Electronic Supplementary Information

Determination of the electronic structure of a dinuclear dysprosium single molecule magnet without symmetry idealization

Mauro Perfetti^{a,†,\$}, Maren Gysler^{a,†}, Yvonne Rechkemmer-Patalen^a, Peng Zhang^a, Hatice Taştan^a, Florian Fischer^a, Julia Netz^a, Wolfgang Frey^b, Lucas W. Zimmermann^c, Thomas Schleid^c, Michael Hakl^d, Milan Orlita^{d,e}, Liviu Ungur^f, Liviu Chibotaru^f, Theis Brock-Nannestad^g, Stergios Piligkos^g, Joris van Slageren^{a,*}

+ These authors contributed equally.

^{a.} Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

 ^b Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
^c Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

^d Laboratoire National des Champs Magnétiques Intenses (LNCMI-EMFL), CNRS, UGA, 38042 Grenoble, France.

Institute of Physics, Charles University, Ke Karlovu 5, 12116 Praja 2, Czech Republic.

^{f.} Theory of Nanomaterials Group, Katholieke Universiteit Leuven, Celestijnenlaan 220F, 3001 Leuven, Belgium.

⁹ Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Denmark

^{\$} Current address: Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Denmark

Summary

Syntl	nesis
1.	General
2.	$[Dy_2(6,6,7,7,8,8,8-Heptafluoro-2,2-dimethyl-3,5-octanedionate)_6(\mu-2,2'-bipyrimidine)]$
3.	4% Dy @ [Y ₂ (6,6,7,7,8,8,8-Heptafluoro-2,2-dimethyl-3,5-octanedionate) ₆ (μ -2,2'-bipyrimidine)] 3
4.	Crystallographic data and refinement parameters for Dy_2
5.	Powder diffraction
Shap	e calculation
Ab in	itio calculations4
Magı	netic Characterization
Lumi	nescence
Ab in	itio energy scaling
Mag	netic Circular Dichroism Spectroscopy 10
Expe	rimental energies
Cryst	al Field fitting
FIR C	omparison14
DC N	lagnetometry- symmetry comparison14
Canti	lever Torque Magnetometry
Refe	rences

Synthesis

1. General

 $[Dy(fod)_3]$ (Alfa Aesar, 98+ %), $[Gd(fod)_3]$ (Alfa Aesar, 98+ %), $Y(NO_3)_3 \cdot 6 H_2O$ (Sigma Aldrich, 99.8 %), 2,2'-bipyrimidine (Alfa Aesar, 98%), KOH (Alfa Aesar, p.a.), absolute ethanol (VWR, 99.5%), n-hexane (Sigma Aldrich, 98%), dichloromethane (Alfa Aesar, 98%) and diethyl ether (Alfa Aesar, 98%) were used as received. All reactions were carried out in standard glassware under ambient atmosphere.

2. $[Dy_2(6,6,7,7,8,8,8-Heptafluoro-2,2-dimethyl-3,5-octanedionate)_6(\mu-2,2'-bipyrimidine)]$

To a solution of Dy(fod)₃ (0.120 g; 0.115 mmol) in 20 mL absolute ethanol was slowly added a solution of bpm (0.009 g; 0.057 mmol) in 8 mL absolute ethanol. The reaction mixture was stirred at ambient temperature for 3 hours. Slow evaporation of the solvent led to the formation of crystals which were recrystallized from ethanol to give the colorless product in 96% yield. Elemental analysis: found (calc. for $Dy_2C_{68}H_{66}F_{42}N_4O_{12})/\%$: C 36.23 (36.38), H 2.95 (3.08), N 2.49 (2.58). ATR-IR: \tilde{v}_{max} = 2969 (bw), 1615 (vs), 1578 (m), 1539 (w), 1507 (m), 1471 (m), 1412 (w), 1345 (s), 1280 (w), 1222 (s), 1152 (s), 1120 (vs), 1104 (s), 1071 (s), 1021 (m), 966 (m), 940 (m), 910 (m), 832 (m), 793 (m), 755 (m), 740 (m), 687 (m), 663 (m) cm⁻¹. ESI-MS: (positive): m/z = 2277.2 [M+Na]⁺; 2117.3 [[Dy(fod)₆(µ-bpm)]+Na]⁺; 1959.2 [[Dy(fod)₆]+Na]⁺; 1526.2 [[Dy(fod)₄(bpm)]+Na]⁺; 1230.1 [Dy₂(fod)₂(bpm)₂]⁺; 1070.2 [Dy(fod)₂(bpm)₂]⁺; 912.1 [Dy(fod)₂(bpm)]⁺; 504.1 [[Dy(fod)]+2Na]⁺. ¹H-NMR (500 MHz, CDCl₃); -13.21 ppm (b), -0.75 ppm (s), 1.21 ppm (s), 7.26 ppm (s), 7.34 ppm (s).

