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CS01, CS02, and ZW01 isomers

Figure (S1) shows the optimized structures of CS01, CS02, and ZW01 calculated at the

DFT-B3LYP level of theory with 6-311+G** basis set by means of the NWChem package.1

CS01 is the global minimum, while CS02 and ZW01 are isomers respectively 650 cm-1 and

950 cm-1 above in energy.

Figure S1: Structures of the CS01, ZW01, and CS02 isomers of the protonated glycine dimer.
The left side of the panel shows the CS01 structure, the right one its zwitterionic version
(ZW01), while the CS02 local minimum is reported below.

Tables (S1), (S2), and (S3) report instead the computed harmonic frequencies in the

1000-4000 cm-1 energy range, obtained via diagonalization of the Hessian matrix at the

equilibrium geometry.
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Table S1: Harmonic vibrational frequencies of the CS01 isomer reported in cm-1. Values are
presented in ascending order.

Mode HO Mode HO Mode HO

26 1020 37 1435 48 3059

27 1075 38 1443 49 3084

28 1133 39 1461 50 3101

29 1159 40 1485 51 3142

30 1178 41 1570 52 3191

31 1192 42 1669 53 3309

32 1246 43 1675 54 3499

33 1315 44 1686 55 3537

34 1338 45 1756 56 3610

35 1339 46 1811 57 3730

36 1351 47 2707

Table S2: Harmonic vibrational frequencies of CS02 isomer reported in cm-1. Values are
presented in ascending order.

Mode HO Mode HO Mode HO

25 1036 36 1362 47 2707

26 1054 37 1438 48 3048

27 1091 38 1447 49 3086

28 1117 39 1479 50 3087

29 1156 40 1485 51 3138

30 1186 41 1593 52 3359

31 1194 42 1662 53 3431

32 1202 43 1665 54 3481

33 1305 44 1700 55 3546

34 1319 45 1784 56 3727

35 1334 46 1817 57 3734
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Table S3: Harmonic Vibrational frequencies of the ZW01 isomer reported in cm-1. Values
are presented in ascending order.

Mode HO Mode HO Mode HO

25 1032 36 1416 47 2253

26 1089 37 1442 48 2814

27 1098 38 1483 49 3058

28 1141 39 1488 50 3107

29 1165 40 1594 51 3133

30 1192 41 1638 52 3166

31 1295 42 1661 53 3350

32 1309 43 1674 54 3471

33 1321 44 1685 55 3509

34 1345 45 1696 56 3534

35 1385 46 1812 57 3735

Values well agree with the ones reported in the literature for CS01 and CS02 at the same

level of theory, as reported in Table (S4).

Table S4: Harmonic frequencies of CS01 and CS02 compared with the corresponding ones
reported in the literature, calculated at the same level of theory. Values labeled by (a) are
taken from Ref ( 2).

CS01 HO HO(a) CS02 HO HO(a)

1192 1194 3431 3438

1756 1763 3546 3546

1811 1816 3734 3738

3499 3501

3610 3610

3730 3731

Below are reported the computed DC SCIVR fundamental frequencies of CS01 and CS02,

compared with the experimental ones. Table (S5) shows the fundamental excitations of CS01

in the 1000-4000 cm-1 energy range, while Table (S6) the fundamental excitations of CS02.
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Table S5: Vibrational frequencies of the CS01 isomer reported in cm-1. Values are compared
with their harmonic and experimental counterparts. The Mean Absolute Error (MAE) is
computed with respect to the experimental vibrational excitations.

Mode DC-SCIVR HO Exp[ 2] Mode DC-SCIVR HO Exp[ 2]
26 1003 1020 43 1633 1675
27 1074 1075 44 1641 1686
28 1108 1133 45 1750 1756 1757
29 1109 1159 46 1804 1811 1808
30 1174 1178 47 2658 2707
31 1172 1192 1191 48 2959 3059
32 1188 1246 49 2987 3084
33 1267 1315 50 2966 3101
34 1340 1338 51 3051 3142
35 1320 1339 52 3197 3191
36 1320 1351 53 3243 3309
37 1386 1435 54 3375 3499 3372
38 1344 1443 55 3415 3537
39 1450 1461 1439 56 3435 3610
40 1434 1485 57 3628 3730 3585
41 1511 1570 1523
42 1629 1669 MAE 14

Table S6: Vibrational frequencies of the CS02 isomer reported in cm-1. Values are compared
with their harmonic and experimental counterparts. The Mean Absolute Error (MAE) is
computed with respect to the experimental vibrational excitations.

