
 

Supplementary information for: Machine learning of optical properties of 
materials - predicting spectra from images and images from spectra 

Helge S. Stein,a,* Dan Guevara a, Paul F. Newhouse a, Edwin Soedarmadji a, John M. 
Gregoire a,*

 

 

a. Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125 
(USA) 

*stein@caltech.edu, gregoire@caltech.edu 
 
 
 
 

A visualization of the models described in the main text and methods section is 
shown in Figure S1 as graph representations. The lambda layer in the VAE model 
samples the latent space via: 

𝑧 = 𝑧 + 𝑧 ∗  𝑧 ∗  𝑧𝑧/2
 

as described in the main text. The code for all models and the trained weights are 

included as separate SI files. 
 

Figure S1: Graph representation of the neural nets used throughout the manuscript. In split models like the 

VAE and cVAE the output of the first model is fed as input into the second model. Yellow layers constitute 

dense layers. The output dimensionality of d1 in model 1 depends on the output shape of the last conv 2d 

layer of the encoder and is computed during model creation. Red numbers were optimized during 

hyperparameter optimization. The output dimensions of mu and sig are the same as z. 
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The training losses for model 1-3 are plotted in Figures S2-S4. A histogram showing the 

binary crossentropy per image as a histogram is shown in Figure S5 
 

Figure S2: Training loss of model 1 (VAE). Training was stopped after 100 epochs. 

Hyperparameter for model 1 one optimized by considering the model with the lowest per pixel loss. The 

hyperparameter optimization proceed via grid search, as detailed in Table S1. The best and second best 

model only had a minute difference in per pixel loss but the second best model had fewer trainable 

parameters (23887 instead of 42059 parameters for a 0.001% increase in loss), leading to our choice of 

these parameters for the model. 

Table S1: Results from hyperparameter optimization. Shown are the hyperparameters and the train loss (no model selection is 

based on the test loss within this manuscript but only test set results are presented) per pixel. 

 

Filter Layer 1 Filter Layer 2 Latent Space 
Dimension 

Loss per pixel 

32 16 50 1.68899 

32 16 100 1.68733 

32 16 150 1.68677 

32 8 50 1.6883 

32 8 100 1.69224 

32 8 150 1.68991 

32 4 50 1.68917 

32 4 100 1.6895 



32 4 150 1.69105 

16 16 50 1.6872 

16 16 100 1.68727 

16 16 150 1.69131 

16 8 50 1.69165 

16 8 100 1.68879 

16 8 150 1.68826 

16 4 50 1.68731 

16 4 100 1.69273 

16 4 150 1.69012 

8 16 50 1.69101 

8 16 100 1.68678 

8 16 150 1.68683 

8 8 50 1.69249 

8 8 100 1.6921 

8 8 150 1.68761 

8 4 50 1.69298 

8 4 100 1.69101 

8 4 150 1.69375 

 
 

Table S2: Results from hyperparameter training where a1 denotes the output dimension of the first dense layer and f1 and f2 the 

filters in the second layer after training for 100 epoch. The two best models were trained for an additional 1000 epochs in which 

the second-best model (marked yellow) performed slightly better (see main text) and was chosen for the subsequent analysis 
 

a1 f1 f2 loss r2_loss 

100 64 64 0.205 0.651 

100 64 32 0.197 0.628 

100 32 64 0.198 0.639 

100 32 32 0.267 0.726 

50 64 64 0.194 0.627 

50 64 32 0.200 0.641 

50 32 64 0.209 0.650 

50 32 32 0.203 0.646 



 
 

Figure S3: Training loss of model 2 (Spectrum Prediction). Stopped after 500 epochs. 
 

Figure S4: Training loss model 3 (cVAE). Stopped via early stopping. 



 

Figure S5: Loss histograms for model 1,2 and 3. a. For the VAE, most images are well reconstructed, and 

the distribution of errors is quite similar for the test and train sets. b. The absorption spectra are well 

reconstructed with a more than exponential decay in MSE loss per sample. c. The loss histogram for the 

cVAE is quite similar to the VAE with the addition of a small fraction of outliers with considerably higher 

image crossentropy. 

 

 
Concerning the use of model 3 as a generative model for a conditional absorption 

spectrum, the resulting material image is, at least visually, relatively insensitive to the 

choice of latent space coordinate compared to the choice of conditional absorption 

spectrum, as shown in Figure S6 where 50 randomly chosen samples were used to 

gather 50 arbitrary latent space coordinates. For each starting latent space coordinate, 

images were generated according to 11 different conditional spectra (the same 

conditional spectra as the middle row in Figure 7a). There is relatively minor differences 

between different columns. 



 
 

Figure S6: cVAE predictions using randomly chosen starting images and their latent space encoding 
variable. Each row uses the same conditional spectrum, and each column uses a different image/latent 

space vector from which the image is generated. 

To highlight that the cVAE model also needs a very large dataset to learn from, cVAE 

predictions from the conditional spectra in Figure 7a are shown after the cVAE model 

was trained on truncated datasets of 30, 45, 65, and 95 thousand images. The results 

indicate that at least 65 thousand images are necessary to predict images from spectra, 

especially for the less frequently occurring lower bandgap materials. 



 
 
 

Figure S7: Comparison for the image from spectrum prediction in model 3 run with 30000, 45000, 65000 
and 90000 randomly chosen images with the same array of absorption spectra shown in Figure 7a. Visual 
inspection of the results indicates that minimally about 65000 images and spectra are necessary to train 
the cVAE to predict the low bandgap materials, and there are visual improvements for 90000 images and 
more. All images were reconstructed from the same latent space variable that corresponded to an 
image/spectrum pair whose measured absorption spectrum has lowest L2 loss from the sigmoidal 
absorption curve from the spectrum corresponding to the center image. 

 
 

Additional details on dataset 

The materials in the dataset are all metal oxides made by combining 1, 2, 3, or 4 different metal 

precursors and converting to metal oxides with annealing in air or other O2-containing atmosphere with 

annealing temperatures between 300 and 800 °C. Within a given composition space, i.e. combination of 

metal elements, a grid of composition was synthesized on a library plate. A common design of this grid is 

the complete quaternary space of 4 metals with 5 at.% intervals. The resulting 1771 compositions (all 

deposited on a single library plate and annealed together) contain all the individual metal oxides and the 

mixed metal oxides containing 2, 3 or 4 of the metals. The choices of elements, grid of compositions, 

and annealing temperatures were varied neither systematically nor randomly to generate the full 

dataset. These choices were made for pursuing various research projects related to identification of 

metal oxide photoanodes with a visible band gap. The datasets contains analogous variation of other 



synthesis details such as the ink formulation, metals loading, drying procedure, print head, batch of glass 

substrates, etc., none of which were used in the models. 