3. 4% Dy @ [Y₂(6,6,7,7,8,8,8-Heptafluoro-2,2-dimethyl-3,5-octanedionate)₆(μ -2,2'-bipyrimidine)] Same procedure to obtain Dy₂. The starting Ln salt was a mixture of Dy(fod)₃:Y(fod)₃=1:19. Elemental analysis: found (calc. for Y_{0.96}Dy_{0.04}C₆₈H₆₆F₄₂N₄O₁₂)/%: C 38.40 (38.65), H 3.27 (3.14), N 2.80 (2.65).

4. Crystallographic data and refinement parameters for Dy₂

Table S1. Crystallographic data and refinement parameters for \mathbf{Dy}_2 .

Formula	$Dy_2C_{68}H_{66}F_{42}N_4O_{12}$
M _r	2254.25
Т/К	100(2)
Crystal system	Triclinic
Space group	P-1
a / Å	11. 7327(10)
b/Å	13.5801(12)
c/Å	14.5983(12)
α/°	71.026(4)
β/°	88.785(4)
γ/°	77.839(4)
V / Å ³	2147.4(3)
Ζ	1
ρ_{calc} / g cm ⁻³	1.743
<i>μ</i> (Mo-Kα)/mm ⁻¹	1.875
F ₀₀₀	1108
Crystal size / mm ³	0.44 x 0.23 x 0.084
Radiation	0.71073 Å
theta range / °	1.624 to 28.321
Reflection collected	36989
Independent reflections	10481
R _{int}	0.0321
Param restraints	658/386
$S(\text{on }F^2)$	1.093
R1, wR2 ($l \ge 2\sigma(l)$)	0.0751, 0.1896
R1, wR2 (all data)	0.0948, 0.1996

5. Powder diffraction

Figure S1. Powder diffractogram of Dy₂.

Shape calculation

Table S2. Continuous shape measurements¹ for compound Dy_2 . The CShM parameter represent the deviation from the ideal shape. Numbers below 2 are usually considered acceptable for a symmetry approximation.

Shape	Symmetry	CShM
Octagon	D8h	33.802
Heptagonal pyramid	C7v	21.534
Hexagonal bipyramid	D6h	17.894
Cube	Oh	17.221
Square antiprism	D4d	17.779
Triangular dodecahedron	D2d	16.286
Johnson gyrobifastigium J26	D2d	18.729
Johnson elongated triangular bipyramid J14	D3h	23.836
Biaugmented trigonal prism J50	C2v	18.226
Biaugmented trigonal prism	C2v	16.011
Snub diphenoid J84	D2d	19.570
Triakis tetrahedron	Td	16.091
Elongated trigonal bipyramid	D3h	24.919

Ab initio calculations

Table S3. Energies (first column), effective g tensors (second to forth column), angle between the z axis of each KD and the Dy-Dy axis (fifth column) and angle between the z axis of the ground KD and the z axis of the other KDs (sixth column). An effective S = 1/2 is assumed.

E (cm ⁻¹)	g _x	g_y	gz	α(°)	β(°)
0	0.01	0.01	19.55	83	-
150	0.26	0.39	16.09	79	8
226	1.07	1.51	13.06	87	36
273	1.90	4.40	9.41	97	148
318	2.87	5.24	8.01	130	89
353	1.53	3.52	16.08	128	111
461	0.02	0.12	18.14	142	85
544	0.02	0.07	19.18	139	57

Table S4. Calculated CF parameters expressed in Wybourne notation.

k	q	Ab
		initio
2	0	592
	1	176
	-1	76
	2	-192
	-2	-93
4	0	588
	1	-63
	-1	164
	2	1
	-2	-538
	3	-138
	-3	337
	4	44
	-4	151
6	0	0
	1	155
	-1	215
	2	136
	-2	-30
	3	151
	-3	-38
	4	-234
	-4	55
	5	53
	-5	-12
	6	-20
	-6	-153

Table S5. CF strength of the calculated CF parameters. We used the following notation: $S_k = \sqrt{\frac{1}{2k+1} (|B_k^0|^2 + 2 * \sum_{q \neq 0} |B_k^q|^2)}$ and $S_{tot} = (S_2 + S_4 + S_6)/3$.