Mode DC-SCIVR HO Exp[ 2] Mode DC-SCIVR HO Exp[ 2]
25 1033 1036 42 1617 1662
26 1015 1054 43 1598 1665 1523
27 1050 1091 44 1610 1700
28 1095 1117 45 1771 1784 1757
29 1106 1156 46 1761 1817 1808
30 1138 1186 47 2714 2707
31 1106 1194 48 2979 3048
32 1155 1202 1191 49 2975 3086
33 1255 1305 50 2988 3087
34 1295 1319 51 3007 3138
35 1362 1334 52 3171 3359
36 1341 1362 53 3185 3431
37 1382 1438 54 3316 3481
38 1421 1447 55 3362 3546 3372
39 1463 1479 56 3615 3727 3585
40 1452 1485 57 3640 3734
41 1466 1593 1439 MAE 32

The zwitterionic isomer very quickly interconverts into the global minimum CS01, in

agreement with the literature consensus about its negligible contribution to the vibrational
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spectrum. Figure (S2) shows the OH (black line) and NH (red line) distances during the

dynamics of ZW01. We observe that the OH distance starts oscillating from the equilibrium

one for ZW01, but after very short time it drops into the CS01 basin and the distance

oscillates around the equilibrium one of CS01 reported with a black horizontal dashed line.

A similar behavior is followed by NH distance.

Figure S2: Plot of NH and OH distances during the dynamics of ZW01. The black line
reports the OH distance, while the red line the NH one. Horizontal dashed lines are centered
at equilibrium distances for CS01 and ZW01.
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(GlyH+H2)+ and (GlyH+3H2)+

In figure S3 the optimized structures of protonated glycine tagged with a single hydrogen

molecule in front of the NH and of the OH bond are displayed. In Figure S4 is instead

represented the protonated glycine tagged with three hydrogen molecules, with all NH bonds

tagged. For all the calculations we employed the DFT-B3LYP level of theory with aug-cc-

pvdz basis set, as implemented in the NWChem software package.

The four highest harmonic frequencies of each structure, together with semiclassical DC-

SCIVR and classical estimates through the Fourier transform of the velocity autocorrelation

function are reported in Table S7.
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Figure S3: Minimum geometry of the protonated glycine tagged with hydrogen. On the left
side the NH tagged structure is reported, while on the right side the hydrogen tag is on the
OH.

Figure S4: Minimum structure of protonated glycine tagged with three hydrogen molecules.
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Table S7: Semiclassical (DC-SCIVR) vibrational frequencies of tagged glycine systems re-
ported in cm-1. Values are compared with their harmonic (HO) and classical counterparts.

(GlyH+H2)+ (NH tagged)
Mode DC-SCIVR HO Classical
NHa 2920 3139 3030

NHb 3310 3377 3310

NHc 3370 3485 3370

OHb 3610 3696 3600

(GlyH+H2)+ (OH tagged)
Mode DC-SCIVR HO Classical
NHa 2950 3095 3035

NHb 3340 3446 3340

NHc 3370 3507 3350

OHr 3480 3561 3485

(GlyH+3H2)+

Mode DC-SCIVR HO Classical
NHa 3000 3312 3185

NHb 3240 3367 3260

NHc 3260 3410 3250

OHb 3600 3701 3600

(Deuterated GlyH+3H2)+

Mode DC-SCIVR HO Classical
NDa 2376 2517 2370

NDb 3099

NDc 3159

OHb 3701

Quantum Anharmonicity

In Fig.(S5) one can appreciate the amount of delocalization induced by the potential anhar-

monicity.

q

Figure S5: Continuous black line and red lines show potential energy profiles of a stiff and a
mild oscillators, while black and red dashed lines their respective ground state wavefunctions.
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Theoretical methods employed for the calculation of vi-

brational frequencies

Computational details

All preliminary optimization and harmonic frequency calculations, as well as the molecular

dynamics simulations, have been performed employing the NWChem package,1 and evaluat-

ing the electronic energy at the DFT-B3LYP level of theory.3 Each classical trajectory was

propagated for about 600 fs, which is a standard length for semiclassical simulations.4–10 The

same 6-311+G(d,p) basis set of Ref. ( 2) was used for the protonated glycine dimer, while

the aug-cc-pvDZ basis set was employed for hydrogen-tagged protonated glycine molecules.

