
Nucleotide and Structural Label Identification in Single RNA Molecules with 

Quantum Tunneling Spectroscopy

Electronic Supplementary Information

Gary R. Abel, Jr.,1,2 Lee E. Korshoj,1,2 Peter B. Otoupal,1 Sajida Khan,1,2  Anushree Chatterjee,1 

Prashant Nagpal1,2,3*

1Department of Chemical and Biological Engineering, University of Colorado Boulder
2Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder
3Materials Science and Engineering, University of Colorado Boulder 

Table of Contents:
Generating kernel density estimates from parameter distributions
Base-calling algorithms used in RNA sequence identification and structural label mapping

Supporting Figures:
Figure S1– STM images of Au, MPA/Au, and RNA on MPA/Au
Figure S2– Kernel density estimates of all 12 biophysical parameters
Figure S3– DFT results for the molecular orbitals of adenine
Figure S4– Determining relative importance of the parameters
Figure S5– Base calling example and optimal parameter sets
Figure S6– Detailed base calling output—no conductance screening
Figure S7– Detailed base calling output —low-conductance screening
Figure S8– Detailed base calling output —high-conductance screening
Figure S9– Kernel density estimates of all 12 parameters for rA ± NMIA
Figure S10– Kernel density estimates of all 12 parameters for rG ± NMIA
Figure S11– Kernel density estimates of all 12 parameters for rC ± NMIA
Figure S12– Kernel density estimates of all 12 parameters for rU ± NMIA

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2018



Generating kernel density estimates from parameter distributions

Using the mean and standard deviation of all measurements  in a data set (rA, rG, rC, 𝑥1, 𝑥2, 𝑥3,…𝑥𝑛

rU, and rN + NMIA), the parameters can be summarized as kernel density estimation curves, with 

probability density, , found from the following expression:𝑓

𝑓(𝑥) =
1

𝑛ℎ

𝑛

∑
𝑖 = 1

𝐾(𝑥 ‒ 𝑥𝑖

ℎ )
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estimation in terms of  and standard deviation  as  , and  is the Gaussian kernel 𝑛 𝜎 ℎ ≈ 1.06𝜎𝑛 ‒ 1/5 𝐾
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Base-calling algorithms used in RNA sequence identification and structural label mapping

Supervised machine learning was used for base calling in both RNA sequence identification (rA, 

rG, rC, rU discrimination) and structural label mapping (rN ± NMIA label detection). Specifically, 

the naïve Bayes classifier formed the basis of our base-calling algorithm (and all modified versions 

of the algorithm). As described in the text, this system uses Bayes’ theorem to take in values for 

each of the parameters and assign a classification based on the probability of each parameter 

corresponding to the various classes. In the case of RNA sequence identification, there are four 

classes: rA, rG, rC, and rU. For structural mapping, there are two classes: rN − NMIA and rN + 

NMIA, (where N is A, G, C, or U). To ensure that both RNA sequence identification and structural 

mapping results were as robust as possible, the testing and training data was drawn from a library 

of parameter values for each ribonucleotide and NMIA-labeled ribonucleotide formed from 

hundreds of STS measurements, as described in the main text. These libraries were randomly split 

into fourths for base calling analyses with 4-fold cross-validation of results. Additionally, at each 

coverage level, nX (or n repeated measurements/reads), 200 combinations of n measurements were 

tested and averaged for each class (i.e., 800 total different combinations of n measurements for 

each 4-fold cross-validation trial for RNA sequence identification results). By using separate 

testing and training data sets with 4-fold cross-validation and extensive combining of testing 

measurements, the results presented here rigorously demonstrate the ability of our algorithm to 

accurately base call signals from unknown measurements. 