	Ab
	initio/cm ⁻¹
S ₂	321
S ₄	380
S ₆	175
St	292

Table S6. Energies and composition	n calculated for the KDs of the	ground J=15/2 multiplet of Dv ₂	. We only report contributions >1%.
		B = = = = = = = = = = = = = = = = = = =	

Dy ₂	Energy / ci	m						
	0	150	226	273	318	353	461	544
m _i	1 _{CF} ;±>	2 _{CF} ;±>	3 _{CF} ;±>	4 _{CF} ;±>	5 _{CF} ;±>	6 _{CF} ;±>	7 _{CF} ;±>	8 _{CF} ;±>
±15/2	96%		3%	1%				2%
±13/2		80%	5%	2%	2%	1%	2%	8%
±11/2	2%	3%	38%	25%	3%	1%	6%	19%
±9/2		11%	10%	24%	19%	4%	7%	25%
±7/2	1%	2%	16%	3%	31%	21%	5%	22%
±5/2		2%	9%	12%	4%	47%	11%	15%
±3/2		1%	12%	7%	23%	21%	29%	7%
±1/2			7%	25%	18%	6%	41%	2%

Magnetic Characterization

Figure S2. Real (left) and imaginary (right) part of the ac susceptibility of **Dy**₂. Scan field, *T* = 1.8 K.

Figure S3. Real part of the ac susceptibility of Dy_2 . Scan Temperature, B = 0 T.

The imaginary part of the magnetic susceptibility was fitted using the Cole-Cole equation²:

$$\chi''(\nu) = (\chi_T - \chi_S) \frac{(2\pi\nu\tau)^{1-\alpha}\cos(\pi\alpha/2)}{1+2(2\pi\nu\tau)^{1-\alpha}\sin\left(\frac{\pi\alpha}{2}\right) + (2\pi\nu\tau)^{2-2\alpha}}$$
(1)

Where α is the width of the distribution of the relaxation times, centred at τ . The difference between the thermal and adiabatic susceptibility (χ_{T} - χ_{S}) accounts for the fraction of the sample that is following the relaxation pathway. To fit the imaginary susceptibility of **Dy**₂ in zero field, we have used a sum of two Cole Cole equations for the low temperature region (T < 5 K) while only one process satisfactorily reproduced the data at higher temperature.

Figure S4. Sample fit of the imaginary part of the susceptibility at T = 4.5 K and B = 0 T for **Dy**₂. The dashed curve is a fit using a single Cole-Cole function (clearly unsatisfactory). The violet curve is the sum of two (blue and red) Cole-Cole functions.

Figure S5. $\chi_{T}\chi_{S}$ values (symbols, B = 0 T) extracted by the χ'' curves compared with the χ_{dc} values (straight line, B = 0.1 T) in the same temperature range. At T < 5 K the $\chi_{T}\chi_{S}$ values reported here are the sum of the values relative to the two processes while at higher temperature they are extracted using a single process. A good agreement between ac and dc values means that all the magnetic moments are slowly relaxing.

Figure S6. Fit of the high temperature relaxation times using an effective energy barrier (single Orbach process). The extracted value of 32 cm⁻¹ is not compatible with both theory or experiments.

Figure S7. Product of the magnetic dc susceptibility and temperature for Dy@Y₂. The data were corrected for diamagnetism using Pascal's tables and scaled per mole of Dy.

Figure S8. Real (left) and imaginary (right) part of the ac susceptibility of $Dy@Y_2$. Scan Field, T = 1.8 K.

Figure S9. Real (left) and imaginary (right) part of the ac susceptibility of $Dy@Y_2$. Scan Temperature, B = 0 T. Black lines in the χ'' graph represent the best fit discussed in the main text.

Figure S10. Real (left) and imaginary (right) part of the ac susceptibility of Dy_2 . Scan Temperature, B = 0.1 T. Black lines in the χ'' graph represent the best fit discussed in the main text.

Figure S11. Real (left) and imaginary (right) part of the ac susceptibility of Dy@ Y_2 . Scan Temperature, B = 0.1 T. Black lines in the χ'' graph represent the best fit discussed in the main text.