This latter basis set has already been demonstrated to be reliable in previous semiclassical

calculations, including neutral glycine.6,11,12

Semiclassical approximation to the spectral density

The power spectrum of a molecular system described by the Hamiltonian Ĥ can be written

as I (E) ≡
∑

i |〈χ | ψi〉|
2 δ(E − Ei). Ei is a generic eigenenergy we want to calculate and

|ψi〉 is the associated eigenfunction. By representing the Dirac-delta in terms of a Fourier

integral, the spectrum becomes13

I(E) =
1

2π~

+∞ˆ

−∞

dt eiEt/~
〈
χ
∣∣∣e−iĤt/~∣∣∣χ〉 (1)

where
∣∣∣χ〉 is an arbitrary quantum mechanical reference state. The semiclassical theory

approximates the quantum time evolution operator e−iĤt/~ by means of a stationary-phase

approximation to the Feynman Path Integral representation.14 The semiclassical propagator

thus obtained is equal to the one proposed by van Vleck,15 and it relies on the calculation of
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all possible classical paths connecting the initial q (0) and final q (t) points. Thus, one needs

to solve a nonlinear boundary value problem and to find all possible trajectories knowing

the starting and ending positions. Finding these trajectories is a formidable task. In the

seventies,16–19 Miller introduced the Semiclassical Initial Value Representation (SC-IVR), by

replacing the boundary condition summation with an initial phase space integration, which is

amenable to Monte Carlo (MC) implementation. Later, Heller-Herman-Kluk-Kay pioneered

a more suitable representation of the propagator for molecular systems, based on coherent

states.13,20–22 Coherent states have the advantage to feature a Gaussian-type shape centered

at classical momenta and positions (p (t) ,q (t)) in the coordinate representation, and they

can be expressed for a F-dimensional system as

〈x|p (t) ,q (t)〉 =

(
det (Γ)

πF

)1/4

e−(x−q(t))T Γ(x−q(t))/2+ipT (t)(x−q(t))/~, (2)

where Γ is a matrix describing the width of the wavepacket. Then, the semiclassical propa-

gator becomes in this representation

〈
χ
∣∣∣e−iĤt/~∣∣∣χ〉 ≈(

1

2π~

)F ¨
dp (0) dq (0)Ct (p (0) ,q (0)) e

i
~St(p(0),q(0)) 〈χ |p (t)q (t) 〉〈p (0)q (0)| χ〉 (3)

where (p (0) ,q (0)) are the initial conditions of the classical trajectories that are evolved

to (p (t) ,q (t)). St is the classical action computed at time t, while 〈χ |p (t)q (t) 〉〈p (0)q (0)| χ〉

is the product of two coherent-state overlaps, which is analytical. Finally, Ct is the pre-

exponential factor arising from the quantum fluctuations around the classical paths,4 that

is calculated from the monodromy (stability) matrix elements as

Ct (p (0) ,q (0)) =

√
det
∣∣∣∣12
(
∂q (t)

∂q (0)
+
∂p (t)

∂p (0)
− i~Γ

∂q (t)

∂p (0)
+

i

Γ~
∂p (t)

∂q (0)

)∣∣∣∣. (4)

The convergence of Eq. (3) with the number of phase space trajectories can be tamed by
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applying the Time-Averaging filtering technique developed by Kaledin and Miller23,24 and, by

approximating Ct (p (0) ,q (0)) ≈ eiφt/~, to obtain the following semiclassical power spectrum

expression

I (E) =

(
1

2π~

)F ¨
dp (0) dq (0)

1

2π~T

∣∣∣∣∣∣
T̂

0

e
i
~ [St(p(0),q(0))+Et+φt]〈χ|p (t) ,q (t)〉dt

∣∣∣∣∣∣
2

. (5)