The output from our base calling algorithms (detailed in Figures 3-6 of the main text) 

includes recall of each class, overall accuracy, and confidence in the base call. From a confusion 

matrix analysis, recall of a specific class is True Positives/(True positives + False Negatives), and 

the overall accuracy is the average recall of all classes multiplied by 100%. Confidence is another 

important metric for assessing base calling. The confidence in calling a particular base can be 

calculated using the probability values from the base calling algorithm in the form . 𝐶𝑖 = (𝑃𝑖 ‒ 𝑃𝑗)/𝑃𝑖

Here,  is the confidence for calling base ,  is the probability value associated with the called 𝐶𝑖 𝑖 𝑃𝑖

base, and  is the second largest probability (for the second most probable base). This confidence 𝑃𝑗

value is also indicative of the signal-to-noise level. 

The algorithm employed for the initial RNA sequence identification analysis and for all of 

the structural label mapping results was a typical naïve Bayes classifier. This algorithm was 

applicable since a single set of parameters was used for classification. For RNA sequence 

identification, this includes the results using only HOMO and LUMO as parameters as well as the 

results with all 12 biophysical parameters (results in Figure 3a,b). For the structural label mapping, 

this includes the label detection for each modified ribonucleotide using a single subset of the 12 

parameters (results in Figure 6e,f). 

A more advanced, modified naïve Bayes classification algorithm was used for the optimal 

RNA sequence identification results (Figure 3c and Figure 4a, as well as the conductance screening 

results in Figure 4b,c). The modified algorithm uses multiple subsets of the 12 biophysical 

parameters in different combinations along with probability weighting coefficients. This algorithm 

is based on the idea that different parameter subsets can lead to maximal recall of different 

nucleobases, and can therefore be used together for fine-tuning nucleobase recognition. 

Specifically, the algorithm uses four different subsets of parameters, which were put together 

around a pair of two “fundamental” parameters that demonstrated maximum recall. Additional 

parameters are stacked alongside the fundamental parameters to provide small perturbations that 

can increase or decrease recall for individual ribonucleotides. These additional parameters are 

chosen from base calling tests in which parameters are successively added to the fundamental pair 

to search for specific combinations where recall is enhanced, in analogy to the ‘parameter tuning’ 

described previously. 1 When implemented, this process leads to four separate base calls (one call 

for each of the four parameter sets run through a standard naïve Bayes classifier). The four calls 

are resolved into a single call with weight coefficients that have been optimized (through numerical 



convergence) to provide a weight for each ribonucleotide called by each parameter set. In the end, 

the resolved base calls are at a higher accuracy than any one of the single parameter sets alone. A 

schematic and description of the modified naïve Bayes algorithm, along with the specific 

parameter subsets and weight coefficients for results both with and without conductance screening, 

is provided in Figure S5. Detailed output from the algorithm at 35X coverage (including 

probability values, confidence of base calling, and accuracy) for no conductance screening, low-

conductance screening, and high-conductance screening are shown in Figures S6, S7, and S8, 

respectively. These plots show all 800 base calls from which a representative section of 50 base 

calls was selected and shown in Figure 4.
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Supplementary Figures

Figure S1— Representative STM images of Au, MPA/Au, and RNA on MPA/Au. (a) STM 
image of a clean Au (111) terrace, with the characteristic herringbone reconstruction visible. (b) 
STM image of MPA monolayer on Au (111). Several atomic steps and terraces are visible, as well 
as the previously observed threefold-symmetric striped domains. 2 (c) STM image of a densely-
packed layer of poly-(rC)7 RNA on MPA, with clusters of individual RNA strands visible. Images 
were acquired while operating in constant current mode, with an imaging bias of −0.5 V and a 
setpoint of −100-200 pA. (d) Molecular structure of 3-mercaptopropionic acid (MPA). STM 
images were leveled by mean plane subtraction and flattened line-by-line using Gwyddion image 
analysis software (http://gwyddion.net/).



Figure S2— Kernel density estimates of all 12 biophysical parameters. Data was collected on 
unmodified poly-(rN)7 RNA at high surface-coverage on MPA. Each curve represents ~200 STS 
measurements.



