Supporting information

Spin-reorientation-induced magnetodielectric effects in two layered perovskite magnets

Bo Huang,^a Jian-Yu Zhang,^a Rui-Kang Huang,^a Ming-Kun Chen,^a Wei Xue,^a Wei-Xiong Zhang,^{a,*} Ming-Hua Zeng^b and Xiao-Ming Chen^a

^{*a*} MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

^b School of Chemistry and Pharmaceutical Sciences, GuangXi Normal University, Guilin 541004, P. R. China

Fig. S1 Photos of crystals of PEA-Mn and PEA-Cu view along the *c*-axis.

Fig. S2 The simulated, experimental powder and single crystal (along the *c*-axis) XRD patterns of PEA-Mn and PEA-Cu.

Fig. S3 The hydrogen bonds act as bridges between the organic and inorganic layers in the crystal structures of PEA-Mn and PEA-Cu. The phenethyl groups of PEA were omitted for clarity. The hydrogen bonds are represented by dashed lines.

Fig. S4 Zero-field-cooled magnetization (ZFCM) and field-cooled magnetization (FCM) under 20 Oe for a crystal sample of PEA-Cu along the *c*-axis.

Fig. S5 Magnetizations of PEA-Mn (a) and PEA-Cu (b) at different temperatures measured by applying magnetic field on a single crystal along the *c*-axis.