Electronic Supplementary Information

PDMS-coated hypercrosslinked porous organic polymers modified via double postsynthetic acidifications for ammonia capture

Dong Won Kang,^a Minjung Kang,^a Minkyu Moon,^a Hyojin Kim,^a Sunhwi Eom,^a Jong Hyeak Choe,^a

Woo Ram Lee^b and Chang Seop Hong *^a

^aDepartment of Chemistry, Korea University, Seoul 02841, Republic of Korea.

^bDepartment of Chemistry, Sejong University, Seoul 05006, Republic of Korea.

*To whom correspondence should be addressed.

E-mail: cshong@korea.ac.kr (Chang Seop Hong)

Fig. S1. Powder X-ray diffraction patterns of 1T, 1TC, and 1TCS.

Fig. S2. IR spectra of 1T, 1TC, and 1TCS. (top: 4000 cm⁻¹ – 650 cm⁻¹, bottom: 2000 cm⁻¹ -650 cm⁻¹)

Compounds	C(%)	H(%)	S(%)
Compounds	Expt. / Calc.	Expt. / Calc.	Expt. / Calc.
1T [(C _{26.76} H _{20.2936} O _{0.9} Cl _{0.02})(2.25H ₂ O)]	81.1012 / 80.86	5.9093 / 6.29	0
1TC [(C _{26.76} H _{17.4936} O _{3.7} Cl _{0.02})(2.5H ₂ O)]	72.6117 / 72.39	5.2372 / 5.11	0
$\frac{1TCS}{[(C_{26.76}H_{17.4936}O_{6.55}Cl_{0.02}S_{0.95})(3.4H_2O)]}$	60.3078 / 59.94	4.2670 / 4.57	5.5541 / 5.68

 Table S1. Elemental analysis data about all compounds.

5.0KV SET SEM ND 10.3mm x 10,000 5.0KV SET SEM ND 10.3mm x 25,000 5.0KV SET SEM ND 10.3mm

1T

1TCS

Fig. S5. Survey scan of XPS data for (a) **1T**, (b) **1TC** and, (c) **1TCS**. S2s and S2p orbital related peaks were only observed in **1TCS**.

Fig. S6. Narrow scan of S2p that can be splited two states ($S2p_{1/2}$ and $S2p_{3/2}$) XPS data for 1TCS.

Element	Atomic %
С	93.22
0	6.63
Cl	0.11
Fe	0.04
Total:	100.00

(a)

Element	Atomic %
С	91.60
0	8.08
Na	0.00
Cl	0.31
K	0.00
Mn	0.01
Total:	100.00

(b)

Element	Atomic %
С	84.04
0	14.25
S	1.28
Cl	0.43
Total:	100.00

(c)

Fig. S7 . Energy dispersive X-ray SEM data for (a) 1T, (b) 1TC, and (c) 1TCS.

Fig. S8. Solid-state ¹³C NMR spectra for all samples.

 Table S2. Peak assignments about Fig. S8.

ppm (number)	Assignment
17 (1)	methyl carbons
34 (2)	methylene linker
128 - 140 (3)	aromatic carbons

Fig. S9. TGA curves for all compounds.

	1TC (before)	1TC (after)	1TCS (before)	1TCS (after)
C (%)	72.6117	72.5567	60.3078	60.3121
H (%)	5.2372	5.1725	4.2670	4.2430
S (%)	0	0	5.5541	5.5621

Table S3. Elemental analysis data of 1TC and 1TCS before and after regeneration at 120 °C.

Fig. S10. IR data of 1TC and 1TCS before and after regeneration at 120 °C.

The elemental contents in **1TC** and **1TCS** remained invariant, together with almost no variation in IR spectra. These results indicate that there is no decay of the functional groups during regeneration process. Hence, the mass loss is due to the solvent removal upon heating. We added the additional EA and IR data in S14.

Fig. S11. N_2 isotherms at 77 K and pore size distributions of **1T**, **1TC**, and **1TCS**. The x-axis of inset indicates the pore width (nm) and the y-axis of inset shows the differential pore volume (cm³ g⁻¹).

Fig. S12. Ammonia isotherms of the three samples at 298 K and very low pressures (< 4 mbar).

Fig. S13. Calculated isosteric heat of ammonia adsorption from isotherms for **1T**, **1TC**, and **1TCS**. Each isotherm was fitted using dual site or triple site Langmuir-Freundlich equation and the enthapy was calculated by Clausius-Clapeyron formula.

Fig. S14. Ammonia isotherms cycle of 1TCS at 298 K.

Fig. S15. Time-dependent ammonia uptake of **1TCS** in humid conditions. The uptake values were calculated from the titration experiments.

Experimental process of ammonia adsorption amount after co-adsorption.

(a)

(b)

Fig. S16. Schematic diagram of an apparatus for NH₃ capture.^{1, 2}

To evaluate adsorbed NH₃ amounts of pelletized **1TCS** and **1TCS@PDMS10** in humid conditions, the adsorption experiments was carried out as shown in Fig. S14a. After samples in 20 mL vial were activated at 120 °C (**1TCS**) or 160 °C (**1TCS@PDMS10**), the vial was transferred to a 70 mL vial containing 4% NH₃ solution and waited at 25 °C for 30 min. The pellets were removed in the vial. The NH₃-adsorbed pelletized samples were located in a column and the heating mantle was heated by temperature controller to 120 °C (**1TCS**) or 160 °C (**1TCS@PDMS10**) for 12 h under He gas (Fig. S14b). The removal NH₃ gases were absorbed by H₂SO₄ solution (0.5 mL 0.5 N H₂SO₄ + 30 mL distilled water). The solution was titrated by 0.0250 M NaOH using a pH meter.