Figure S3— Results of density functional theory (DFT) calculations of the molecular orbitals 
of adenine. Shown are the calculated molecular orbital wavefunction isosurfaces for the (a) 
HOMO, (b) LUMO, (c) HOMO−1, and (d) LUMO+1 energy levels of the adenine nucleobase. 
While the electron wavefunctions of the frontier orbitals (LUMO, HOMO) mainly extend over the 
conjugated nucleobase, modifications of the adjacent sugar are potentially better characterized by 
probing the higher-energy orbital wavefunctions due to their better overlap with the sugar 
backbone. DFT calculations were performed with the GAMESS software package, 3 using the 
restricted Hartree-Fock method with a 6-311++G(2d,2p) basis set and the Becke 3-parameter 
hybrid density functional (B3YLP). 



Figure S4— Determining relative importance of the parameters. (a) Relative importance of 
the 12 parameters calculated from recall using each individual parameter, normalized to the 
maximum. (b) Relative importance of the 12 parameters calculated from comparing the set of 5 
parameters with best recall to the set of 4 parameters where the parameter of interest is removed, 
normalized by the maximum. (c) Relative importance of the 12 parameters calculated from 
comparing the set of 5 parameters with best recall to the average recall of the 7 additional sets of 
5 parameters where the parameter of interest is substituted by one of the missing parameters, 
normalized by the maximum. Shown at the bottom is a schematic description of the method used 
to generate plots b and c. All recall results are for 25X coverage and no conductance screening. 
All three cases (a, c, c) show a consistent trend in the relative importance of the different 
parameters.



Figure S5— Base calling example and optimal parameter sets. (a) Resolving a single base call 
from each of the four base calls of the parameter subsets. The four subsets of parameters (labeled 
Set 1-4) each make a base call for every position in an unknown RNA sequence. To resolve the 
calls into a single call (shown as an example for Position 4), the call made by each parameter 
subset is given a weighting factor calculated as the product of the weight coefficient for 
ribonucleotide rN and the probability value output from the standard naïve Bayes classifier for 
ribonucleotide rN (where N is A, G, C, or U). The weighting factors for each ribonucleotide are 
summed, and the largest determines the resolved base call. Specific parameter subsets (with 
fundamental parameters highlighted in red) and weight coefficients are shown for the modified 
naïve Bayes (b) without conductance screening and (c) with conductance screening.



Figure S6— Detailed base calling output at 35X coverage for no conductance screening. 
Probability values (obtained from the base calling algorithm), confidence of base calling, and 
accuracy (X indicates incorrect calls) for the complete set of 800 base calls at 35X coverage (a 
small set of 50 base calls was shown in Figure 4a, main text).



Figure S7— Detailed base calling output at 35X coverage for low-conductance screening. 
Probability values (obtained from the base calling algorithm), confidence of base calling, and 
accuracy (X indicates incorrect calls) for the complete set of 800 base calls at 35X coverage (a 
small set of 50 base calls was shown in Figure 4b, main text).



Figure S8— Detailed base calling output at 35X coverage for high-conductance screening. 
Probability values (obtained from the base calling algorithm), confidence of base calling, and 
accuracy (X indicates incorrect calls) for the complete set of 800 base calls at 35X coverage (a 
small set of 50 base calls was shown in Figure 4c, main text).



Figure S9— Kernel density estimates of all 12 parameters for rA ± NMIA. Data was collected 
on both unmodified and NMIA-modified poly-(rA)7 RNA at low surface-coverage on MPA. Each 
curve represents the kernel density estimate for ~500 STS measurements.



Figure S10— Kernel density estimates of all 12 parameters for rG ± NMIA. Data was 
collected on both unmodified and NMIA-modified poly-(rG)7 RNA at low surface-coverage on 
MPA. Each curve represents the kernel density estimate for ~500 STS measurements.



Figure S11— Kernel density estimates of all 12 parameters for rC ± NMIA. Data was collected 
on both unmodified and NMIA-modified poly-(rC)7 RNA at low surface-coverage on MPA. Each 
curve represents the kernel density estimate for ~500 STS measurements.



Figure S12— Kernel density estimates of all 12 parameters for rU ± NMIA. Data was collected 
on both unmodified and NMIA-modified poly-(rU)7 RNA at low surface-coverage on MPA. Each 
curve represents the kernel density estimate for ~500 STS measurements.