Figure S12. Fit of the relaxation time extracted from the χ'' curves in Fig. S11 for Dy@**Y**₂.

Luminescence

Figure S13. Luminescence spectra corresponding to the transition ${}^{4}F_{9/2}$ -> ${}^{6}H_{13/2}$.

Ab initio energy scaling

Figure S14. Comparison between experimental energies and calculated energies for the ground ${}^{6}H_{15/2}$ multiplet of Dy³⁺. Black lines represent the experiments, red lines the energies calculated *ab initio* and the blue lines the calculated energies scaled for a factor 1.2 to match the total splitting of the multiplet.

Far InfraRed spectroscopy

Figure S15. FIR spectra recorded for Dy_2 . Left: Absolute transmission, Right: Transmission normalized for B = 0 T.

Magnetic Circular Dichroism Spectroscopy

Figure S16. MCD signal recorded at T = 1.6 K and $B = \pm 2$ T. The peaks labelled with a star are instrumental.

Figure S17. Zoom on the MCD signals relative to the excited multiplets. The green line is the fit obtained as a sum of gaussians. Black ticks are the positions of the extracted energy levels.

Experimental energies

Table S7. Energies extracted from luminescence and MCD experiments.

Spectroscopic term	E (cm ⁻¹)
	0
	191
6ц	241
П _{15/2}	292
complete	332
	358
	501
	653
	3577
	3682
6ц	3732
П13/2	3768
complete	3821
	3867
	3942
	5968
⁶ H _{11/2}	6027
••11/2	6066
partial9	6127
	6155
	7786
	7877
⁶ ц. 9 . ⁶ г.	7900
П9/2 Q Г 11/2	7943
partial	8071
	8097

	8171
	9090
	9155
⁶ н, 8 , ⁶ г,	9227
117/2 & 19/2	9330
partial	9453
	9501
	9549
⁶ F _{5/2}	12457
partial	12546
⁶ F _{3/2}	13293
complete	13342

Crystal Field fitting

Table S8. Single ion parameters extracted from the fit of spectroscopic data.

	Fit
Eave	54763
F ₂	85364
F_4	75702
F_6	43023
ζso	1879

Table S9. CF parameters extracted from the fit of spectroscopic data under assumption of different CF symmetries.

Param.	D) _{4d}	D	6h	D	2d	C	2v	C	•1
	Value	Std dev	Value	Std dev	Value	Std dev	Value	Std dev	Value	Std dev
B ₂₀	669	46	657	61	637	53	503	7	511	16
B ₄₀	1568	134	1286	214	495	142	1346	44	888	59
B ₆₀	1286	198	855	176	-348	182	110	50	-97	114
B ₂₁									205	30
B ₂₋₁									-131	39
B ₂₂							-290	> 10 ⁴	99	25
B ₂₋₂							42	> 10 ⁴	74	26
B ₄₁									-510	82
B ₄₋₁									-113	89
B ₄₂							-43	> 10 ⁴	-298	99
B ₄₋₂							-328	> 10 ⁴	264	162
B ₄₃									-571	126
B ₄₋₃									-379	177
B ₄₄					-184	1315	-614	> 10 ⁴	14	109
B ₄₋₄					851	319	-104	> 10 ⁴	-63	189
B ₆₁									335	112
B ₆₋₁									108	148
B ₆₂							-640	> 10 ⁴	264	151
B ₆₋₂							-17	> 10 ⁴	59	138
B ₆₃									-793	87
B ₆₋₃									99	242
B ₆₄					-1143	656	-28	> 10 ⁴	-79	140
B ₆₋₄					423	1764	-118	> 10 ⁴	29	318
B ₆₅									-38	149
B ₆₋₅									-270	166

B ₆₆		-1016	> 10 ⁴		569	> 10 ⁴	148	194
B ₆₋₆		-458	> 10 ⁴		254	> 10 ⁴	-62	171

Table S10. Energies and composition fitted for the KDs of the ground J=15/2 multiplet of Dy ₂ , assuming C ₁ symmetry and no
coupling. We only reported contributions >1%.