This formulation requires roughly 1000 trajectories per degree of freedom, which makes any

on-the-fly ab initio molecular dynamics approach unaffordable. In the recent years, one of

us developed a formulation of Eq. (5) able to recover accurate spectra by means of few

or even a single trajectory by properly selecting the initial conditions and tailoring the

reference state
∣∣∣χ〉9,12. More specifically, we choose the initial conditions (p (0) ,q (0)) at

the molecular equilibrium configuration qeq, while the momentum of each degree of freedom

is such that pieq =
√

~ωi (ni + 1/2) according to its harmonic frequency ωi. For the ground

state trajectory ni = 0 for each degree of freedom. Also, we enforce the reference state

to be of the type
∣∣∣χ〉 =

∣∣∣peq,qeq〉 + ε
∣∣∣−peq,qeq〉. With a proper choice of the ε vector

elements, we can filter the signal and selectively enhance the signal of the ZPE or of any

given fundamental excitation11,25. For instance, if we select each element to be equal to one,

i.e. ε = +1, the ZPE will be recovered. By selecting εi = −1 with all the other values equal

to +1, the fundamental excitation of mode i will be mainly reproduced with respect to the

other vibrational peaks. By combining these strategies, one can employ just a few or even

a single classical trajectory to obtain accurate spectroscopic signals for systems as complex

as glycine.6 Unfortunately, this approach runs out of steam when the system dimensionality

increases to 25-30 degrees of freedom, because of the curse of dimensionality. To overcome

this issue, we have recently developed the divide-and-conquer SC-IVR (DC-SCIVR) method

which was shown to be able to recover spectra of high-dimensional molecular systems.5,7
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Divide-and-Conquer semiclassical molecular dynamics7

Our Divide-and-Conquer method reproduces the full-dimensional molecular spectrum as a

combination of reduced dimensionality spectra, each one composed of a reduced number of

vibrational degrees of freedom. The power spectrum for a reduced M-dimensional vibrational

space, extracted from the full Nvib-dimensional vibrational space (M < Nvib), is given in

analogy to Eq. (5) by

Ĩ (E) =

(
1

2π~

)F ¨
dp̃ (0) dq̃ (0)

1

2π~T

∣∣∣∣∣∣
T̂

0

e
i
~ [S̃t(p̃(0),q̃(0))+Et+φ̃t]〈χ̃|p̃ (t) , q̃ (t)〉dt

∣∣∣∣∣∣
2

, (6)

where the ∼ indicates the reduced dimensionality quantities. These quantities are ob-

tained by projection via singular value decomposition of the corresponding full dimensional

ones.5,7,26 The criterion that we employed to partition the Nvib degrees of freedom into groups

of subspaces is by inspection of the magnitude of the off-diagonal terms of the time-averaged

Hessian matrix elements Hij along the trajectory started at equilibrium (peq,qeq). After

choosing a certain threshold value ε, if a generic Hessian element Hij ≥ ε, then modes i

and j are collected in the same subspace. The ε parameter is chosen in order to have a

maximum subspace dimensionality not exceeding 15-20, which is a good compromise be-

tween accuracy and feasibility of the power spectrum calculations. Specifically, for the CS01

isomer of the protonated glycine, the maximum subspace dimensionality was equal to 16,

while for CS02 it was 18. In the case of hydrogen tagged protonated glycine the maximum

subspace dimensionality was selected to be equal to 19. More details on the method have

been provided elsewhere.5 In conclusion, all semiclassical vibrational spectra have been cal-

culated employing the DC-SCIVR approach, which has already been demonstrated to be

able to reproduce spectra of variously sized molecules, up to 60 atoms, either under strong

or weak interactions, such as hydrogen bonds in water clusters or in the protonated water

dimer (Zundel cation).5,7,27 Each excitation was selected by properly tailoring the reference
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state
∣∣∣χ〉 according to the Multiple Coherent state approach mentioned above.

Classical evaluation of the vibrational frequencies

To appreciate the relevance of quantum effects better, we have reported in the article some

classical estimates for the vibrational frequencies of the hydrogen tagged systems. A stan-

dard classical simulation would require a preliminary thermalization of the system at the

temperature of the experiment followed by the computation of the Fourier transform of the

velocity-velocity autocorrelation function. However, the reference experiments were per-

formed at very low temperature (10K and 21K) and such a classical simulation would have

basically returned harmonic estimates. We decided to work instead in analogy to the divide-

and-conquer formula for semiclassical calculations by adopting its classical analog

Icl(E) = lim
T→∞

ˆ ˆ
dq̃0dp̃0 ρ̃(q̃0, p̃0)

1

2T

∣∣∣∣ˆ T

0

dt eiE(t) ṽ(t)

∣∣∣∣2 , (7)

where ρ̃(q̃0, p̃0) is the same sampling phase-space distribution function in reduced dimension-

ality employed in the semiclassical simulations, i.e. the set of classical trajectories are the

same. The details about the derivation of the formula can be found in Ref. 27.
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