.7531.

2,2'-(((3,4-Dibromothiophene-2,5-diyl)bis(4-methoxy-2,1-phenylene))bis(oxy)) dipyridine (4u)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 80/20/1, v/v/v) afforded the desired product **4u** as a white solid (87.1 mg, 68% yield). M.p.: 37-39 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.79 (s, 6H), 6.76 (d, *J* = 8.0 Hz, 2H), 6.98-7.08 (m, 6H), 7.13 (d, *J* = 8.8 Hz, 2H), 7.72 (t, *J* = 8.0 Hz, 2H), 7.98 (d, *J* = 4.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 55.7, 110.9, 113.3, 114.4, 118.8, 124.2, 125.9, 134.1, 139.9, 144.6, 147.1, 155.9, 163.1 ppm. HRMS (ESI⁺): calcd for $C_{28}H_{21}Br_2N_2O_4S$ [M+H]⁺ 638.9583, 640.9563, 642.9542, found 638.9574, 640.9562, 642.9561.

2,2'-(((3,4-Dibromothiophene-2,5-diyl)bis(naphthalene-2,1-diyl))bis(oxy)) dipyridine (4v)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4v** as a white solid (86.9 mg, 64% yield). M.p.: 94-95 °C. ¹H NMR (400 MHz, DMSO- d_6): δ = 6.96 (d, J = 8.0 Hz, 2H), 7.03 (t, J = 6.0 Hz, 2H), 7.49-7.55 (m, 4H), 7.61 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.81 (t, J = 7.6 Hz, 2H), 7.85 (d, J = 4.8 Hz, 2H), 7.94 (d, J = 8.8 Hz, 2H), 8.04 (d, J = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 110.3, 113.7, 118.9, 122.1, 122.3, 125.4, 127.2, 127.4, 127.5, 128.1, 128.2, 134.7, 140.2, 147.06, 147.12, 163.3 ppm. HRMS (ESI⁺): calcd for C₃₄H₂₀Br₂N₂NaO₂S [M+Na]⁺ 700.9504, 702.9484, 704.9464, found 700.9503, 702.9479, 704.9476.

2,2'-(((3,4-Dibromothiophene-2,5-diyl)bis(naphthalene-3,2-diyl))bis(oxy)) dipyridine (4w)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 90/10/1, v/v/v) afforded the desired product **4w** as a white solid (65.2 mg, 48% yield). M.p.: 61-63 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 6.92 (d, *J* = 8.4 Hz, 2H), 7.05 (t, *J* = 6.0 Hz, 2H), 7.52-7.60 (m, 4H), 7.75-7.79 (m, 4H), 7.92 (d, *J* = 7.6 Hz, 2H), 8.02 (d, *J* = 6.8 Hz, 4H), 8.07 (s, 2H) ppm.¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.4, 113.8, 119.15, 119.21, 125.1, 126.1, 127.1, 127.7, 128.1, 130.1, 132.2, 134.0, 134.6, 140.1, 147.3, 149.2, 162.9 ppm. HRMS (ESI⁺): calcd for C₃₄H₂₁Br₂N₂O₂S [M+H]⁺ 678.9685, 680.9665, 682.9644, found 678.9686, 680.9674, 682.9653.

5,7-Bis(2-(pyridin-2-yloxy)phenyl)-2,3-dihydrothieno[3,4-b][1,4]dioxine (4x)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 100/25/1, v/v/v) afforded the desired product **4x** as a white solid (56.7 mg, 59% yield). M.p.: 149-150 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 4.26 (s, 4H), 6.81 (d, *J* = 8.0 Hz, 2H), 7.04-7.10 (m, 4H), 7.23-7.30 (m, 4H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.97 (d, *J* = 7.2 Hz, 2H), 8.03 (d, *J* = 3.6 Hz, 2H) ppm.¹³C NMR (100 MHz, DMSO-*d*₆): δ = 64.2, 110.9, 111.5, 118.8, 123.3, 124.8, 125.2, 127.8, 129.5, 138.7, 139.9, 147.2, 149.3, 162.6 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₁N₂O₄S [M+H]⁺481.1217, found 481.1221.

1-(5-(3-(Benzo[*b*]thiophen-2-yl)-2-(pyridin-2-yloxy)phenyl)thiophen-2-yl)ethan-1-one (4y)

Purification via silica gel column chromatography (petroleum ether/acetone/Et₃N = 80/20/1, v/v/v) afforded the desired product **4y** as a white solid (64.9 mg, 76% yield). M.p.: 180-182 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.47 (s, 3H), 6.90 (t, *J* = 6.0 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.28-7.35 (m, 2H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 4.0 Hz, 1H), 7.74 (d, *J* = 7.2 Hz, 1H), 7.79 (d, *J* = 7.6 Hz, 2H), 7.84 (t, *J* = 5.2 Hz, 2H), 7.87-7.94 (m, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 26.5, 111.6, 118.9, 122.1, 123.7, 123.8, 124.6, 124.8, 126.7, 128.1, 128.4, 129.3, 129.6, 130.7, 133.8, 137.9, 139.2, 139.4, 140.0, 143.9, 145.6, 146.4, 147.0, 161.6, 190.9 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₈NO₂S₂ [M+H]⁺ 428.0773, found 428.0771.

XII. References

- (1) J. W. Kang, K. Moseley and P. M. Maitlis, J. Am. Chem. Soc., 1969, 91, 5970.
- (2) D. Maiti and S. L. Buchwald, J. Org. Chem., 2010, 75, 1791.
- (3) (a) J.-H. Chu, P.-S. Lin and M.-J. Wu, Organometallics, 2010, 29, 4058; (b) L.

Ackermann, E. Diers and A. Manvar, Org. Lett., 2012, 14, 1154.

(4) A. Martínez, M. Fernández, J. C. Estévez, R. J. Estévez and L. Castedo, *Tetrahedron*, 2005, **61**, 1353.

XIII. Copies of ¹H and ¹³C NMR spectra

7,415 7,385 7,385 7,385 7,385 7,385 7,385 7,385 7,385 7,385 7,385 7,347 7,247 7,273 1000

803 803 7,813 7,550 7,550 7,550 7,550 7,550 7,550 7,531 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,548 7,550 7,50

S109