C ₁	Energy / cm ⁻¹								
	0	191	241	292	332	359	502	653	
m _i	1 _{CF} ;±>	2 _{CF} ;±>	3 _{CF} ;±>	4 _{CF} ;±>	5 _{CF} ;±>	6 _{CF} ;±>	7 _{CF} ;±>	8 _{CF} ;±>	
+15/2	84%		1%	11%		2%	1%		
+13/2	10%	5%	17%	53%	2%	5%		3%	
+11/2	3%	7%	12%	12%	4%	37%	7%	14%	
+9/2	3%	17%	12%	4%	7%	2%	14%	28%	
+7/2		21%	9%	2%	12%		23%	20%	
+5/2		7%	14%	4%	16%	2%	21%	11%	
+3/2		8%	21%		11%	25%	10%	12%	
+1/2		19%	3%	3%	13%	5%	15%	7%	
-1/2		7%	2%	3%	9%	8%	3%	3%	
-3/2		2%	1%	1%	8%	1%		1%	
-5/2		4%	1%	4%	8%	6%	1%	1%	
-7/2		2%	2%		5%	2%	1%	1%	
-9/2			3%	2%	3%	4%	1%		
-11/2			1%		2%		1%		
-13/2			1%		1%	1%	1%		
-15/2									

Table S11. CF strength of the calculated CF parameters in C₁ symmetry. We used the following notation:

$$S_k = \sqrt{\frac{1}{2k+1}} \left(\left| B_k^0 \right|^2 + 2 * \sum_{q \neq 0} \left| B_k^q \right|^2 \right)$$
 and $S_{tot} = (S_2 + S_4 + S_6)/3$.

	Fit / cm ^{-1}
S ₂	286
S ₄	537
S ₆	382
St	402

Table S12. Energies and composition fitted for the KDs of the ground J=15/2 multiplet of Dy_2 , assuming C_{2v} symmetry and no coupling. We only report contributions >1%.

C _{2v}	Energy / ci	Energy / cm ⁻¹									
	0	191	242	294	333	359	501	653			
m _i	1 _{CF} ;±>	2 _{CF} ;±>	3 _{CF} ;±>	4 _{CF} ;±>	5 _{CF} ;±>	6 _{CF} ;±>	7 _{CF} ;±>	8 _{CF} ;±>			
+15/2	97%					1%					
+13/2		9%	61%	20%							
+11/2	2%				7%	38%	27%	10%			
+9/2		3%	13%	7%							
+7/2					3%	13%	24%	25%			
+5/2		15%	3%	31%							
+3/2					36%	8%		14%			
+1/2		42%	1%	2%							
-1/2					38%	7%		9%			
-3/2		23%	15%	3%							
-5/2					7%	15%	8%	21%			
-7/2		7%	6%	22%							
-9/2					4%	14%	38%	20%			
-11/2		1%		14%							
-13/2					4%	3%	2%	1%			
-15/2				1%							

FIR Comparison

Figure S18. Comparison between the FIR spectra experimentally recorded, simulated using the *ab initio* CF parameters and simulated using the fitted CF parameters.³

DC Magnetometry- symmetry comparison

Figure S19 Simulations of χT versus T on the basis of the CF parameters obtained from fits assuming C₁ (red line, left) and C_{2v} (magenta line, right) symmetries. Coupling constant j = 0.042 cm⁻¹.

Cantilever Torque Magnetometry

Figure S20. Position of the crystal during Rot1 and Rot2.

Figure S21. CTM experimental points (symbols) and best fit (lines) for Rot1 (left) and Rot2 (right).

Table S13. Experimental and calculated director cosines of the principal axes of the susceptibility tensor in the Dy₂ crystal. The angles α_1 , α_2 and α_3 are the ones between the *x*, *y* and *z* molecular axes and the *a*, *b*' and *c** orthonormal crystallographic axes. The last column of the table represents the discrepancy between experimental and calculated position of the axes.

	$\cos(\alpha_1)$		$\cos(\alpha_2)$		$\cos(\alpha_3)$	Vexp•Vcalc	
	Exp.	Theo.	Exp.	Theo.	Exp.	Theo.	
X	-0.493	-0.023773	-0.371	-0.225321	0.786	0.973994	30°
у	0.772	0.902275	0.229	0.414711	0.593	0.117961	31°
Ζ	-0.400	-0.430505	0.900	0.881615	0.174	0.193443	2°

References

- 1. S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell and D. Avnir, *Coord. Chem. Rev.*, 2005, **249**, 1693-1708.
- 2. K. S. Cole and R. H. Cole, *The Journal of chemical physics*, 1941, **9**, 341-351.
- 3. S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42-55.