Fig. S17. IR spectra of 1TCS after exposed or regenerated.

Table S4. List of reported ammonia adsortive porous materials, and their NH₃ capacity per surface area at low pressures.

Compounds	BET	NH ₃ capacity	Adsorption	NH ₃ capacity
Compounds	surface	(mmol g ⁻¹)	Conditions	per surface area

	(m^2g^{-1})			(mmol m ⁻²)
1T ^{this work}	915	0.04	0.49 mbar 298 K	4.372 x 10 ⁻⁵
1TC ^{this work}	552	0.34	0.50 mbar 298 K	6.159 x 10 ⁻⁴
1TCS ^{this work}	72	0.92	0.52 mbar 298 K	1.278 x 10 ⁻²
Fe-MIL-101- SO ₃ H ³	1900	3.52	510 ppm 298 K	1.853 x 10 ⁻³
UiO-66- NH ₃ Cl ³	730	2.64	663 ppm 298 K	3.616 x 10 ⁻³
UiO-66-NH ₂ ³	900	0.93	488 ppm 298 K	1.033 x 10 ⁻³
BPP-2 ³	965	0.97	636 ppm 298 K	1.005 x 10 ⁻³
PPN-6-SO ₃ H ³	1200	1.54	919 ppm 298 K	1.283 x 10 ⁻³
BPP-5 ³	700	5.3(desorption)	203 ppm 298 K	7.571 x 10 ⁻³
BPP-7 ³	705	4.5(desorption)	204 ppm 298 K	6.383 x 10 ⁻³
P1-NH ₃ Cl ⁴	975	0.37	0.5 mbar 298 K	3.795 x 10 ⁻⁴
P1-SO ₃ H ⁴	1220	1.35 0.01	0.5 mbar 298 K 50 ppm 298 K	1.107 x 10 ⁻³ 8.197 x 10 ⁻⁶
P1-PO ₃ H ₂ ⁴	835	3.3 2.03	0.5 mbar 298 K 50 ppm 298 K	3.952 x 10 ⁻³ 2.431 x 10 ⁻³
P2-NH ₃ Cl ⁴	980	0.27	0.5 mbar 298 K	2.755 x 10 ⁻⁴
P2-SO ₃ H ⁴	400	2.25 1.79	0.5 mbar 298 K 50 ppm 298 K	5.625 x 10 ⁻³ 4.475 x 10 ⁻³
P2-CO ₂ H ⁴	715	3.15 1.62	0.5 mbar 298 K 50 ppm	4.406 x 10 ⁻³ 2.266 x 10 ⁻³
PAA ⁵	365	1.6	1 mbar 298 K	4.384 x 10 ⁻³
PI ⁵	725	0.4	1 mbar 298 K	5.517 x 10 ⁻⁴

Fig. S18. Water vapor sorption isotherms of the samples at 298 K.

Fig. S19. Temperature-dependent impedance spectra for (a) **1T**, (b) **1TC** and, (c) **1TCS** at 90% RH. (d) Arrhenius plots for three samples.

Fig. S20. (a) IR and (b) XPS data for PDMS-coated samples.

Fig. S21. EDS-SEM data for 1TCS@PDMS10 sample.

Fig. S22. N_2 isotherms of samples at 77 K.

Fig. S23. NH₃ isotherms of samples at 298 K.

Fig. S24. Ammonia isotherms cycle of 1TCS@PDMS10 at 298 K.

Average angle	133.68
Left angle	133.67
Right angle	133.69

1TCS@PDMS20

Average angle	134.06
Left angle	133.95
Right angle	134.16

1TCS@PDMS50

Fig. S25. Water droplet test for two samples.

Fig. S26. Temperature-dependent impedance spectra (up) and Arrhenius plot (down) for **1TCS@PDMS10**.

Fig. S27. IR spectrum of 1TCS@PDMS10 after exposed or regenerated.

Fig. S28. XPS data of 1TCS@PDMS10 after regeneration.

References

- 1. Y. Chen, C. Yang, X. Wang, J. Yang, K. Ouyang and J. Li, J. Mater. Chem. A, 2016, 4, 10345-10351.
- 2. Y. Chen, Y. Wang, C. Yang, S. Wang, J. Yang and J. Li, ACS Sustainable Chem. Eng., 2017, 5, 5082-5089.
- 3. J. F. Van Humbeck, T. M. McDonald, X. Jing, B. M. Wiers, G. Zhu and J. R. Long, *J. Am. Chem. Soc.*, 2014, **136**, 2432-2440.
- 4. G. Barin, W. G. Peterson, V. Crocell`a, J. Xu, A. K. Colwell, A. Nandy, A. J. Reimer, S. Bordiga and R. J. Long, *Chem. Sci.*, 2017, 8, 4399-4409.
- 5. J. W. Lee, G. Barin, G. W. Peterson, J. Xu, K. A. Colwell and J. R. Long, ACS Appl. Mater. Interfaces, 2017, 9, 33504-33510.